Conjugated estrogens for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Conjugated estrogens may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Conjugated estrogens in detail.
, Total controllability analysis discovers explainable drugs for Covid-19 treatment, arXiv, doi:10.48550/arXiv.2206.02970
Network medicine has been pursued for Covid-19 drug repurposing. One such approach adopts structural controllability, a theory for controlling a network (the cell). Motivated to protect the cell from viral infections, we extended this theory to total controllability and introduced a new concept of control hubs. Perturbation to any control hub renders the cell uncontrollable by exogenous stimuli, e.g., viral infections, so control hubs are ideal drug targets. We developed an efficient algorithm for finding all control hubs and applied it to the largest homogenous human protein-protein interaction network. Our new method outperforms several popular gene-selection methods, including that based on structural controllability. The final 65 druggable control hubs are enriched with functions of cell proliferation, regulation of apoptosis, and responses to cellular stress and nutrient levels, revealing critical pathways induced by SARS-CoV-2. These druggable control hubs led to drugs in 4 major categories: antiviral and anti-inflammatory agents, drugs on central nerve systems, and dietary supplements and hormones that boost immunity. Their functions also provided deep insights into the therapeutic mechanisms of the drugs for Covid-19 therapy, making the new approach an explainable drug repurposing method. A remarkable example is Fostamatinib that has been shown to lower mortality, shorten the length of ICU stay, and reduce disease severity of hospitalized Covid-19 patients. The drug targets 10 control hubs, 9 of which are kinases that play key roles in cell differentiation and programmed death. One such kinase is RIPK1 that directly interacts with viral protein nsp12, the RdRp of the virus. The study produced many control hubs that were not targets of existing drugs but were enriched with proteins on membranes and the NF-$κ$B pathway, so are excellent candidate targets for new drugs.