Ciprofloxacin for COVID-19
Ciprofloxacin has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
A repurposed drug screen identifies compounds that inhibit the binding of the COVID-19 spike protein to ACE2, bioRxiv, doi:10.1101/2021.04.08.439071
,
AbstractRepurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding by <90%, measured the EC50 of binding inhibition, and computationally modeled the docking of the best inhibitors to both Spike and ACE2. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction as well as identifying several potential inhibitors that could serve as templates for future drug discovery efforts.
A Repurposed Drug Screen Identifies Compounds That Inhibit the Binding of the COVID-19 Spike Protein to ACE2, Frontiers in Pharmacology, doi:10.3389/fphar.2021.685308
,
Repurposed drugs that block the interaction between the SARS-CoV-2 spike protein and its receptor ACE2 could offer a rapid route to novel COVID-19 treatments or prophylactics. Here, we screened 2,701 compounds from a commercial library of drugs approved by international regulatory agencies for their ability to inhibit the binding of recombinant, trimeric SARS-CoV-2 spike protein to recombinant human ACE2. We identified 56 compounds that inhibited binding in a concentration-dependent manner, measured the IC50of binding inhibition, and computationally modeled the docking of the best inhibitors to the Spike-ACE2 binding interface. The best candidates were Thiostrepton, Oxytocin, Nilotinib, and Hydroxycamptothecin with IC50’s in the 4–9 μM range. These results highlight an effective screening approach to identify compounds capable of disrupting the Spike-ACE2 interaction, as well as identify several potential inhibitors of the Spike-ACE2 interaction.
Computational molecular docking and virtual screening revealed promising SARS-CoV-2 drugs, Precision Clinical Medicine, doi:10.1093/pcmedi/pbab001
,
AbstractThe pandemic of novel coronavirus disease 2019 (COVID-19) has rampaged the world, with more than 58.4 million confirmed cases and over 1.38 million deaths across the world by 23 November 2020. There is an urgent need to identify effective drugs and vaccines to fight against the virus. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to the family of coronaviruses consisting of four structural and 16 non-structural proteins (NSP). Three non-structural proteins, main protease (Mpro), papain-like protease (PLpro), and RNA-dependent RNA polymerase (RdRp), are believed to have a crucial role in replication of the virus. We applied computational ligand-receptor binding modeling and performed comprehensive virtual screening on FDA-approved drugs against these three SARS-CoV-2 proteins using AutoDock Vina, Glide, and rDock. Our computational studies identified six novel ligands as potential inhibitors against SARS-CoV-2, including antiemetics rolapitant and ondansetron for Mpro; labetalol and levomefolic acid for PLpro; and leucal and antifungal natamycin for RdRp. Molecular dynamics simulation confirmed the stability of the ligand-protein complexes. The results of our analysis with some other suggested drugs indicated that chloroquine and hydroxychloroquine had high binding energy (low inhibitory effect) with all three proteins—Mpro, PLpro, and RdRp. In summary, our computational molecular docking approach and virtual screening identified some promising candidate SARS-CoV-2 inhibitors that may be considered for further clinical studies.
Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, Iranian Journal of Pharmaceutical Research, doi:10.5812/ijpr-131577
,
Context: The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. Objectives: The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of SARS-CoV-2. Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. Method: The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. Results: Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. Conclusions: The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
FDA-Approved Drugs with Potent In Vitro Antiviral Activity against Severe Acute Respiratory Syndrome Coronavirus 2, Pharmaceuticals, doi:10.3390/ph13120443
,
(1) Background: Drug repositioning is an unconventional drug discovery approach to explore new therapeutic benefits of existing drugs. Currently, it emerges as a rapid avenue to alleviate the COVID-19 pandemic disease. (2) Methods: Herein, we tested the antiviral activity of anti-microbial and anti-inflammatory Food and Drug Administration (FDA)-approved drugs, commonly prescribed to relieve respiratory symptoms, against Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the viral causative agent of the COVID-19 pandemic. (3) Results: Of these FDA-approved antimicrobial drugs, Azithromycin, Niclosamide, and Nitazoxanide showed a promising ability to hinder the replication of a SARS-CoV-2 isolate, with IC50 of 0.32, 0.16, and 1.29 µM, respectively. We provided evidence that several antihistamine and anti-inflammatory drugs could partially reduce SARS-CoV-2 replication in vitro. Furthermore, this study showed that Azithromycin can selectively impair SARS-CoV-2 replication, but not the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). A virtual screening study illustrated that Azithromycin, Niclosamide, and Nitazoxanide bind to the main protease of SARS-CoV-2 (Protein data bank (PDB) ID: 6lu7) in binding mode similar to the reported co-crystalized ligand. Also, Niclosamide displayed hydrogen bond (HB) interaction with the key peptide moiety GLN: 493A of the spike glycoprotein active site. (4) Conclusions: The results suggest that Piroxicam should be prescribed in combination with Azithromycin for COVID-19 patients.
Repurposing of Drugs and HTS to Combat SARS-CoV-2 Main Protease
Utilizing Structure-Based Molecular Docking, Letters in Drug Design & Discovery, doi:10.2174/1570180818666211007111105
,
Background: COVID-19, first reported in China, from the new strain of severe acute respiratory syndrome coronaviruses (SARS-CoV-2), poses a great threat to the world by claiming uncountable lives. SARS-CoV-2 is a highly infectious virus that has been spreading rapidly throughout the world. In the absence of any specific medicine to cure COVID-19, there is an urgent need to develop novel therapeutics, including drug repositioning along with diagnostics and vaccines to combat the COVID-19. Many antivirals, antimalarials, antiparasitic, antibacterials, immunosuppressive anti-inflammatory, and immunoregulatory agents are being clinically investigated for the treatment of COVID-19. Objectives: The earlier developed one parameter regression model correlating the dock scores with in vitro anti-SARS-CoV-2 main protease activity well predicted the six drugs viz remdesivir, chloroquine, favipiravir, ribavirin, penciclovir, and nitazoxanide as potential anti-COVID agents. To further validate our earlier model, the biological activity of nine more recently published SARS-CoV-2 main protease inhibitors has been predicted using our previously reported model. Methods: In the present study, this regression model has been used to screen the existing antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics utilizing dock score analyses to explore the potential including mechanism of action of these compounds in combating SARS-CoV-2 main protease. Results: The high correlation (R=0.91) explaining 82.3% variance between the experimental versus predicted activities for the nine compounds is observed. It proves the robustness of our developed model. Therefore, this robust model has been further improved, taking a total number of 15 compounds to formulate another model with an R-value of 0.887 and the explained variance of 78.6%. These models have been used for high throughput screening (HTS) of the 21 diverse compounds belonging to antiviral, antiparasitic, antitubercular, and anti pneumonia chemotherapeutics as potential repurpose agents to combat SARS-CoV-2 main protease. The models screened that the drugs bedaquiline and lefamulin have higher binding affinities (dock scores of -8.989 and -9.153 Kcal/mol respectively) than the reference compound N-[2-(5-fluoranyl-1~H-indol-3-yl)ethyl]ethanamide (dock score of -7.998 Kcal/Mol), as well as higher predicted activities with pEC50 of 0.783 and 0.937 μM and the 0.611 and 0.724 μM respectively. The clinically used repurposed drugs dexamethasone and cefixime have been predicted with pEC50 values of -0.463 and -0.622 μM and -0.311 and -0.428 μM respectively for optimal inhibition. The drugs such as doxycycline, cefpodoxime, ciprofloxacin, sparfloxacin, moxifloxacin, and TBAJ-876 showed moderate binding affinity corresponding to the moderate predicted activity (-1.540 to -1.109 μM). Conclusion: In the present study, validation of our previously developed dock score-based one..
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.