Caffeic acid phenethyl ester for COVID-19
Caffeic acid phenethyl ester has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Anti-COVID-19 Potential of Withaferin-A and Caffeic Acid Phenethyl Ester, Current Topics in Medicinal Chemistry, doi:10.2174/0115680266280720231221100004
,
Background: The recent COVID-19 (coronavirus disease 2019) pandemic triggered research on the development of new vaccines/drugs, repurposing of clinically approved drugs, and assessment of natural anti-COVID-19 compounds. Based on the gender difference in the severity of the disease, such as a higher number of men hospitalized and in intense care units, variations in sex hormones have been predicted to play a role in disease susceptibility. Cell surface receptors (Angiotensin-Converting Enzyme 2; ACE2 and a connected transmembrane protease serine 2- TMPSS2) are upregulated by androgens. Conversely, androgen antagonists have also been shown to lower ACE2 levels, implying their usefulness in COVID-19 management. Objective: In this study, we performed computational and cell-based assays to investigate the anti-- COVID-19 potential of Withaferin-A and Caffeic acid phenethyl ester, natural compounds from Withania somnifera and honeybee propolis, respectively. Methods: Structure-based computational approach was adopted to predict binding stability, interactions, and dynamics of the two test compounds to three target proteins (androgen receptor, ACE2, and TMPRSS2). Further, in vitro, cell-based experimental approaches were used to investigate the effect of compounds on target protein expression and SARS-CoV-2 replication. Results: Computation and experimental analyses revealed that (i) CAPE, but not Wi-A, can act as androgen antagonist and hence inhibit the transcriptional activation function of androgen receptor, (ii) while both Wi-A and CAPE could interact with ACE2 and TMPRSS2, Wi-A showed higher binding affinity, and (iii) combination of Wi-A and CAPE (Wi-ACAPE) caused strong downregulation of ACE2 and TMPRSS2 expression and inhibition of virus infection. Conclusion: Wi-A and CAPE possess multimodal anti-COVID-19 potential, and their combination (Wi-ACAPE) is expected to provide better activity and hence warrant further attention in the laboratory and clinic.
Investigation of potential inhibitor properties of ethanolic propolis extracts against ACE-II receptors for COVID-19 treatment by Molecular Docking Study, ScienceOpen, doi:10.14293/S2199-1006.1.SOR-.PP5BWN4.v1
,
The angiotensin-converting enzyme (ACE)-related carboxypeptidase, ACE-II, is a type I integral membrane protein of 805 amino acids that contains one HEXXH-E zinc binding consensus sequence. ACE-II has been implicated in the regulation of heart function and also as a functional receptor for the coronavirus that causes the severe acute respiratory syndrome (SARS). In this study, the potential of some flavonoids present in propolis to bind to ACE II receptors was calculated in silico. Binding constants of ten flavonoids, caffeic acid, caffeic acid phenethyl ester, chrysin, galangin, myricetin, rutin, hesperetin, pinocembrin, luteolin and quercetin were measured using the AutoDock 4.2 molecular docking program. And also, these binding constants were compared to reference ligand of MLN-4760. The results are shown that rutin has the best inhibition potentials among the studied molecules with high binding energy -8,97 kcal/mol and Ki 0,261 M, and it is followed by myricetin, caffeic acid phenethyl ester, hesperetin and pinocembrin. However, the reference molecule has binding energy of -7,28 kcal/mol and 4,65 M. In conclusion, the high potential of flavonoids in ethanolic propolis extracts to bind to ACE II receptors indicates that this natural bee product has high potential for Covid- 19 treatment, but this needs to be supported by experimental studies.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.