Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Bevacizumab for COVID-19

Bevacizumab has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ebrahimi et al., Systems biology approaches to identify driver genes and drug combinations for treating COVID-19, Scientific Reports, doi:10.1038/s41598-024-52484-8
AbstractCorona virus 19 (Covid-19) has caused many problems in public health, economic, and even cultural and social fields since the beginning of the epidemic. However, in order to provide therapeutic solutions, many researches have been conducted and various omics data have been published. But there is still no early diagnosis method and comprehensive treatment solution. In this manuscript, by collecting important genes related to COVID-19 and using centrality and controllability analysis in PPI networks and signaling pathways related to the disease; hub and driver genes have been identified in the formation and progression of the disease. Next, by analyzing the expression data, the obtained genes have been evaluated. The results show that in addition to the significant difference in the expression of most of these genes, their expression correlation pattern is also different in the two groups of COVID-19 and control. Finally, based on the drug-gene interaction, drugs affecting the identified genes are presented in the form of a bipartite graph, which can be used as the potential drug combinations.
Sharun et al., A comprehensive review on pharmacologic agents, immunotherapies and supportive therapeutics for COVID-19, Narra J, doi:10.52225/narra.v2i3.92
The emergence of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has affected many countries throughout the world. As urgency is a necessity, most efforts have focused on identifying small molecule drugs that can be repurposed for use as anti-SARS-CoV-2 agents. Although several drug candidates have been identified using in silico method and in vitro studies, most of these drugs require the support of in vivo data before they can be considered for clinical trials. Several drugs are considered promising therapeutic agents for COVID-19. In addition to the direct-acting antiviral drugs, supportive therapies including traditional Chinese medicine, immunotherapies, immunomodulators, and nutritional therapy could contribute a major role in treating COVID-19 patients. Some of these drugs have already been included in the treatment guidelines, recommendations, and standard operating procedures. In this article, we comprehensively review the approved and potential therapeutic drugs, immune cells-based therapies, immunomodulatory agents/drugs, herbs and plant metabolites, nutritional and dietary for COVID-19.
Moura et al., Converging Paths: A Comprehensive Review of the Synergistic Approach between Complementary Medicines and Western Medicine in Addressing COVID-19 in 2020, BioMed, doi:10.3390/biomed3020025
The rapid spread of the new coronavirus disease (COVID-19) caused by SARS-CoV-2 has become a global pandemic. Although specific vaccines are available and natural drugs are being researched, supportive care and specific treatments to alleviate symptoms and improve patient quality of life remain critical. Chinese medicine (CM) has been employed in China due to the similarities between the epidemiology, genomics, and pathogenesis of SARS-CoV-2 and SARS-CoV. Moreover, the integration of other traditional oriental medical systems into the broader framework of integrative medicine can offer a powerful approach to managing the disease. Additionally, it has been reported that integrated medicine has better effects and does not increase adverse drug reactions in the context of COVID-19. This article examines preventive measures, potential infection mechanisms, and immune responses in Western medicine (WM), as well as the pathophysiology based on principles of complementary medicine (CM). The convergence between WM and CM approaches, such as the importance of maintaining a strong immune system and promoting preventive care measures, is also addressed. Current treatment options, traditional therapies, and classical prescriptions based on empirical knowledge are also explored, with individual patient circumstances taken into account. An analysis of the potential benefits and challenges associated with the integration of complementary and Western medicine (WM) in the treatment of COVID-19 can provide valuable guidance, enrichment, and empowerment for future research endeavors.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit