Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Bemcentinib for COVID-19

Bemcentinib has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Lei et al., Small molecules in the treatment of COVID-19, Signal Transduction and Targeted Therapy, doi:10.1038/s41392-022-01249-8
AbstractThe outbreak of COVID-19 has become a global crisis, and brought severe disruptions to societies and economies. Until now, effective therapeutics against COVID-19 are in high demand. Along with our improved understanding of the structure, function, and pathogenic process of SARS-CoV-2, many small molecules with potential anti-COVID-19 effects have been developed. So far, several antiviral strategies were explored. Besides directly inhibition of viral proteins such as RdRp and Mpro, interference of host enzymes including ACE2 and proteases, and blocking relevant immunoregulatory pathways represented by JAK/STAT, BTK, NF-κB, and NLRP3 pathways, are regarded feasible in drug development. The development of small molecules to treat COVID-19 has been achieved by several strategies, including computer-aided lead compound design and screening, natural product discovery, drug repurposing, and combination therapy. Several small molecules representative by remdesivir and paxlovid have been proved or authorized emergency use in many countries. And many candidates have entered clinical-trial stage. Nevertheless, due to the epidemiological features and variability issues of SARS-CoV-2, it is necessary to continue exploring novel strategies against COVID-19. This review discusses the current findings in the development of small molecules for COVID-19 treatment. Moreover, their detailed mechanism of action, chemical structures, and preclinical and clinical efficacies are discussed.
Encinar et al., Potential Drugs Targeting Early Innate Immune Evasion of SARS-Coronavirus 2 via 2’-O-Methylation of Viral RNA, Viruses, doi:10.3390/v12050525
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) causing the COVID-19 respiratory disease pandemic utilizes unique 2′-O-methyltransferase (2′-O-MTase) capping machinery to camouflage its RNA from innate immune recognition. The nsp16 catalytic subunit of the 2′-O-MTase is unusual in its requirement for a stimulatory subunit (nsp10) to catalyze the ribose 2′-O-methylation of the viral RNA cap. Here we provide a computational basis for drug repositioning or de novo drug development based on three differential traits of the intermolecular interactions of the SARS-CoV-2-specific nsp16/nsp10 heterodimer, namely: (1) the S-adenosyl-l-methionine-binding pocket of nsp16, (2) the unique “activating surface” between nsp16 and nsp10, and (3) the RNA-binding groove of nsp16. We employed ≈9000 U.S. Food and Drug Administration (FDA)-approved investigational and experimental drugs from the DrugBank repository for docking virtual screening. After molecular dynamics calculations of the stability of the binding modes of high-scoring nsp16/nsp10–drug complexes, we considered their pharmacological overlapping with functional modules of the virus–host interactome that is relevant to the viral lifecycle, and to the clinical features of COVID-19. Some of the predicted drugs (e.g., tegobuvir, sonidegib, siramesine, antrafenine, bemcentinib, itacitinib, or phthalocyanine) might be suitable for repurposing to pharmacologically reactivate innate immune restriction and antagonism of SARS-CoV-2 RNAs lacking 2′-O-methylation.
Dittmar et al., Drug repurposing screens reveal FDA approved drugs active against SARS-Cov-2, bioRxiv, doi:10.1101/2020.06.19.161042
AbstractThere are an urgent need for antivirals to treat the newly emerged SARS-CoV-2. To identify new candidates we screened a repurposing library of ~3,000 drugs. Screening in Vero cells found few antivirals, while screening in human Huh7.5 cells validated 23 diverse antiviral drugs. Extending our studies to lung epithelial cells, we found that there are major differences in drug sensitivity and entry pathways used by SARS-CoV-2 in these cells. Entry in lung epithelial Calu-3 cells is pH-independent and requires TMPRSS2, while entry in Vero and Huh7.5 cells requires low pH and triggering by acid-dependent endosomal proteases. Moreover, we found 9 drugs are antiviral in lung cells, 7 of which have been tested in humans, and 3 are FDA approved including Cyclosporine which we found is targeting Cyclophilin rather than Calcineurin for its antiviral activity. These antivirals reveal essential host targets and have the potential for rapid clinical implementation.
Sokouti, B., A review on in silico virtual screening methods in COVID-19 using anticancer drugs and other natural/chemical inhibitors, Exploration of Targeted Anti-tumor Therapy, doi:10.37349/etat.2023.00177
The present coronavirus disease 2019 (COVID-19) pandemic scenario has posed a difficulty for cancer treatment. Even under ideal conditions, malignancies like small cell lung cancer (SCLC) are challenging to treat because of their fast development and early metastases. The treatment of these patients must not be jeopardized, and they must be protected as much as possible from the continuous spread of the COVID-19 infection. Initially identified in December 2019 in Wuhan, China, the contagious coronavirus illness 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Finding inhibitors against the druggable targets of SARS-CoV-2 has been a significant focus of research efforts across the globe. The primary motivation for using molecular modeling tools against SARS-CoV-2 was to identify candidates for use as therapeutic targets from a pharmacological database. In the published study, scientists used a combination of medication repurposing and virtual drug screening methodologies to target many structures of SARS-CoV-2. This virus plays an essential part in the maturation and replication of other viruses. In addition, the total binding free energy and molecular dynamics (MD) modeling findings showed that the dynamics of various medications and substances were stable; some of them have been tested experimentally against SARS-CoV-2. Different virtual screening (VS) methods have been discussed as potential means by which the evaluated medications that show strong binding to the active site might be repurposed for use against SARS-CoV-2.
Ravindran et al., Discovery of host-directed modulators of virus infection by probing the SARS-CoV-2–host protein–protein interaction network, Briefings in Bioinformatics, doi:10.1093/bib/bbac456
Abstract The ongoing coronavirus disease 2019 (COVID-19) pandemic has highlighted the need to better understand virus–host interactions. We developed a network-based method that expands the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2)–host protein interaction network and identifies host targets that modulate viral infection. To disrupt the SARS-CoV-2 interactome, we systematically probed for potent compounds that selectively target the identified host proteins with high expression in cells relevant to COVID-19. We experimentally tested seven chemical inhibitors of the identified host proteins for modulation of SARS-CoV-2 infection in human cells that express ACE2 and TMPRSS2. Inhibition of the epigenetic regulators bromodomain-containing protein 4 (BRD4) and histone deacetylase 2 (HDAC2), along with ubiquitin-specific peptidase (USP10), enhanced SARS-CoV-2 infection. Such proviral effect was observed upon treatment with compounds JQ1, vorinostat, romidepsin and spautin-1, when measured by cytopathic effect and validated by viral RNA assays, suggesting that the host proteins HDAC2, BRD4 and USP10 have antiviral functions. We observed marked differences in antiviral effects across cell lines, which may have consequences for identification of selective modulators of viral infection or potential antiviral therapeutics. While network-based approaches enable systematic identification of host targets and selective compounds that may modulate the SARS-CoV-2 interactome, further developments are warranted to increase their accuracy and cell-context specificity.
Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, International Journal of Molecular Sciences, doi:10.3390/ijms231911009
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the pathogenic cause of coronavirus disease 2019 (COVID-19). The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a potential target for the treatment of COVID-19. An RdRp complex:dsRNA structure suitable for docking simulations was prepared using a cryo-electron microscopy (cryo-EM) structure (PDB ID: 7AAP; resolution, 2.60 Å) that was reported recently. Structural refinement was performed using energy calculations. Structure-based virtual screening was performed using the ChEMBL database. Through 1,838,257 screenings, 249 drugs (37 approved, 93 clinical, and 119 preclinical drugs) were predicted to exhibit a high binding affinity for the RdRp complex:dsRNA. Nine nucleoside triphosphate analogs with anti-viral activity were included among these hit drugs, and among them, remdesivir-ribonucleoside triphosphate and favipiravir-ribonucleoside triphosphate adopted a similar docking mode as that observed in the cryo-EM structure. Additional docking simulations for the predicted compounds with high binding affinity for the RdRp complex:dsRNA suggested that 184 bioactive compounds could be anti-SARS-CoV-2 drug candidates. The hit bioactive compounds mainly consisted of a typical noncovalent major groove binder for dsRNA. Three-layer ONIOM (MP2/6-31G:AM1:AMBER) geometry optimization calculations and frequency analyses (MP2/6-31G:AMBER) were performed to estimate the binding free energy of a representative bioactive compound obtained from the docking simulation, and the fragment molecular orbital calculation at the MP2/6-31G level of theory was subsequently performed for analyzing the detailed interactions. The procedure used in this study represents a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that could significantly shorten the clinical development period for drug repositioning.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit