Baricitinib for COVID-19
Baricitinib has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
JAK inhibition reduces SARS-CoV-2 liver infectivity and modulates inflammatory responses to reduce morbidity and mortality, Science Advances, doi:10.1126/sciadv.abe4724
,
The dual anticytokine and antiviral actions of baricitinib reduce SARS-CoV-2 infectivity in organoids and morbidity in people.
Use of Baricitinib in Treatment of COVID-19: A Systematic Review, medRxiv, doi:10.1101/2021.12.26.21268434
,
AbstractObjectivesTo assess the role of baricitinib alone or in combination with other therapies as a treatment for patients with COVID-19.MethodsSystematic literature search was conducted in the WHO COVID-19 Coronavirus disease database to find clinical studies on use of baricitinib for treatment of COVID-19 between December 1st 2019 and September 30th 2021. Two independent set of reviewers identified the eligible studies fulfilling the inclusion criteria, and relevant data was extracted and a qualitative synthesis of evidence performed. The risk of bias was evaluated with validated tools.ResultsA total of 267 articles were found to be eligible after primary screening of title and abstracts. Following assessment of full texts, 19 studies were finally included for this systematic review, out of which 16 are observational, and 3 are interventional studies. Collating the results from these observational and interventional studies, baricitinib used as add on to standard therapy, either alone or in combination with other drugs, was found to have favourable outcomes in moderate to severe hospitalised patients with COVID-19. Furthermore, ongoing trials indicate that drug is being extensively studied across the world for its safety and efficacy in COVID-19.ConclusionBaricitinib significantly improves clinical outcomes in hospitalized patients with COVID-19 pneumonia and further evidence may establish the drug as a standard treatment among such patients.
Multi-omics in COVID-19: Driving development of therapeutics and vaccines, National Science Review, doi:10.1093/nsr/nwad161
,
Abstract The ongoing COVID-19 pandemic caused by SARS-CoV-2 has raised global concern for public health and the economy. The development of therapeutics and vaccines to combat this virus are continuously progressing. Multi-omics approaches, including genomics, transcriptomics, proteomics, metabolomics, epigenomics, and metallomics, have helped understand the structural and molecular features of the virus, thereby assisting in the design of potential therapeutics and accelerating vaccine development for COVID-19. Here, we provide an up-to-date overview of the latest applications of multi-omics technologies in strategies addressing COVID-19, in order to provide suggestions towards the development of highly effective knowledge-based therapeutics and vaccines.
Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
,
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Repurposing Drugs for the Treatment of COVID-19 and Its Cardiovascular Manifestations, Circulation Research, doi:10.1161/circresaha.122.321879
,
COVID-19 is an infectious disease caused by SARS-CoV-2 leading to the ongoing global pandemic. Infected patients developed a range of respiratory symptoms, including respiratory failure, as well as other extrapulmonary complications. Multiple comorbidities, including hypertension, diabetes, cardiovascular diseases, and chronic kidney diseases, are associated with the severity and increased mortality of COVID-19. SARS-CoV-2 infection also causes a range of cardiovascular complications, including myocarditis, myocardial injury, heart failure, arrhythmias, acute coronary syndrome, and venous thromboembolism. Although a variety of methods have been developed and many clinical trials have been launched for drug repositioning for COVID-19, treatments that consider cardiovascular manifestations and cardiovascular disease comorbidities specifically are limited. In this review, we summarize recent advances in drug repositioning for COVID-19, including experimental drug repositioning, high-throughput drug screening, omics data-based, and network medicine-based computational drug repositioning, with particular attention on those drug treatments that consider cardiovascular manifestations of COVID-19. We discuss prospective opportunities and potential methods for repurposing drugs to treat cardiovascular complications of COVID-19.
Severe COVID-19: Drugs and Clinical Trials, Journal of Clinical Medicine, doi:10.3390/jcm12082893
,
By January of 2023, the COVID-19 pandemic had led to a reported total of 6,700,883 deaths and 662,631,114 cases worldwide. To date, there have been no effective therapies or standardized treatment schemes for this disease; therefore, the search for effective prophylactic and therapeutic strategies is a primary goal that must be addressed. This review aims to provide an analysis of the most efficient and promising therapies and drugs for the prevention and treatment of severe COVID-19, comparing their degree of success, scope, and limitations, with the aim of providing support to health professionals in choosing the best pharmacological approach. An investigation of the most promising and effective treatments against COVID-19 that are currently available was carried out by employing search terms including “Convalescent plasma therapy in COVID-19” or “Viral polymerase inhibitors” and “COVID-19” in the Clinicaltrials.gov and PubMed databases. From the current perspective and with the information available from the various clinical trials assessing the efficacy of different therapeutic options, we conclude that it is necessary to standardize certain variables—such as the viral clearance time, biomarkers associated with severity, hospital stay, requirement of invasive mechanical ventilation, and mortality rate—in order to facilitate verification of the efficacy of such treatments and to better assess the repeatability of the most effective and promising results.
Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding, Scientific Reports, doi:10.1038/s41598-023-30095-z
,
AbstractThe search for an effective drug is still urgent for COVID-19 as no drug with proven clinical efficacy is available. Finding the new purpose of an approved or investigational drug, known as drug repurposing, has become increasingly popular in recent years. We propose here a new drug repurposing approach for COVID-19, based on knowledge graph (KG) embeddings. Our approach learns “ensemble embeddings” of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. Ensemble KG-embeddings are subsequently used in a deep neural network trained for discovering potential drugs for COVID-19. Compared to related works, we retrieve more in-trial drugs among our top-ranked predictions, thus giving greater confidence in our prediction for out-of-trial drugs. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. We show that Fosinopril is a potential ligand for the SARS-CoV-2 nsp13 target. We also provide explanations of our predictions thanks to rules extracted from the KG and instanciated by KG-derived explanatory paths. Molecular evaluation and explanatory paths bring reliability to our results and constitute new complementary and reusable methods for assessing KG-based drug repurposing.
Prospects of Novel and Repurposed Immunomodulatory Drugs against Acute Respiratory Distress Syndrome (ARDS) Associated with COVID-19 Disease, Journal of Personalized Medicine, doi:10.3390/jpm13040664
,
Acute respiratory distress syndrome (ARDS) is intricately linked with SARS-CoV-2-associated disease severity and mortality, especially in patients with co-morbidities. Lung tissue injury caused as a consequence of ARDS leads to fluid build-up in the alveolar sacs, which in turn affects oxygen supply from the capillaries. ARDS is a result of a hyperinflammatory, non-specific local immune response (cytokine storm), which is aggravated as the virus evades and meddles with protective anti-viral innate immune responses. Treatment and management of ARDS remain a major challenge, first, because the condition develops as the virus keeps replicating and, therefore, immunomodulatory drugs are required to be used with caution. Second, the hyperinflammatory responses observed during ARDS are quite heterogeneous and dependent on the stage of the disease and the clinical history of the patients. In this review, we present different anti-rheumatic drugs, natural compounds, monoclonal antibodies, and RNA therapeutics and discuss their application in the management of ARDS. We also discuss on the suitability of each of these drug classes at different stages of the disease. In the last section, we discuss the potential applications of advanced computational approaches in identifying reliable drug targets and in screening out credible lead compounds against ARDS.
Therapeutic Targets in the Virological Mechanism and in the Hyperinflammatory Response of Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2), Applied Sciences, doi:10.3390/app13074471
,
This work is a bibliographic review. The search for the necessary information was carried out in the months of November 2022 and January 2023. The databases used were as follows: Pubmed, Academic Google, Scielo, Scopus, and Cochrane library. Results: In total, 101 articles were selected after a review of 486 articles from databases and after applying the inclusion and exclusion criteria. The update on the molecular mechanism of human coronavirus (HCoV) infection was reviewed, describing possible therapeutic targets in the viral response phase. There are different strategies to prevent or hinder the introduction of the viral particle, as well as the replicative mechanism ((protease inhibitors and RNA-dependent RNA polymerase (RdRp)). The second phase of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) involves the activation of hyperinflammatory cascades of the host’s immune system. It is concluded that there are potential therapeutic targets and drugs under study in different proinflammatory pathways such as hydroxychloroquine, JAK inhibitors, interleukin 1 and 6 inhibitors, and interferons.
Potential Drugs for COVID -19 Treatment Management With Their Contraindications and Drug- Drug Interaction, MDPI AG, doi:10.20944/preprints202105.0690.v1
,
Novel Coronavirus (2019-nCOV) causes inflammatory response with worsening symptoms. Classification of potential anti-viral and anti-inflammatory drugs in managing the symptoms of the COVID-19 and reducing morbidity is important. The objective of this study is to identify a group of drugs, best suited for COVID-19 treatment based on recent developments in clinical trials, FDA drug evaluation, directions and developments and from drug therapies globally. Online literature search was done on Medline, PubMed and google scholar databases for studies on various treatments and drug therapies for COVID-19 and relevant studies were identified and the identified drugs are described in detail as per their Pharmacological, pharmaceutical properties of the drugs, mechanism of action, current COVID-19 drug therapy, contraindications and drug-drug interactions Certain drugs can inhibit action against viral infection and protect lungs from severe inflammatory response. This article summarizes several drugs like Hydroxychloroquine, Chloroquine, Remdesivir, Favipiravir, Lopinavir, Ritonavir, Dexamethasone, Ivermectin, Baricitinib, Casirivimab / imdevimab, Bamlanivimab along with auxiliary treatment like convalescent plasma transfusion. Remdesivir is first drug approved by FDA. Hydroxychloroquine, dexamethasone and remdesivir are showing results against COVID-19 but it is important to test the efficacy and safety of such drugs though some drugs have shown remarkable results.
In-Vitro Screening of Repurposed Drug Library against Severe Acute Respiratory Syndrome Coronavirus-2, Medical Research Archives, doi:10.18103/mra.v11i2.3595
,
The current pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) demands rapid identification of new antiviral molecules from the existing drugs. Drug repurposing is a significant alternative for pandemics and emerging diseases because of the availability of preclinical data, documented safety in clinic and possibility of immediate production and scalable capacity and supply. Several drugs such as ivermectin and hydroxy chloroquine have been repurposed as anti-SARS-CoV-2 agents, but the effect of these compounds in treating the COVID-19 patients remains sub-optimal. In the present study repurposed drug libraries consisting of 560 compounds from two different sources have been screened against SARS-CoV-2 isolate USA-WA1/2020 in Vero-E6 cell line and 24 compounds were found active. The SARS-CoV-2 virus propagated in Vero E6 cell line and used in screening the drug libraries was sequenced by Next Generation Sequencing to identify any mutations that may have accumulated in the virus genome. The whole genome sequencing data of SARS-CoV-2 showed 9 and 6 single nucleotide polymorphisms in spike protein with reference to Wuhan-Hu-1(NC045512.2) and USA/WA-CDC-WA1/2020 (MN985325.1) isolates respectively. The present study identified 24 compounds active against SARS-CoV-2 isolate USA-WA1/2020 out of 560 repurposed drugs from two libraries. The IC-50 values of the identified hits range from 0.4 µM to 16 µM. Further studies on the repurposed drugs identified in the present screen may be helpful in the rapid development of antiviral drugs against SARS-CoV-2.
Paving New Roads Using Allium sativum as a Repurposed Drug and Analyzing its Antiviral Action Using Artificial Intelligence Technology, Iranian Journal of Pharmaceutical Research, doi:10.5812/ijpr-131577
,
Context: The whole universe is facing a coronavirus catastrophe, and prompt treatment for the health crisis is primarily significant. The primary way to improve health conditions in this battle is to boost our immunity and alter our diet patterns. A common bulb veggie used to flavor cuisine is garlic. Compounds in the plant that are physiologically active are present, contributing to its pharmacological characteristics. Among several food items with nutritional value and immunity improvement, garlic stood predominant and more resourceful natural antibiotic with a broad spectrum of antiviral potency against diverse viruses. However, earlier reports have depicted its efficacy in the treatment of a variety of viral illnesses. Nonetheless, there is no information on its antiviral activities and underlying molecular mechanisms. Objectives: The bioactive compounds in garlic include organosulfur (allicin and alliin) and flavonoid (quercetin) compounds. These compounds have shown immunomodulatory effects and inhibited attachment of coronavirus to the angiotensin-converting enzyme 2 (ACE2) receptor and the Mpro of SARS-CoV-2. Further, we have discussed the contradictory impacts of garlic used as a preventive measure against the novel coronavirus. Method: The GC/MS analysis revealed 18 active chemicals, including 17 organosulfur compounds in garlic. Using the molecular docking technique, we report for the first time the inhibitory effect of the under-consideration compounds on the host receptor ACE2 protein in the human body, providing a crucial foundation for understanding individual compound coronavirus resistance on the main protease protein of SARS-CoV-2. Allyl disulfide and allyl trisulfide, which make up the majority of the compounds in garlic, exhibit the most potent activity. Results: Conventional medicine has proven its efficiency from ancient times. Currently, our article's prime spotlight was on the activity of Allium sativum on the relegation of viral load and further highlighted artificial intelligence technology to study the attachment of the allicin compound to the SARS-CoV-2 receptor to reveal its efficacy. Conclusions: The COVID-19 pandemic has triggered interest among researchers to conduct future research on molecular docking with clinical trials before releasing salutary remedies against the deadly malady.
Promising Repurposed Antiviral Molecules to Combat SARS-CoV-2: A Review, Current Pharmaceutical Biotechnology, doi:10.2174/1389201024666230302113110
,
Abstract: COVID-19, an extremely transmissible and pathogenic viral disease, triggered a global pandemic that claimed lives worldwide. To date, there is no clear and fully effective treatment for COVID-19 disease. Nevertheless, the urgency to discover treatments that can turn the tide has led to the development of a variety of preclinical drugs that are potential candidates for probative results. Although most of these supplementary drugs are constantly being tested in clinical trials against COVID-19, recognized organizations have aimed to outline the prospects in which their use could be considered. A narrative assessment of current articles on COVID-19 disease and its therapeutic regulation was performed. This review outlines the use of various potential treatments against SARS CoV-2, categorized as fusion inhibitors, protease inhibitors, and RNA-dependent RNA polymerase inhibitors, which include antiviral drugs such as Umifenovir, Baricitinib, Camostatmesylate, Nafamostatmesylate, Kaletra, Paxlovide, Darunavir, Atazanavir, Remdesivir, Molnupiravir, Favipiravir, and Ribavirin. To understand the virology of SARS-CoV-2, potential therapeutic approaches for the treatment of COVID-19 disease, synthetic methods of potent drug candidates, and their mechanisms of action have been addressed in this review. It intends to help readers approach the accessible statistics on the helpful treatment strategies for COVID-19 disease and to serve as a valuable resource for future research in this area.
Interaction of surface glycoprotein of SARS-CoV-2 variants of concern with potential drug candidates: A molecular docking study, F1000Research, doi:10.12688/f1000research.109586.1
,
<ns4:p><ns4:bold>Background:</ns4:bold> COVID-19 has become a global threat. Since its first outbreak from Wuhan, China in December 2019, the SARS-CoV-2 virus has gone through structural changes arising due to mutations in its surface glycoprotein. These mutations have led to the emergence of different genetic variants threatening public health due to increased transmission and virulence. As new drug development is a long process, repurposing existing antiviral drugs with potential activity against SARS-CoV-2 might be a possible solution to mitigate the current situation.</ns4:p><ns4:p> <ns4:bold>Methods:</ns4:bold> This study focused on utilizing molecular docking to determine the effect of potential drugs on several variants of concern (VOCs). The effect of various drugs such as baricitinib, favipiravir, lopinavir, remdesivir and dexamethasone, which might have the potential to treat SARS-CoV-2 infections as evident from previous studies, was investigated for different VOCs.</ns4:p><ns4:p> <ns4:bold>Results:</ns4:bold> Remdesivir showed promising results for B.1.351 variant (binding energy: -7.3 kcal/mol) with residues Gln319 and Val503 facilitating strong binding. Favipiravir showed favorable results against B.1.1.7 (binding energy: -5.6 kcal/mol), B.1.351 (binding energy: -5.1 kcal/mol) and B.1.617.2 (binding energy: -5 kcal/mol). Molecular dynamics simulation for favipiravir/B.1.1.7 was conducted and showed significant results in agreement with our findings.</ns4:p><ns4:p> <ns4:bold>Conclusions:</ns4:bold> From structural modeling and molecular docking experiments, it is evident that mutations outside the receptor binding domain of surface glycoprotein do not have a sharp impact on drug binding affinity. Thus, the potential use of these drugs should be explored further for their antiviral effect against SARS-CoV-2 VOCs.</ns4:p>
Please send us corrections, updates, or comments. Vaccines and
treatments are complementary. All practical, effective, and safe means should
be used based on risk/benefit analysis. No treatment, vaccine, or intervention
is 100% available and effective for all current and future variants. We do not
provide medical advice. Before taking any medication, consult a qualified
physician who can provide personalized advice and details of risks and
benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.