Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

AYA2012004_L-M1 for COVID-19

AYA2012004_L-M1 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ayass et al., High-Affinity Neutralizing DNA Aptamers against SARS-CoV-2 Spike Protein Variants, COVID, doi:10.3390/covid3040038
The continuous emergence of new variants of concern for SARS-CoV-2 has created a challenge for existing therapies. To address this, we developed a series of single-stranded DNA aptamers that not only bind specifically to the trimer S protein of SARS-CoV-2 but also block the interaction between the trimer S protein and ACE2 receptors. The systematic evolution of ligands by exponential enrichment (SELEX) was performed to select the aptamers for SARS-CoV-2 trimer S protein. ELISA-based assay and flow cytometry were performed to test the apatmers’ binding and inhibition of trimer S protein in vitro. Binding affinity was measured using surface plasmon resonance. Significance was determined in Prism 9.0 using the one-way ANOVA test (Dunnett’s multiple comparisons test) or two-way ANOVA test (Tukey’s multiple comparisons test) for comparisons. The p values < 0.05 were considered statistically significant. After 12 rounds of SELEX, eight highly enriched aptamers were able to bind to the trimer S protein of the SARS-CoV-2 Wuhan original strain as well as the trimer S proteins of the Delta, Delta plus, Alpha, Lambda, Mu, and Omicron variants, with affinities in the nM range, while also inhibiting their interaction with ACE2 receptors in Vero E6 cells. Modifications to our best aptamer were made by adding forward and reverse primer sequences and truncation. The modified aptamers AYA2012004_L and AYA2012004_L-M1 showed up to 70% inhibition of the binding of virus-like particles (VLPs) expressing S protein to the ACE2 receptor expressed in HEK293T cells. Our findings imply that the selected aptamers can prevent SARS-CoV-2 from entering host cells and hence suppress the viral infection. In addition, the findings suggest that the selected aptamers might be an innovative therapy for the treatment of COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit