Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

Astilbin for COVID-19

Astilbin has been reported as potentially beneficial for COVID-19 in the following studies. We have not reviewed astilbin in detail.
COVID-19 involves the interplay of over 100 viral and host proteins and factors providing many therapeutic targets. Scientists have proposed over 9,000 potential treatments. c19early.org analyzes 170+ treatments.
Zhang et al., Cotton flower metabolites inhibit SARS‐CoV‐2 main protease, FEBS Open Bio, doi:10.1002/2211-5463.13477
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) has been spreading globally for over 2 years, causing serious contagious disease and incalculable damage. The introduction of vaccines has slowed the spread of SARS‐CoV‐2 to some extent, but there remains a need for specific and effective treatment. The high chemical diversity and safety profiles of natural products make them a potential source of effective anti‐SARS‐CoV‐2 drugs. Cotton plant is one of the most important economic and medical crops and is the source of a large number of antiviral phytochemicals. In this work, we used SARS‐CoV‐2 main protein (Mpro) as the target to identify potential anti‐SARS‐CoV‐2 natural products in cotton. An in vitro assay showed that of all cotton tissues examined, cotton flower extracts (CFs) exhibited optimal inhibitory effects against Mpro. We proceeded to use the CF metabolite database to screen natural Mpro inhibitors by combining virtual screening and biochemical assays. We identified that several CF natural products, including astragalin, myricitrin, and astilbin, significantly inhibited Mpro with half‐maximal inhibitory concentrations (IC50s) of 0.13, 10.73, and 7.92 μm, respectively. These findings may serve as a basis for further studies into the suitability of cotton as a source of potential therapeutics for SARS‐CoV‐2.
Ali et al., Exploring the Therapeutic Potential of Petiveria alliacea L. Phytochemicals: A Computational Study on Inhibiting SARS-CoV-2’s Main Protease (Mpro), Molecules, doi:10.3390/molecules29112524
The outbreak of SARS-CoV-2, also known as the COVID-19 pandemic, is still a critical risk factor for both human life and the global economy. Although, several promising therapies have been introduced in the literature to inhibit SARS-CoV-2, most of them are synthetic drugs that may have some adverse effects on the human body. Therefore, the main objective of this study was to carry out an in-silico investigation into the medicinal properties of Petiveria alliacea L. (P. alliacea L.)-mediated phytocompounds for the treatment of SARS-CoV-2 infections since phytochemicals have fewer adverse effects compared to synthetic drugs. To explore potential phytocompounds from P. alliacea L. as candidate drug molecules, we selected the infection-causing main protease (Mpro) of SARS-CoV-2 as the receptor protein. The molecular docking analysis of these receptor proteins with the different phytocompounds of P. alliacea L. was performed using AutoDock Vina. Then, we selected the three top-ranked phytocompounds (myricitrin, engeletin, and astilbin) as the candidate drug molecules based on their highest binding affinity scores of −8.9, −8.7 and −8.3 (Kcal/mol), respectively. Then, a 100 ns molecular dynamics (MD) simulation study was performed for their complexes with Mpro using YASARA software, computed RMSD, RMSF, PCA, DCCM, MM/PBSA, and free energy landscape (FEL), and found their almost stable binding performance. In addition, biological activity, ADME/T, DFT, and drug-likeness analyses exhibited the suitable pharmacokinetics properties of the selected phytocompounds. Therefore, the results of this study might be a useful resource for formulating a safe treatment plan for SARS-CoV-2 infections after experimental validation in wet-lab and clinical trials.
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit