Amylase for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Amylase may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed amylase in detail.
, Evaluation of SARS-CoV-2 isolation in cell culture from nasal/nasopharyngeal swabs or saliva specimens of patients with COVID-19, Research Square, doi:10.21203/rs.3.rs-2676422/v1
Abstract It has been revealed that SARS-CoV-2 can be efficiently isolated from clinical specimens such as nasal/nasopharyngeal swabs or saliva in cultured cells. In this study, we examined the efficiency of viral isolation including SARS-CoV-2 mutant strains between nasal/nasopharyngeal swab or saliva specimens. Furthermore, we also examined the comparison of viral isolation rates by sample species using simulated specimens for COVID-19. As a result, it was found that the isolation efficiency of SARS-CoV-2 in the saliva specimens was significantly lower than that in the nasal/nasopharyngeal swab specimens. In order to determine which component of saliva is responsible for the lower isolation rate of saliva specimens, we tested the abilities of lactoferrin, amylase, cathelicidin, and mucin, which are considered to be abundant in saliva, to inhibit the infection of SARS-CoV-2 pseudotyped viruses (SARS-CoV-2pv). Lactoferrin and amylase were found to inhibit SARS-CoV-2pv infection. In conclusion, even if the same number of viral genome copies was detected by the real-time RT-PCR test, infection of SARS-CoV-2 present in saliva is thought to be inhibited by inhibitory factors such as lactoferrin and amylase, compared to nasal/nasopharyngeal swab specimens.