Alchemilla viridiflora Rothm for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Alchemilla viridiflora Rothm may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Alchemilla viridiflora Rothm in detail.
, In Silico and In Vitro Studies of Alchemilla viridiflora Rothm—Polyphenols’ Potential for Inhibition of SARS-CoV-2 Internalization, Molecules, doi:10.3390/molecules27165174
Since the outbreak of the COVID-19 pandemic, it has been obvious that virus infection poses a serious threat to human health on a global scale. Certain plants, particularly those rich in polyphenols, have been found to be effective antiviral agents. The effectiveness of Alchemilla viridiflora Rothm. (Rosaceae) methanol extract to prevent contact between virus spike (S)-glycoprotein and angiotensin-converting enzyme 2 (ACE2) and neuropilin-1 (NRP1) receptors was investigated. In vitro results revealed that the tested samples inhibited 50% of virus-receptor binding interactions in doses of 0.18 and 0.22 mg/mL for NRP1 and ACE2, respectively. Molecular docking studies revealed that the compounds from A. viridiflora ellagitannins class had a higher affinity for binding with S-glycoprotein whilst flavonoid compounds more significantly interacted with the NRP1 receptor. Quercetin 3-(6″-ferulylglucoside) and pentagalloylglucose were two compounds with the highest exhibited interfering potential for selected target receptors, with binding energies of −8.035 (S-glycoprotein) and −7.685 kcal/mol (NRP1), respectively. Furthermore, computational studies on other SARS-CoV-2 strains resulting from mutations in the original wild strain (V483A, N501Y-K417N-E484K, N501Y, N439K, L452R-T478K, K417N, G476S, F456L, E484K) revealed that virus internalization activity was maintained, but with different single compound contributions.