The in-vitro effect of famotidine on SARS-CoV-2 proteases and virus replication
Madeline Loffredo, Hector Lucero, Da-Yuan Chen, Aoife O’connell, Simon Bergqvist, Ahmad Munawar, Asanga Bandara, Steff De Graef, Stephen D Weeks, Florian Douam, Mohsan Saeed, Ali H Munawar
Scientific Reports, doi:10.1038/s41598-021-84782-w
The lack of coronavirus-specific antiviral drugs has instigated multiple drug repurposing studies to redirect previously approved medicines for the treatment of SARS-CoV-2, the coronavirus behind the ongoing COVID-19 pandemic. A recent, large-scale, retrospective clinical study showed that famotidine, when administered at a high dose to hospitalized COVID-19 patients, reduced the rates of intubation and mortality. A separate, patient-reported study associated famotidine use with improvements in mild to moderate symptoms such as cough and shortness of breath. While a prospective, multi-center clinical study is ongoing, two parallel in silico studies have proposed one of the two SARS-CoV-2 proteases, 3CL pro or PL pro , as potential molecular targets of famotidine activity; however, this remains to be experimentally validated. In this report, we systematically analyzed the effect of famotidine on viral proteases and virus replication. Leveraging a series of biophysical and enzymatic assays, we show that famotidine neither binds with nor inhibits the functions of 3CL pro and PL pro . Similarly, no direct antiviral activity of famotidine was observed at concentrations of up to 200 µM, when tested against SARS-CoV-2 in two different cell lines, including a human cell line originating from lungs, a primary target of COVID-19. These results rule out famotidine as a direct-acting inhibitor of SARS-CoV-2 replication and warrant further investigation of its molecular mechanism of action in the context of COVID-19.
Author contributions
Competing interests The authors declare no competing interests.
References
Baez-Santos, Mielech, Deng, Baker, Mesecar, Catalytic function and substrate specificity of the papainlike protease domain of nsp3 from the Middle East respiratory syndrome coronavirus, J. Virol,
doi:10.1128/JVI.01294-14
Boulware, A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2016638
Carsana, Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study, Lancet Infect. Dis,
doi:10.1016/S1473-3099(20)30434-5
Corman, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill,
doi:10.2807/1560-7917
Freitas, Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease, ACS Infect. Dis,
doi:10.1021/acsinfecdis.0c00168
Jacobs, Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease, J. Med. Chem,
doi:10.1021/jm301580n
Jacobs, Probe Reports from the NIH Molecular Libraries Program
Kallal, Lee, Thrombotic thrombo-cytopenic purpura associated with histamine H2-receptor antagonist therapy, West. J. Med
Keithley, Histamine H2-receptor antagonists, Nurs Clin North Am
Kirch, Halabi, Linde, Santos, Ohnhaus, Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements, Gastroenterology,
doi:10.1016/0016-5085(89)90503-9
Lu, Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease, J. Med. Chem,
doi:10.1021/jm060207o
Ma, Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea, Eye,
doi:10.1038/s41433-020-0939-4
Marshall, Portales-Cervantes, Leong, Mast cell responses to viruses and pathogen products, Int. J. Mol. Sci,
doi:10.3390/ijms20174241
Muramatsu, SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.1601327113
Ogando, SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology, J. Gen. Virol,
doi:10.1099/jgv.0.001453
Palacio-Rodriguez, Lans, Cavasotto, Cossio, Exponential consensus ranking improves the outcome in docking and receptor ensemble docking, Sci. Rep,
doi:10.1038/s41598-019-41594-3
Ratia, A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.0805240105
Sun, Li, Yates, Fernig, SimpleDSFviewer: a tool to analyze and view differential scanning fluorimetry data for characterizing protein thermal stability and interactions, Protein Sci,
doi:10.1002/pro.3703
Thangam, The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets, Front. Immunol,
doi:10.3389/fimmu.2018.01873
Tian, Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study, Lancet Oncol,
doi:10.1016/S1470-2045(20)30309-0
Tomar, Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals, J. Biol. Chem,
doi:10.1074/jbc.M115.651463
Van Hemert, SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro, PLoS Pathog,
doi:10.1371/journal.ppat.1000054
Wu, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B,
doi:10.1016/j.apsb.2020.02.008
Xie, A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19,
doi:10.1101/2020.06.22.165712
Yang, Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study, Lancet Oncol,
doi:10.1016/S1470-2045(20)30310-7
Zarnegar, Influenza infection in mice induces accumulation of lung mast cells through the recruitment and maturation of mast cell progenitors, Front. Immunol,
doi:10.3389/fimmu.2017.00310
Zhang, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
{ 'indexed': {'date-parts': [[2021, 12, 9]], 'date-time': '2021-12-09T08:11:14Z', 'timestamp': 1639037474248},
'reference-count': 42,
'publisher': 'Springer Science and Business Media LLC',
'issue': '1',
'license': [ { 'start': { 'date-parts': [[2021, 3, 8]],
'date-time': '2021-03-08T00:00:00Z',
'timestamp': 1615161600000},
'content-version': 'tdm',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0'},
{ 'start': { 'date-parts': [[2021, 3, 8]],
'date-time': '2021-03-08T00:00:00Z',
'timestamp': 1615161600000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'https://creativecommons.org/licenses/by/4.0'}],
'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False},
'short-container-title': ['Sci Rep'],
'published-print': {'date-parts': [[2021, 12]]},
'abstract': '<jats:title>Abstract</jats:title><jats:p>The lack of coronavirus-specific antiviral drugs has '
'instigated multiple drug repurposing studies to redirect previously approved medicines for '
'the treatment of SARS-CoV-2, the coronavirus behind the ongoing COVID-19 pandemic. A recent, '
'large-scale, retrospective clinical study showed that famotidine, when administered at a high '
'dose to hospitalized COVID-19 patients, reduced the rates of intubation and mortality. A '
'separate, patient-reported study associated famotidine use with improvements in mild to '
'moderate symptoms such as cough and shortness of breath. While a prospective, multi-center '
'clinical study is ongoing, two parallel in silico studies have proposed one of the two '
'SARS-CoV-2 proteases, 3CL<jats:sup>pro</jats:sup> or PL<jats:sup>pro</jats:sup>, as potential '
'molecular targets of famotidine activity; however, this remains to be experimentally '
'validated. In this report, we systematically analyzed the effect of famotidine on viral '
'proteases and virus replication. Leveraging a series of biophysical and enzymatic assays, we '
'show that famotidine neither binds with nor inhibits the functions of '
'3CL<jats:sup>pro</jats:sup> and PL<jats:sup>pro</jats:sup>. Similarly, no direct antiviral '
'activity of famotidine was observed at concentrations of up to 200\xa0µM, when tested against '
'SARS-CoV-2 in two different cell lines, including a human cell line originating from lungs, a '
'primary target of COVID-19. These results rule out famotidine as a direct-acting inhibitor of '
'SARS-CoV-2 replication and warrant further investigation of its molecular mechanism of action '
'in the context of COVID-19.</jats:p>',
'DOI': '10.1038/s41598-021-84782-w',
'type': 'journal-article',
'created': {'date-parts': [[2021, 3, 8]], 'date-time': '2021-03-08T11:03:05Z', 'timestamp': 1615201385000},
'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy',
'source': 'Crossref',
'is-referenced-by-count': 6,
'title': ['The in-vitro effect of famotidine on SARS-CoV-2 proteases and virus replication'],
'prefix': '10.1038',
'volume': '11',
'author': [ { 'ORCID': 'http://orcid.org/0000-0002-5003-2081',
'authenticated-orcid': False,
'given': 'Madeline',
'family': 'Loffredo',
'sequence': 'first',
'affiliation': []},
{'given': 'Hector', 'family': 'Lucero', 'sequence': 'additional', 'affiliation': []},
{'given': 'Da-Yuan', 'family': 'Chen', 'sequence': 'additional', 'affiliation': []},
{'given': 'Aoife', 'family': 'O’Connell', 'sequence': 'additional', 'affiliation': []},
{'given': 'Simon', 'family': 'Bergqvist', 'sequence': 'additional', 'affiliation': []},
{'given': 'Ahmad', 'family': 'Munawar', 'sequence': 'additional', 'affiliation': []},
{'given': 'Asanga', 'family': 'Bandara', 'sequence': 'additional', 'affiliation': []},
{'given': 'Steff', 'family': 'De Graef', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0002-1360-0852',
'authenticated-orcid': False,
'given': 'Stephen D.',
'family': 'Weeks',
'sequence': 'additional',
'affiliation': []},
{'given': 'Florian', 'family': 'Douam', 'sequence': 'additional', 'affiliation': []},
{'given': 'Mohsan', 'family': 'Saeed', 'sequence': 'additional', 'affiliation': []},
{ 'ORCID': 'http://orcid.org/0000-0001-9617-9460',
'authenticated-orcid': False,
'given': 'Ali H.',
'family': 'Munawar',
'sequence': 'additional',
'affiliation': []}],
'member': '297',
'published-online': {'date-parts': [[2021, 3, 8]]},
'reference': [ { 'key': '84782_CR1',
'doi-asserted-by': 'publisher',
'first-page': '379',
'DOI': '10.1038/d41587-020-00003-1',
'volume': '38',
'author': 'C Harrison',
'year': '2020',
'unstructured': 'Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. '
'Biotechnol. 38, 379–381. https://doi.org/10.1038/d41587-020-00003-1 '
'(2020).',
'journal-title': 'Nat. Biotechnol.'},
{ 'key': '84782_CR2',
'doi-asserted-by': 'publisher',
'author': 'JH Beigel',
'year': '2020',
'unstructured': 'Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 - '
'preliminary report. N. Engl. J. Med. '
'https://doi.org/10.1056/NEJMoa2007764 (2020).',
'journal-title': 'N. Engl. J. Med.',
'DOI': '10.1056/NEJMoa2007764'},
{ 'key': '84782_CR3',
'doi-asserted-by': 'publisher',
'author': 'DR Boulware',
'year': '2020',
'unstructured': 'Boulware, D. R. et al. A randomized trial of hydroxychloroquine as '
'postexposure prophylaxis for covid-19. N. Engl. J. Med. '
'https://doi.org/10.1056/NEJMoa2016638 (2020).',
'journal-title': 'N. Engl. J. Med.',
'DOI': '10.1056/NEJMoa2016638'},
{ 'key': '84782_CR4',
'doi-asserted-by': 'publisher',
'first-page': '1787',
'DOI': '10.1056/NEJMoa2001282',
'volume': '382',
'author': 'B Cao',
'year': '2020',
'unstructured': 'Cao, B. et al. A trial of lopinavir-ritonavir in adults hospitalized '
'with severe covid-19. N. Engl. J. Med. 382, 1787–1799. '
'https://doi.org/10.1056/NEJMoa2001282 (2020).',
'journal-title': 'N. Engl. J. Med.'},
{ 'key': '84782_CR5',
'first-page': '361',
'volume': '26',
'author': 'JK Keithley',
'year': '1991',
'unstructured': 'Keithley, J. K. Histamine H2-receptor antagonists. Nurs Clin North Am '
'26, 361–373 (1991).',
'journal-title': 'Nurs Clin North Am'},
{ 'key': '84782_CR6',
'doi-asserted-by': 'publisher',
'author': 'DE Freedberg',
'year': '2020',
'unstructured': 'Freedberg, D. E. et al. Famotidine use is associated with improved '
'clinical outcomes in hospitalized COVID-19 patients: a propensity score '
'matched retrospective cohort study. Gastroenterology '
'https://doi.org/10.1053/j.gastro.2020.05.053 (2020).',
'journal-title': 'Gastroenterology',
'DOI': '10.1053/j.gastro.2020.05.053'},
{ 'key': '84782_CR7',
'doi-asserted-by': 'publisher',
'author': 'T Janowitz',
'year': '2020',
'unstructured': 'Janowitz, T. et al. Famotidine use and quantitative symptom tracking for '
'COVID-19 in non-hospitalised patients: a case series. Gut '
'https://doi.org/10.1136/gutjnl-2020-321852 (2020).',
'journal-title': 'Gut',
'DOI': '10.1136/gutjnl-2020-321852'},
{ 'key': '84782_CR8',
'doi-asserted-by': 'publisher',
'author': 'C Wu',
'year': '2020',
'unstructured': 'Wu, C. et al. Analysis of therapeutic targets for SARS-CoV-2 and '
'discovery of potential drugs by computational methods. Acta Pharm. Sin. '
'B https://doi.org/10.1016/j.apsb.2020.02.008 (2020).',
'journal-title': 'Acta Pharm. Sin. B',
'DOI': '10.1016/j.apsb.2020.02.008'},
{ 'key': '84782_CR9',
'doi-asserted-by': 'publisher',
'author': 'L Shaffer',
'year': '2020',
'unstructured': 'Shaffer, L. 15 drugs being tested to treat COVID-19 and how they would '
'work. Nat. Med. https://doi.org/10.1038/d41591-020-00019-9 (2020).',
'journal-title': 'Nat. Med.',
'DOI': '10.1038/d41591-020-00019-9'},
{ 'key': '84782_CR10',
'doi-asserted-by': 'publisher',
'first-page': '409',
'DOI': '10.1126/science.abb3405',
'volume': '368',
'author': 'L Zhang',
'year': '2020',
'unstructured': 'Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides '
'a basis for design of improved alpha-ketoamide inhibitors. Science 368, '
'409–412. https://doi.org/10.1126/science.abb3405 (2020).',
'journal-title': 'Science'},
{ 'key': '84782_CR11',
'doi-asserted-by': 'publisher',
'first-page': '12997',
'DOI': '10.1073/pnas.1601327113',
'volume': '113',
'author': 'T Muramatsu',
'year': '2016',
'unstructured': 'Muramatsu, T. et al. SARS-CoV 3CL protease cleaves its C-terminal '
'autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. '
'Sci. USA 113, 12997–13002. https://doi.org/10.1073/pnas.1601327113 '
'(2016).',
'journal-title': 'Proc. Natl. Acad. Sci. USA'},
{ 'key': '84782_CR12',
'doi-asserted-by': 'publisher',
'first-page': '19403',
'DOI': '10.1074/jbc.M115.651463',
'volume': '290',
'author': 'S Tomar',
'year': '2015',
'unstructured': 'Tomar, S. et al. Ligand-induced dimerization of middle east respiratory '
'syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for '
'nsp5 regulation and the development of antivirals. J. Biol. Chem. 290, '
'19403–19422. https://doi.org/10.1074/jbc.M115.651463 (2015).',
'journal-title': 'J. Biol. Chem.'},
{ 'key': '84782_CR13',
'doi-asserted-by': 'publisher',
'first-page': '12511',
'DOI': '10.1128/JVI.01294-14',
'volume': '88',
'author': 'YM Baez-Santos',
'year': '2014',
'unstructured': 'Baez-Santos, Y. M., Mielech, A. M., Deng, X., Baker, S. & Mesecar, A. D. '
'Catalytic function and substrate specificity of the papain-like protease '
'domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. '
'Virol. 88, 12511–12527. https://doi.org/10.1128/JVI.01294-14 (2014).',
'journal-title': 'J. Virol.'},
{ 'key': '84782_CR14',
'doi-asserted-by': 'publisher',
'first-page': '534',
'DOI': '10.1021/jm301580n',
'volume': '56',
'author': 'J Jacobs',
'year': '2013',
'unstructured': 'Jacobs, J. et al. Discovery, synthesis, and structure-based optimization '
'of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) '
'acetamides (ML188) as potent noncovalent small molecule inhibitors of '
'the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL '
'protease. J. Med. Chem. 56, 534–546. https://doi.org/10.1021/jm301580n '
'(2013).',
'journal-title': 'J. Med. Chem.'},
{ 'key': '84782_CR15',
'unstructured': 'Jacobs, J. et al. Probe Reports from the NIH Molecular Libraries Program '
'(2010).'},
{ 'key': '84782_CR16',
'doi-asserted-by': 'publisher',
'first-page': '16119',
'DOI': '10.1073/pnas.0805240105',
'volume': '105',
'author': 'K Ratia',
'year': '2008',
'unstructured': 'Ratia, K. et al. A noncovalent class of papain-like '
'protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. '
'Natl. Acad. Sci. USA 105, 16119–16124. '
'https://doi.org/10.1073/pnas.0805240105 (2008).',
'journal-title': 'Proc. Natl. Acad. Sci. USA'},
{ 'key': '84782_CR17',
'doi-asserted-by': 'publisher',
'first-page': '5154',
'DOI': '10.1021/jm060207o',
'volume': '49',
'author': 'IL Lu',
'year': '2006',
'unstructured': 'Lu, I. L. et al. Structure-based drug design and structural biology '
'study of novel nonpeptide inhibitors of severe acute respiratory '
'syndrome coronavirus main protease. J. Med. Chem. 49, 5154–5161. '
'https://doi.org/10.1021/jm060207o (2006).',
'journal-title': 'J. Med. Chem.'},
{ 'key': '84782_CR18',
'doi-asserted-by': 'publisher',
'first-page': '15199',
'DOI': '10.1128/JVI.79.24.15199-15208.2005',
'volume': '79',
'author': 'HA Lindner',
'year': '2005',
'unstructured': 'Lindner, H. A. et al. The papain-like protease from the severe acute '
'respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. '
'79, 15199–15208. https://doi.org/10.1128/JVI.79.24.15199-15208.2005 '
'(2005).',
'journal-title': 'J. Virol.'},
{ 'key': '84782_CR19',
'doi-asserted-by': 'publisher',
'first-page': '15189',
'DOI': '10.1128/JVI.79.24.15189-15198.2005',
'volume': '79',
'author': 'N Barretto',
'year': '2005',
'unstructured': 'Barretto, N. et al. The papain-like protease of severe acute respiratory '
'syndrome coronavirus has deubiquitinating activity. J. Virol. 79, '
'15189–15198. https://doi.org/10.1128/JVI.79.24.15189-15198.2005 (2005).',
'journal-title': 'J. Virol.'},
{ 'key': '84782_CR20',
'doi-asserted-by': 'publisher',
'first-page': 'e1000054',
'DOI': '10.1371/journal.ppat.1000054',
'volume': '4',
'author': 'MJ van Hemert',
'year': '2008',
'unstructured': 'van Hemert, M. J. et al. SARS-coronavirus replication/transcription '
'complexes are membrane-protected and need a host factor for activity in '
'vitro. PLoS Pathog. 4, e1000054. '
'https://doi.org/10.1371/journal.ppat.1000054 (2008).',
'journal-title': 'PLoS Pathog.'},
{ 'key': '84782_CR21',
'doi-asserted-by': 'publisher',
'author': 'BT Freitas',
'year': '2020',
'unstructured': 'Freitas, B. T. et al. Characterization and noncovalent inhibition of the '
'deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like '
'protease. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.0c00168 '
'(2020).',
'journal-title': 'ACS Infect. Dis.',
'DOI': '10.1021/acsinfecdis.0c00168'},
{ 'key': '84782_CR22',
'doi-asserted-by': 'publisher',
'first-page': '7',
'DOI': '10.1016/j.str.2015.10.020',
'volume': '24',
'author': 'JE Kung',
'year': '2016',
'unstructured': 'Kung, J. E. & Jura, N. Structural basis for the non-catalytic functions '
'of protein kinases. Structure 24, 7–24. '
'https://doi.org/10.1016/j.str.2015.10.020 (2016).',
'journal-title': 'Structure'},
{ 'key': '84782_CR23',
'doi-asserted-by': 'publisher',
'first-page': '1212',
'DOI': '10.1038/s41433-020-0939-4',
'volume': '34',
'author': 'D Ma',
'year': '2020',
'unstructured': 'Ma, D. et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in '
'human primary conjunctival and pterygium cell lines and in mouse cornea. '
'Eye 34, 1212–1219. https://doi.org/10.1038/s41433-020-0939-4 (2020).',
'journal-title': 'Eye'},
{ 'key': '84782_CR24',
'doi-asserted-by': 'publisher',
'author': 'X Xie',
'year': '2020',
'unstructured': 'Xie, X. et al. A nanoluciferase SARS-CoV-2 for rapid neutralization '
'testing and screening of anti-infective drugs for COVID-19. bioRxiv '
'https://doi.org/10.1101/2020.06.22.165712 (2020).',
'journal-title': 'bioRxiv',
'DOI': '10.1101/2020.06.22.165712'},
{ 'key': '84782_CR25',
'doi-asserted-by': 'publisher',
'first-page': '5142',
'DOI': '10.1038/s41598-019-41594-3',
'volume': '9',
'author': 'K Palacio-Rodriguez',
'year': '2019',
'unstructured': 'Palacio-Rodriguez, K., Lans, I., Cavasotto, C. N. & Cossio, P. '
'Exponential consensus ranking improves the outcome in docking and '
'receptor ensemble docking. Sci. Rep. 9, 5142. '
'https://doi.org/10.1038/s41598-019-41594-3 (2019).',
'journal-title': 'Sci. Rep.'},
{ 'key': '84782_CR26',
'doi-asserted-by': 'publisher',
'first-page': '363',
'DOI': '10.1038/s41577-020-0311-8',
'volume': '20',
'author': 'MZ Tay',
'year': '2020',
'unstructured': 'Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The '
'trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. '
'Immunol. 20, 363–374. https://doi.org/10.1038/s41577-020-0311-8 (2020).',
'journal-title': 'Nat. Rev. Immunol.'},
{ 'key': '84782_CR27',
'doi-asserted-by': 'publisher',
'first-page': '607',
'DOI': '10.1016/j.jinf.2020.03.037',
'volume': '80',
'author': 'Q Ye',
'year': '2020',
'unstructured': 'Ye, Q., Wang, B. & Mao, J. The pathogenesis and treatment of the '
'`Cytokine Storm’ in COVID-19. J. Infect. 80, 607–613. '
'https://doi.org/10.1016/j.jinf.2020.03.037 (2020).',
'journal-title': 'J. Infect.'},
{ 'key': '84782_CR28',
'doi-asserted-by': 'publisher',
'author': 'L Carsana',
'year': '2020',
'unstructured': 'Carsana, L. et al. Pulmonary post-mortem findings in a series of '
'COVID-19 cases from northern Italy: a two-centre descriptive study. '
'Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30434-5 '
'(2020).',
'journal-title': 'Lancet Infect. Dis.',
'DOI': '10.1016/S1473-3099(20)30434-5'},
{ 'key': '84782_CR29',
'doi-asserted-by': 'publisher',
'first-page': '2012',
'DOI': '10.1056/NEJMoa2004500',
'volume': '382',
'author': 'PK Bhatraju',
'year': '2020',
'unstructured': 'Bhatraju, P. K. et al. Covid-19 in critically Ill patients in the '
'seattle region—case series. N. Engl. J. Med. 382, 2012–2022. '
'https://doi.org/10.1056/NEJMoa2004500 (2020).',
'journal-title': 'N. Engl. J. Med.'},
{ 'key': '84782_CR30',
'doi-asserted-by': 'publisher',
'author': 'J Tian',
'year': '2020',
'unstructured': 'Tian, J. et al. Clinical characteristics and risk factors associated '
'with COVID-19 disease severity in patients with cancer in Wuhan, China: '
'a multicentre, retrospective, cohort study. Lancet Oncol. '
'https://doi.org/10.1016/S1470-2045(20)30309-0 (2020).',
'journal-title': 'Lancet Oncol.',
'DOI': '10.1016/S1470-2045(20)30309-0'},
{ 'key': '84782_CR31',
'doi-asserted-by': 'publisher',
'author': 'K Yang',
'year': '2020',
'unstructured': 'Yang, K. et al. Clinical characteristics, outcomes, and risk factors for '
'mortality in patients with cancer and COVID-19 in Hubei, China: a '
'multicentre, retrospective, cohort study. Lancet Oncol. '
'https://doi.org/10.1016/S1470-2045(20)30310-7 (2020).',
'journal-title': 'Lancet Oncol.',
'DOI': '10.1016/S1470-2045(20)30310-7'},
{ 'key': '84782_CR32',
'doi-asserted-by': 'publisher',
'first-page': '1873',
'DOI': '10.3389/fimmu.2018.01873',
'volume': '9',
'author': 'EB Thangam',
'year': '2018',
'unstructured': 'Thangam, E. B. et al. The role of histamine and histamine receptors in '
'mast cell-mediated allergy and inflammation: the hunt for new '
'therapeutic targets. Front. Immunol. 9, 1873. '
'https://doi.org/10.3389/fimmu.2018.01873 (2018).',
'journal-title': 'Front. Immunol.'},
{ 'key': '84782_CR33',
'doi-asserted-by': 'publisher',
'author': 'JS Marshall',
'year': '2019',
'unstructured': 'Marshall, J. S., Portales-Cervantes, L. & Leong, E. Mast cell responses '
'to viruses and pathogen products. Int. J. Mol. Sci. '
'https://doi.org/10.3390/ijms20174241 (2019).',
'journal-title': 'Int. J. Mol. Sci.',
'DOI': '10.3390/ijms20174241'},
{ 'key': '84782_CR34',
'doi-asserted-by': 'publisher',
'first-page': '310',
'DOI': '10.3389/fimmu.2017.00310',
'volume': '8',
'author': 'B Zarnegar',
'year': '2017',
'unstructured': 'Zarnegar, B. et al. Influenza infection in mice induces accumulation of '
'lung mast cells through the recruitment and maturation of mast cell '
'progenitors. Front. Immunol. 8, 310. '
'https://doi.org/10.3389/fimmu.2017.00310 (2017).',
'journal-title': 'Front. Immunol.'},
{ 'key': '84782_CR35',
'doi-asserted-by': 'publisher',
'first-page': '3347',
'DOI': '10.1128/JVI.06053-11',
'volume': '86',
'author': 'Y Hu',
'year': '2012',
'unstructured': 'Hu, Y. et al. Mast cell-induced lung injury in mice infected with H5N1 '
'influenza virus. J. Virol. 86, 3347–3356. '
'https://doi.org/10.1128/JVI.06053-11 (2012).',
'journal-title': 'J. Virol.'},
{ 'key': '84782_CR36',
'doi-asserted-by': 'publisher',
'first-page': '1388',
'DOI': '10.1016/0016-5085(89)90503-9',
'volume': '96',
'author': 'W Kirch',
'year': '1989',
'unstructured': 'Kirch, W., Halabi, A., Linde, M., Santos, S. R. & Ohnhaus, E. E. '
'Negative effects of famotidine on cardiac performance assessed by '
'noninvasive hemodynamic measurements. Gastroenterology 96, 1388–1392. '
'https://doi.org/10.1016/0016-5085(89)90503-9 (1989).',
'journal-title': 'Gastroenterology'},
{ 'key': '84782_CR37',
'doi-asserted-by': 'publisher',
'first-page': '260',
'DOI': '10.1038/sj.eye.6701839',
'volume': '20',
'author': 'YC Lee',
'year': '2006',
'unstructured': 'Lee, Y. C. & Wang, C. C. Famotidine-induced retinopathy. Eye (Lond) 20, '
'260–263. https://doi.org/10.1038/sj.eye.6701839 (2006).',
'journal-title': 'Eye (Lond)'},
{ 'key': '84782_CR38',
'first-page': '446',
'volume': '164',
'author': 'SM Kallal',
'year': '1996',
'unstructured': 'Kallal, S. M. & Lee, M. Thrombotic thrombo-cytopenic purpura associated '
'with histamine H2-receptor antagonist therapy. West. J. Med. 164, '
'446–448 (1996).',
'journal-title': 'West. J. Med.'},
{ 'key': '84782_CR39',
'doi-asserted-by': 'publisher',
'first-page': '1027',
'DOI': '10.7326/0003-4819-114-12-1027',
'volume': '114',
'author': 'TG Cantu',
'year': '1991',
'unstructured': 'Cantu, T. G. & Korek, J. S. Central nervous system reactions to '
'histamine-2 receptor blockers. Ann. Intern. Med. 114, 1027–1034. '
'https://doi.org/10.7326/0003-4819-114-12-1027 (1991).',
'journal-title': 'Ann. Intern. Med.'},
{ 'key': '84782_CR40',
'doi-asserted-by': 'publisher',
'first-page': '19',
'DOI': '10.1002/pro.3703',
'volume': '29',
'author': 'C Sun',
'year': '2020',
'unstructured': 'Sun, C., Li, Y., Yates, E. A. & Fernig, D. G. SimpleDSFviewer: a tool to '
'analyze and view differential scanning fluorimetry data for '
'characterizing protein thermal stability and interactions. Protein Sci. '
'29, 19–27. https://doi.org/10.1002/pro.3703 (2020).',
'journal-title': 'Protein Sci.'},
{ 'key': '84782_CR41',
'doi-asserted-by': 'publisher',
'author': 'NS Ogando',
'year': '2020',
'unstructured': 'Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: '
'replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. '
'https://doi.org/10.1099/jgv.0.001453 (2020).',
'journal-title': 'J. Gen. Virol.',
'DOI': '10.1099/jgv.0.001453'},
{ 'key': '84782_CR42',
'doi-asserted-by': 'publisher',
'author': 'VM Corman',
'year': '2020',
'unstructured': 'Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by '
'real-time RT-PCR. Euro Surveill https://doi.org/10.2807/1560-7917 '
'(2020).',
'journal-title': 'Euro Surveill',
'DOI': '10.2807/1560-7917'}],
'container-title': ['Scientific Reports'],
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'http://www.nature.com/articles/s41598-021-84782-w.pdf',
'content-type': 'application/pdf',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'http://www.nature.com/articles/s41598-021-84782-w',
'content-type': 'text/html',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'http://www.nature.com/articles/s41598-021-84782-w.pdf',
'content-type': 'application/pdf',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2021, 12, 2]],
'date-time': '2021-12-02T16:12:26Z',
'timestamp': 1638461546000},
'score': 1,
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2021, 3, 8]]},
'references-count': 42,
'journal-issue': {'issue': '1', 'published-print': {'date-parts': [[2021, 12]]}},
'alternative-id': ['84782'],
'URL': 'http://dx.doi.org/10.1038/s41598-021-84782-w',
'relation': {},
'ISSN': ['2045-2322'],
'issn-type': [{'value': '2045-2322', 'type': 'electronic'}],
'subject': ['Multidisciplinary'],
'published': {'date-parts': [[2021, 3, 8]]},
'assertion': [ { 'value': '2 November 2020',
'order': 1,
'name': 'received',
'label': 'Received',
'group': {'name': 'ArticleHistory', 'label': 'Article History'}},
{ 'value': '1 February 2021',
'order': 2,
'name': 'accepted',
'label': 'Accepted',
'group': {'name': 'ArticleHistory', 'label': 'Article History'}},
{ 'value': '8 March 2021',
'order': 3,
'name': 'first_online',
'label': 'First Online',
'group': {'name': 'ArticleHistory', 'label': 'Article History'}},
{ 'value': 'The authors declare no competing interests.',
'order': 1,
'name': 'Ethics',
'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}],
'article-number': '5433'}