The in-vitro effect of famotidine on SARS-CoV-2 proteases and virus replication
Madeline Loffredo, Hector Lucero, Da-Yuan Chen, Aoife O’connell, Simon Bergqvist, Ahmad Munawar, Asanga Bandara, Steff De Graef, Stephen D Weeks, Florian Douam, Mohsan Saeed, Ali H Munawar
Scientific Reports, doi:10.1038/s41598-021-84782-w
The lack of coronavirus-specific antiviral drugs has instigated multiple drug repurposing studies to redirect previously approved medicines for the treatment of SARS-CoV-2, the coronavirus behind the ongoing COVID-19 pandemic. A recent, large-scale, retrospective clinical study showed that famotidine, when administered at a high dose to hospitalized COVID-19 patients, reduced the rates of intubation and mortality. A separate, patient-reported study associated famotidine use with improvements in mild to moderate symptoms such as cough and shortness of breath. While a prospective, multi-center clinical study is ongoing, two parallel in silico studies have proposed one of the two SARS-CoV-2 proteases, 3CL pro or PL pro , as potential molecular targets of famotidine activity; however, this remains to be experimentally validated. In this report, we systematically analyzed the effect of famotidine on viral proteases and virus replication. Leveraging a series of biophysical and enzymatic assays, we show that famotidine neither binds with nor inhibits the functions of 3CL pro and PL pro . Similarly, no direct antiviral activity of famotidine was observed at concentrations of up to 200 µM, when tested against SARS-CoV-2 in two different cell lines, including a human cell line originating from lungs, a primary target of COVID-19. These results rule out famotidine as a direct-acting inhibitor of SARS-CoV-2 replication and warrant further investigation of its molecular mechanism of action in the context of COVID-19.
Author contributions
Competing interests The authors declare no competing interests.
References
Baez-Santos, Mielech, Deng, Baker, Mesecar, Catalytic function and substrate specificity of the papainlike protease domain of nsp3 from the Middle East respiratory syndrome coronavirus, J. Virol,
doi:10.1128/JVI.01294-14
Boulware, A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19, N. Engl. J. Med,
doi:10.1056/NEJMoa2016638
Carsana, Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study, Lancet Infect. Dis,
doi:10.1016/S1473-3099(20)30434-5
Corman, Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR, Euro Surveill,
doi:10.2807/1560-7917
Freitas, Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease, ACS Infect. Dis,
doi:10.1021/acsinfecdis.0c00168
Jacobs, Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease, J. Med. Chem,
doi:10.1021/jm301580n
Jacobs, Probe Reports from the NIH Molecular Libraries Program
Kallal, Lee, Thrombotic thrombo-cytopenic purpura associated with histamine H2-receptor antagonist therapy, West. J. Med
Keithley, Histamine H2-receptor antagonists, Nurs Clin North Am
Kirch, Halabi, Linde, Santos, Ohnhaus, Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements, Gastroenterology,
doi:10.1016/0016-5085(89)90503-9
Lu, Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease, J. Med. Chem,
doi:10.1021/jm060207o
Ma, Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea, Eye,
doi:10.1038/s41433-020-0939-4
Marshall, Portales-Cervantes, Leong, Mast cell responses to viruses and pathogen products, Int. J. Mol. Sci,
doi:10.3390/ijms20174241
Muramatsu, SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.1601327113
Ogando, SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology, J. Gen. Virol,
doi:10.1099/jgv.0.001453
Palacio-Rodriguez, Lans, Cavasotto, Cossio, Exponential consensus ranking improves the outcome in docking and receptor ensemble docking, Sci. Rep,
doi:10.1038/s41598-019-41594-3
Ratia, A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication, Proc. Natl. Acad. Sci,
doi:10.1073/pnas.0805240105
Sun, Li, Yates, Fernig, SimpleDSFviewer: a tool to analyze and view differential scanning fluorimetry data for characterizing protein thermal stability and interactions, Protein Sci,
doi:10.1002/pro.3703
Thangam, The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets, Front. Immunol,
doi:10.3389/fimmu.2018.01873
Tian, Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study, Lancet Oncol,
doi:10.1016/S1470-2045(20)30309-0
Tomar, Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals, J. Biol. Chem,
doi:10.1074/jbc.M115.651463
Van Hemert, SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro, PLoS Pathog,
doi:10.1371/journal.ppat.1000054
Wu, Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods, Acta Pharm. Sin. B,
doi:10.1016/j.apsb.2020.02.008
Xie, A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19,
doi:10.1101/2020.06.22.165712
Yang, Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study, Lancet Oncol,
doi:10.1016/S1470-2045(20)30310-7
Zarnegar, Influenza infection in mice induces accumulation of lung mast cells through the recruitment and maturation of mast cell progenitors, Front. Immunol,
doi:10.3389/fimmu.2017.00310
Zhang, Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors, Science,
doi:10.1126/science.abb3405
DOI record:
{
"DOI": "10.1038/s41598-021-84782-w",
"ISSN": [
"2045-2322"
],
"URL": "http://dx.doi.org/10.1038/s41598-021-84782-w",
"abstract": "<jats:title>Abstract</jats:title><jats:p>The lack of coronavirus-specific antiviral drugs has instigated multiple drug repurposing studies to redirect previously approved medicines for the treatment of SARS-CoV-2, the coronavirus behind the ongoing COVID-19 pandemic. A recent, large-scale, retrospective clinical study showed that famotidine, when administered at a high dose to hospitalized COVID-19 patients, reduced the rates of intubation and mortality. A separate, patient-reported study associated famotidine use with improvements in mild to moderate symptoms such as cough and shortness of breath. While a prospective, multi-center clinical study is ongoing, two parallel in silico studies have proposed one of the two SARS-CoV-2 proteases, 3CL<jats:sup>pro</jats:sup> or PL<jats:sup>pro</jats:sup>, as potential molecular targets of famotidine activity; however, this remains to be experimentally validated. In this report, we systematically analyzed the effect of famotidine on viral proteases and virus replication. Leveraging a series of biophysical and enzymatic assays, we show that famotidine neither binds with nor inhibits the functions of 3CL<jats:sup>pro</jats:sup> and PL<jats:sup>pro</jats:sup>. Similarly, no direct antiviral activity of famotidine was observed at concentrations of up to 200 µM, when tested against SARS-CoV-2 in two different cell lines, including a human cell line originating from lungs, a primary target of COVID-19. These results rule out famotidine as a direct-acting inhibitor of SARS-CoV-2 replication and warrant further investigation of its molecular mechanism of action in the context of COVID-19.</jats:p>",
"alternative-id": [
"84782"
],
"article-number": "5433",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "2 November 2020"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "1 February 2021"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "8 March 2021"
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"ORCID": "http://orcid.org/0000-0002-5003-2081",
"affiliation": [],
"authenticated-orcid": false,
"family": "Loffredo",
"given": "Madeline",
"sequence": "first"
},
{
"affiliation": [],
"family": "Lucero",
"given": "Hector",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Chen",
"given": "Da-Yuan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "O’Connell",
"given": "Aoife",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Bergqvist",
"given": "Simon",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Munawar",
"given": "Ahmad",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Bandara",
"given": "Asanga",
"sequence": "additional"
},
{
"affiliation": [],
"family": "De Graef",
"given": "Steff",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0002-1360-0852",
"affiliation": [],
"authenticated-orcid": false,
"family": "Weeks",
"given": "Stephen D.",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Douam",
"given": "Florian",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Saeed",
"given": "Mohsan",
"sequence": "additional"
},
{
"ORCID": "http://orcid.org/0000-0001-9617-9460",
"affiliation": [],
"authenticated-orcid": false,
"family": "Munawar",
"given": "Ali H.",
"sequence": "additional"
}
],
"container-title": [
"Scientific Reports"
],
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2021,
3,
8
]
],
"date-time": "2021-03-08T11:03:05Z",
"timestamp": 1615201385000
},
"deposited": {
"date-parts": [
[
2021,
12,
2
]
],
"date-time": "2021-12-02T16:12:26Z",
"timestamp": 1638461546000
},
"indexed": {
"date-parts": [
[
2021,
12,
9
]
],
"date-time": "2021-12-09T08:11:14Z",
"timestamp": 1639037474248
},
"is-referenced-by-count": 6,
"issn-type": [
{
"type": "electronic",
"value": "2045-2322"
}
],
"issue": "1",
"issued": {
"date-parts": [
[
2021,
3,
8
]
]
},
"journal-issue": {
"issue": "1",
"published-print": {
"date-parts": [
[
2021,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2021,
3,
8
]
],
"date-time": "2021-03-08T00:00:00Z",
"timestamp": 1615161600000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2021,
3,
8
]
],
"date-time": "2021-03-08T00:00:00Z",
"timestamp": 1615161600000
}
}
],
"link": [
{
"URL": "http://www.nature.com/articles/s41598-021-84782-w.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "http://www.nature.com/articles/s41598-021-84782-w",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "http://www.nature.com/articles/s41598-021-84782-w.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1038",
"published": {
"date-parts": [
[
2021,
3,
8
]
]
},
"published-online": {
"date-parts": [
[
2021,
3,
8
]
]
},
"published-print": {
"date-parts": [
[
2021,
12
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1038/d41587-020-00003-1",
"author": "C Harrison",
"doi-asserted-by": "publisher",
"first-page": "379",
"journal-title": "Nat. Biotechnol.",
"key": "84782_CR1",
"unstructured": "Harrison, C. Coronavirus puts drug repurposing on the fast track. Nat. Biotechnol. 38, 379–381. https://doi.org/10.1038/d41587-020-00003-1 (2020).",
"volume": "38",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2007764",
"author": "JH Beigel",
"doi-asserted-by": "publisher",
"journal-title": "N. Engl. J. Med.",
"key": "84782_CR2",
"unstructured": "Beigel, J. H. et al. Remdesivir for the treatment of Covid-19 - preliminary report. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2007764 (2020).",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2016638",
"author": "DR Boulware",
"doi-asserted-by": "publisher",
"journal-title": "N. Engl. J. Med.",
"key": "84782_CR3",
"unstructured": "Boulware, D. R. et al. A randomized trial of hydroxychloroquine as postexposure prophylaxis for covid-19. N. Engl. J. Med. https://doi.org/10.1056/NEJMoa2016638 (2020).",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2001282",
"author": "B Cao",
"doi-asserted-by": "publisher",
"first-page": "1787",
"journal-title": "N. Engl. J. Med.",
"key": "84782_CR4",
"unstructured": "Cao, B. et al. A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. N. Engl. J. Med. 382, 1787–1799. https://doi.org/10.1056/NEJMoa2001282 (2020).",
"volume": "382",
"year": "2020"
},
{
"author": "JK Keithley",
"first-page": "361",
"journal-title": "Nurs Clin North Am",
"key": "84782_CR5",
"unstructured": "Keithley, J. K. Histamine H2-receptor antagonists. Nurs Clin North Am 26, 361–373 (1991).",
"volume": "26",
"year": "1991"
},
{
"DOI": "10.1053/j.gastro.2020.05.053",
"author": "DE Freedberg",
"doi-asserted-by": "publisher",
"journal-title": "Gastroenterology",
"key": "84782_CR6",
"unstructured": "Freedberg, D. E. et al. Famotidine use is associated with improved clinical outcomes in hospitalized COVID-19 patients: a propensity score matched retrospective cohort study. Gastroenterology https://doi.org/10.1053/j.gastro.2020.05.053 (2020).",
"year": "2020"
},
{
"DOI": "10.1136/gutjnl-2020-321852",
"author": "T Janowitz",
"doi-asserted-by": "publisher",
"journal-title": "Gut",
"key": "84782_CR7",
"unstructured": "Janowitz, T. et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut https://doi.org/10.1136/gutjnl-2020-321852 (2020).",
"year": "2020"
},
{
"DOI": "10.1016/j.apsb.2020.02.008",
"author": "C Wu",
"doi-asserted-by": "publisher",
"journal-title": "Acta Pharm. Sin. B",
"key": "84782_CR8",
"unstructured": "Wu, C. et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B https://doi.org/10.1016/j.apsb.2020.02.008 (2020).",
"year": "2020"
},
{
"DOI": "10.1038/d41591-020-00019-9",
"author": "L Shaffer",
"doi-asserted-by": "publisher",
"journal-title": "Nat. Med.",
"key": "84782_CR9",
"unstructured": "Shaffer, L. 15 drugs being tested to treat COVID-19 and how they would work. Nat. Med. https://doi.org/10.1038/d41591-020-00019-9 (2020).",
"year": "2020"
},
{
"DOI": "10.1126/science.abb3405",
"author": "L Zhang",
"doi-asserted-by": "publisher",
"first-page": "409",
"journal-title": "Science",
"key": "84782_CR10",
"unstructured": "Zhang, L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science 368, 409–412. https://doi.org/10.1126/science.abb3405 (2020).",
"volume": "368",
"year": "2020"
},
{
"DOI": "10.1073/pnas.1601327113",
"author": "T Muramatsu",
"doi-asserted-by": "publisher",
"first-page": "12997",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "84782_CR11",
"unstructured": "Muramatsu, T. et al. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc. Natl. Acad. Sci. USA 113, 12997–13002. https://doi.org/10.1073/pnas.1601327113 (2016).",
"volume": "113",
"year": "2016"
},
{
"DOI": "10.1074/jbc.M115.651463",
"author": "S Tomar",
"doi-asserted-by": "publisher",
"first-page": "19403",
"journal-title": "J. Biol. Chem.",
"key": "84782_CR12",
"unstructured": "Tomar, S. et al. Ligand-induced dimerization of middle east respiratory syndrome (MERS) coronavirus nsp5 protease (3CLpro): implications for nsp5 regulation and the development of antivirals. J. Biol. Chem. 290, 19403–19422. https://doi.org/10.1074/jbc.M115.651463 (2015).",
"volume": "290",
"year": "2015"
},
{
"DOI": "10.1128/JVI.01294-14",
"author": "YM Baez-Santos",
"doi-asserted-by": "publisher",
"first-page": "12511",
"journal-title": "J. Virol.",
"key": "84782_CR13",
"unstructured": "Baez-Santos, Y. M., Mielech, A. M., Deng, X., Baker, S. & Mesecar, A. D. Catalytic function and substrate specificity of the papain-like protease domain of nsp3 from the Middle East respiratory syndrome coronavirus. J. Virol. 88, 12511–12527. https://doi.org/10.1128/JVI.01294-14 (2014).",
"volume": "88",
"year": "2014"
},
{
"DOI": "10.1021/jm301580n",
"author": "J Jacobs",
"doi-asserted-by": "publisher",
"first-page": "534",
"journal-title": "J. Med. Chem.",
"key": "84782_CR14",
"unstructured": "Jacobs, J. et al. Discovery, synthesis, and structure-based optimization of a series of N-(tert-butyl)-2-(N-arylamido)-2-(pyridin-3-yl) acetamides (ML188) as potent noncovalent small molecule inhibitors of the severe acute respiratory syndrome coronavirus (SARS-CoV) 3CL protease. J. Med. Chem. 56, 534–546. https://doi.org/10.1021/jm301580n (2013).",
"volume": "56",
"year": "2013"
},
{
"key": "84782_CR15",
"unstructured": "Jacobs, J. et al. Probe Reports from the NIH Molecular Libraries Program (2010)."
},
{
"DOI": "10.1073/pnas.0805240105",
"author": "K Ratia",
"doi-asserted-by": "publisher",
"first-page": "16119",
"journal-title": "Proc. Natl. Acad. Sci. USA",
"key": "84782_CR16",
"unstructured": "Ratia, K. et al. A noncovalent class of papain-like protease/deubiquitinase inhibitors blocks SARS virus replication. Proc. Natl. Acad. Sci. USA 105, 16119–16124. https://doi.org/10.1073/pnas.0805240105 (2008).",
"volume": "105",
"year": "2008"
},
{
"DOI": "10.1021/jm060207o",
"author": "IL Lu",
"doi-asserted-by": "publisher",
"first-page": "5154",
"journal-title": "J. Med. Chem.",
"key": "84782_CR17",
"unstructured": "Lu, I. L. et al. Structure-based drug design and structural biology study of novel nonpeptide inhibitors of severe acute respiratory syndrome coronavirus main protease. J. Med. Chem. 49, 5154–5161. https://doi.org/10.1021/jm060207o (2006).",
"volume": "49",
"year": "2006"
},
{
"DOI": "10.1128/JVI.79.24.15199-15208.2005",
"author": "HA Lindner",
"doi-asserted-by": "publisher",
"first-page": "15199",
"journal-title": "J. Virol.",
"key": "84782_CR18",
"unstructured": "Lindner, H. A. et al. The papain-like protease from the severe acute respiratory syndrome coronavirus is a deubiquitinating enzyme. J. Virol. 79, 15199–15208. https://doi.org/10.1128/JVI.79.24.15199-15208.2005 (2005).",
"volume": "79",
"year": "2005"
},
{
"DOI": "10.1128/JVI.79.24.15189-15198.2005",
"author": "N Barretto",
"doi-asserted-by": "publisher",
"first-page": "15189",
"journal-title": "J. Virol.",
"key": "84782_CR19",
"unstructured": "Barretto, N. et al. The papain-like protease of severe acute respiratory syndrome coronavirus has deubiquitinating activity. J. Virol. 79, 15189–15198. https://doi.org/10.1128/JVI.79.24.15189-15198.2005 (2005).",
"volume": "79",
"year": "2005"
},
{
"DOI": "10.1371/journal.ppat.1000054",
"author": "MJ van Hemert",
"doi-asserted-by": "publisher",
"first-page": "e1000054",
"journal-title": "PLoS Pathog.",
"key": "84782_CR20",
"unstructured": "van Hemert, M. J. et al. SARS-coronavirus replication/transcription complexes are membrane-protected and need a host factor for activity in vitro. PLoS Pathog. 4, e1000054. https://doi.org/10.1371/journal.ppat.1000054 (2008).",
"volume": "4",
"year": "2008"
},
{
"DOI": "10.1021/acsinfecdis.0c00168",
"author": "BT Freitas",
"doi-asserted-by": "publisher",
"journal-title": "ACS Infect. Dis.",
"key": "84782_CR21",
"unstructured": "Freitas, B. T. et al. Characterization and noncovalent inhibition of the deubiquitinase and deISGylase activity of SARS-CoV-2 papain-like protease. ACS Infect. Dis. https://doi.org/10.1021/acsinfecdis.0c00168 (2020).",
"year": "2020"
},
{
"DOI": "10.1016/j.str.2015.10.020",
"author": "JE Kung",
"doi-asserted-by": "publisher",
"first-page": "7",
"journal-title": "Structure",
"key": "84782_CR22",
"unstructured": "Kung, J. E. & Jura, N. Structural basis for the non-catalytic functions of protein kinases. Structure 24, 7–24. https://doi.org/10.1016/j.str.2015.10.020 (2016).",
"volume": "24",
"year": "2016"
},
{
"DOI": "10.1038/s41433-020-0939-4",
"author": "D Ma",
"doi-asserted-by": "publisher",
"first-page": "1212",
"journal-title": "Eye",
"key": "84782_CR23",
"unstructured": "Ma, D. et al. Expression of SARS-CoV-2 receptor ACE2 and TMPRSS2 in human primary conjunctival and pterygium cell lines and in mouse cornea. Eye 34, 1212–1219. https://doi.org/10.1038/s41433-020-0939-4 (2020).",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.1101/2020.06.22.165712",
"author": "X Xie",
"doi-asserted-by": "publisher",
"journal-title": "bioRxiv",
"key": "84782_CR24",
"unstructured": "Xie, X. et al. A nanoluciferase SARS-CoV-2 for rapid neutralization testing and screening of anti-infective drugs for COVID-19. bioRxiv https://doi.org/10.1101/2020.06.22.165712 (2020).",
"year": "2020"
},
{
"DOI": "10.1038/s41598-019-41594-3",
"author": "K Palacio-Rodriguez",
"doi-asserted-by": "publisher",
"first-page": "5142",
"journal-title": "Sci. Rep.",
"key": "84782_CR25",
"unstructured": "Palacio-Rodriguez, K., Lans, I., Cavasotto, C. N. & Cossio, P. Exponential consensus ranking improves the outcome in docking and receptor ensemble docking. Sci. Rep. 9, 5142. https://doi.org/10.1038/s41598-019-41594-3 (2019).",
"volume": "9",
"year": "2019"
},
{
"DOI": "10.1038/s41577-020-0311-8",
"author": "MZ Tay",
"doi-asserted-by": "publisher",
"first-page": "363",
"journal-title": "Nat. Rev. Immunol.",
"key": "84782_CR26",
"unstructured": "Tay, M. Z., Poh, C. M., Renia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. 20, 363–374. https://doi.org/10.1038/s41577-020-0311-8 (2020).",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.1016/j.jinf.2020.03.037",
"author": "Q Ye",
"doi-asserted-by": "publisher",
"first-page": "607",
"journal-title": "J. Infect.",
"key": "84782_CR27",
"unstructured": "Ye, Q., Wang, B. & Mao, J. The pathogenesis and treatment of the `Cytokine Storm’ in COVID-19. J. Infect. 80, 607–613. https://doi.org/10.1016/j.jinf.2020.03.037 (2020).",
"volume": "80",
"year": "2020"
},
{
"DOI": "10.1016/S1473-3099(20)30434-5",
"author": "L Carsana",
"doi-asserted-by": "publisher",
"journal-title": "Lancet Infect. Dis.",
"key": "84782_CR28",
"unstructured": "Carsana, L. et al. Pulmonary post-mortem findings in a series of COVID-19 cases from northern Italy: a two-centre descriptive study. Lancet Infect. Dis. https://doi.org/10.1016/S1473-3099(20)30434-5 (2020).",
"year": "2020"
},
{
"DOI": "10.1056/NEJMoa2004500",
"author": "PK Bhatraju",
"doi-asserted-by": "publisher",
"first-page": "2012",
"journal-title": "N. Engl. J. Med.",
"key": "84782_CR29",
"unstructured": "Bhatraju, P. K. et al. Covid-19 in critically Ill patients in the seattle region—case series. N. Engl. J. Med. 382, 2012–2022. https://doi.org/10.1056/NEJMoa2004500 (2020).",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1016/S1470-2045(20)30309-0",
"author": "J Tian",
"doi-asserted-by": "publisher",
"journal-title": "Lancet Oncol.",
"key": "84782_CR30",
"unstructured": "Tian, J. et al. Clinical characteristics and risk factors associated with COVID-19 disease severity in patients with cancer in Wuhan, China: a multicentre, retrospective, cohort study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(20)30309-0 (2020).",
"year": "2020"
},
{
"DOI": "10.1016/S1470-2045(20)30310-7",
"author": "K Yang",
"doi-asserted-by": "publisher",
"journal-title": "Lancet Oncol.",
"key": "84782_CR31",
"unstructured": "Yang, K. et al. Clinical characteristics, outcomes, and risk factors for mortality in patients with cancer and COVID-19 in Hubei, China: a multicentre, retrospective, cohort study. Lancet Oncol. https://doi.org/10.1016/S1470-2045(20)30310-7 (2020).",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2018.01873",
"author": "EB Thangam",
"doi-asserted-by": "publisher",
"first-page": "1873",
"journal-title": "Front. Immunol.",
"key": "84782_CR32",
"unstructured": "Thangam, E. B. et al. The role of histamine and histamine receptors in mast cell-mediated allergy and inflammation: the hunt for new therapeutic targets. Front. Immunol. 9, 1873. https://doi.org/10.3389/fimmu.2018.01873 (2018).",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.3390/ijms20174241",
"author": "JS Marshall",
"doi-asserted-by": "publisher",
"journal-title": "Int. J. Mol. Sci.",
"key": "84782_CR33",
"unstructured": "Marshall, J. S., Portales-Cervantes, L. & Leong, E. Mast cell responses to viruses and pathogen products. Int. J. Mol. Sci. https://doi.org/10.3390/ijms20174241 (2019).",
"year": "2019"
},
{
"DOI": "10.3389/fimmu.2017.00310",
"author": "B Zarnegar",
"doi-asserted-by": "publisher",
"first-page": "310",
"journal-title": "Front. Immunol.",
"key": "84782_CR34",
"unstructured": "Zarnegar, B. et al. Influenza infection in mice induces accumulation of lung mast cells through the recruitment and maturation of mast cell progenitors. Front. Immunol. 8, 310. https://doi.org/10.3389/fimmu.2017.00310 (2017).",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.1128/JVI.06053-11",
"author": "Y Hu",
"doi-asserted-by": "publisher",
"first-page": "3347",
"journal-title": "J. Virol.",
"key": "84782_CR35",
"unstructured": "Hu, Y. et al. Mast cell-induced lung injury in mice infected with H5N1 influenza virus. J. Virol. 86, 3347–3356. https://doi.org/10.1128/JVI.06053-11 (2012).",
"volume": "86",
"year": "2012"
},
{
"DOI": "10.1016/0016-5085(89)90503-9",
"author": "W Kirch",
"doi-asserted-by": "publisher",
"first-page": "1388",
"journal-title": "Gastroenterology",
"key": "84782_CR36",
"unstructured": "Kirch, W., Halabi, A., Linde, M., Santos, S. R. & Ohnhaus, E. E. Negative effects of famotidine on cardiac performance assessed by noninvasive hemodynamic measurements. Gastroenterology 96, 1388–1392. https://doi.org/10.1016/0016-5085(89)90503-9 (1989).",
"volume": "96",
"year": "1989"
},
{
"DOI": "10.1038/sj.eye.6701839",
"author": "YC Lee",
"doi-asserted-by": "publisher",
"first-page": "260",
"journal-title": "Eye (Lond)",
"key": "84782_CR37",
"unstructured": "Lee, Y. C. & Wang, C. C. Famotidine-induced retinopathy. Eye (Lond) 20, 260–263. https://doi.org/10.1038/sj.eye.6701839 (2006).",
"volume": "20",
"year": "2006"
},
{
"author": "SM Kallal",
"first-page": "446",
"journal-title": "West. J. Med.",
"key": "84782_CR38",
"unstructured": "Kallal, S. M. & Lee, M. Thrombotic thrombo-cytopenic purpura associated with histamine H2-receptor antagonist therapy. West. J. Med. 164, 446–448 (1996).",
"volume": "164",
"year": "1996"
},
{
"DOI": "10.7326/0003-4819-114-12-1027",
"author": "TG Cantu",
"doi-asserted-by": "publisher",
"first-page": "1027",
"journal-title": "Ann. Intern. Med.",
"key": "84782_CR39",
"unstructured": "Cantu, T. G. & Korek, J. S. Central nervous system reactions to histamine-2 receptor blockers. Ann. Intern. Med. 114, 1027–1034. https://doi.org/10.7326/0003-4819-114-12-1027 (1991).",
"volume": "114",
"year": "1991"
},
{
"DOI": "10.1002/pro.3703",
"author": "C Sun",
"doi-asserted-by": "publisher",
"first-page": "19",
"journal-title": "Protein Sci.",
"key": "84782_CR40",
"unstructured": "Sun, C., Li, Y., Yates, E. A. & Fernig, D. G. SimpleDSFviewer: a tool to analyze and view differential scanning fluorimetry data for characterizing protein thermal stability and interactions. Protein Sci. 29, 19–27. https://doi.org/10.1002/pro.3703 (2020).",
"volume": "29",
"year": "2020"
},
{
"DOI": "10.1099/jgv.0.001453",
"author": "NS Ogando",
"doi-asserted-by": "publisher",
"journal-title": "J. Gen. Virol.",
"key": "84782_CR41",
"unstructured": "Ogando, N. S. et al. SARS-coronavirus-2 replication in Vero E6 cells: replication kinetics, rapid adaptation and cytopathology. J. Gen. Virol. https://doi.org/10.1099/jgv.0.001453 (2020).",
"year": "2020"
},
{
"DOI": "10.2807/1560-7917",
"author": "VM Corman",
"doi-asserted-by": "publisher",
"journal-title": "Euro Surveill",
"key": "84782_CR42",
"unstructured": "Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill https://doi.org/10.2807/1560-7917 (2020).",
"year": "2020"
}
],
"reference-count": 42,
"references-count": 42,
"relation": {},
"score": 1,
"short-container-title": [
"Sci Rep"
],
"short-title": [],
"source": "Crossref",
"subject": [
"Multidisciplinary"
],
"subtitle": [],
"title": [
"The in-vitro effect of famotidine on SARS-CoV-2 proteases and virus replication"
],
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy",
"volume": "11"
}