Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All alkalinization studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchAlkalinizationAlkalinization (more..)
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

All Studies   Meta Analysis    Recent:   

Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk

Haddrell et al., Nature Communications, doi:10.1038/s41467-024-47777-5 (date from preprint)
Aug 2023  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
27th treatment shown to reduce risk in November 2021
 
*, now with p = 0.0000000046 from 14 studies.
No treatment is 100% effective. Protocols combine treatments. * >10% efficacy, ≥3 studies.
4,500+ studies for 81 treatments. c19early.org
In Vitro study showing that elevated ambient CO2 levels, such as those found in poorly ventilated indoor spaces, can significantly increase the airborne stability and infectivity of SARS-CoV-2 by preventing respiratory droplets from reaching a high alkaline pH that normally helps inactivate the virus. This effect was more pronounced than changes in humidity and suggests that higher indoor CO2 concentrations could increase COVID-19 transmission risk.
Kreutzberger et al. showed that SARS-CoV-2 requires an acidic pH to enter and infect cells. High ambient CO2 levels could potentially increase the acidity of the respiratory mucosa by impairing the alkalinization of the airway surface liquid, creating conditions more favorable for SARS-CoV-2 infection. However, further research is needed to directly confirm the effect of CO2 on mucosal pH in real-world settings.
3 preclinical studies support the efficacy of alkalinization for COVID-19:
Haddrell et al., 10 Aug 2023, peer-reviewed, 11 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperAlkalinizationAll
Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk
Allen Haddrell, Henry Oswin, Mara Otero-Fernandez, Joshua F Robinson, Tristan Cogan, Robert Alexander, Jamie F S Mann, Darryl Hill, Adam Finn, Andrew D Davidson, Jonathan P Reid
Nature Communications, doi:10.1038/s41467-024-47777-5
An improved understanding of the underlying physicochemical properties of respiratory aerosol that influence viral infectivity may open new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous studies have shown that an increase in the pH of respiratory aerosols following generation due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a significant increase in SARS-CoV-2 aerostability results from a moderate increase in the atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than that observed for changes in relative humidity. We model the likelihood of COVID-19 transmission on the ambient concentration of CO 2 , concluding that even this moderate increase in CO 2 concentration results in a significant increase in overall risk. These observations confirm the critical importance of ventilation and maintaining low CO 2 concentrations in indoor environments for mitigating disease transmission. Moreover, the correlation of increased CO 2 concentration with viral aerostability need to be better understood when considering the consequences of increases in ambient CO 2 levels in our atmosphere. The inhalation of respiratory aerosol containing the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has been identified as an important route of transmission in the spread of coronavirus disease 2019 (COVID-19) 1 . As for all respiratory viral infections, a sufficient viral dose must be delivered to the respiratory system of an uninfected individual for disease transmission to occur. For COVID-19, this equates to inhalation of a sufficient quantity of aerosolized/ inhalable and infectious SARS-CoV-2 viral particles. The minimal infectious dose is a function of many parameters, such as mucosal immunity 2 , prior infection 3 , and immunization status 4 . Regardless of the infectious dose required, the cumulative viral load of the air inhaled will necessarily correlate with the overall risk. Thus, understanding how environmental factors affect the aerosolized viral load over time will contribute to the assessment of the risk of transmission. At their core, many of the non-pharmaceutical interventions implemented to mitigate the risk of COVID-19 transmission are centered on the removal of infectious aerosolized virus from a given space. The aerosolized viral load may be altered physically by lowering
Reporting summary Further information on research design is available in the Nature Portfolio Reporting Summary linked to this article. Author contributions Competing interests The authors declare no competing interests. Additional information Supplementary information The online version contains supplementary material available at https://doi.org/10.1038/s41467-024-47777-5. Correspondence and requests for materials should be addressed to Allen Haddrell, Andrew D. Davidson or Jonathan P. Reid. Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work. A peer review file is available. Reprints and permissions information is available at http://www.nature.com/reprints Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence..
References
Abdelnabi, Comparing infectivity and virulence of emerging SARS-CoV-2 variants in Syrian hamsters, doi:10.1016/j.ebiom.2021.103403
Alexander, Mucin transiently sustains coronavirus infectivity through heterogenous changes in phase morphology of evaporating aerosol, Viruses
Archer, Comparing aerosol number and mass exhalation rates from children and adults during breathing, speaking and singing, Interface Focus, doi:10.1098/rsfs.2021.0078
Bardow, Madsen, Nauntofte, The bicarbonate concentration in human saliva does not exceed the plasma level under normal physiological conditions, Clin. Oral. Investig
Batéjat, Grassin, Manuguerra, Leclercq, Heat inactivation of the severe acute respiratory syndrome coronavirus 2, J. Biosaf. Biosecur
Bazant, Bush, A guideline to limit indoor airborne transmission of COVID-19, Proc. Natl Acad. Sci, doi:10.1073/pnas.2018995118
Bobrovitz, Protective effectiveness of previous SARS-CoV-2 infection and hybrid immunity against the omicron variant and severe disease: a systematic review and meta-regression, Lancet Infect. Dis
Bogdanovica, Zemitis, Bogdanovics, The effect of CO2 concentration on children's well-being during the process of learning, Energies
Bushmaker, Comparative aerosol and surface stability of SARS-CoV-2 variants of concern, Emerg. Infect. Dis
Cheng, Global monthly gridded atmospheric carbon dioxide concentrations under the historical and future scenarios, Sci. Data
Chiu, Chen, Chang, Carbon dioxide concentrations and temperatures within tour buses under real-time traffic conditions, PLoS ONE
Cobb, Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis, Nat. Chem
Dabisch, Comparison of the survival of different isolates of SARS-CoV-2 in evaporating aerosols, Aerosol Sci. Tech, doi:10.1080/02786826.2022.2128712
Dabisch, The influence of temperature, humidity, and simulated sunlight on the infectivity of SARS-CoV-2 in aerosols, Aerosol Sci. Tech
Deng, Lau, Seasonal variations of indoor air quality and thermal conditions and their correlations in 220 classrooms in the Midwestern United States, Build Environ
Di Gilio, CO2 concentration monitoring inside educational buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne transmission, Environ. Res, doi:10.1016/j.envres.2021.111560
Downing, Computational and experimental study of aerosol dispersion in a ventilated room, Aerosol Sci. Tech
Duval, Long distance airborne transmission of SARS-CoV-2: rapid systematic review, BMJ
Elbayoumi, Ramli, Md Yusof, Madhoun, The effect of seasonal variation on indoor and outdoor carbon monoxide concentrations in Eastern Mediterranean climate, Atmos. Pollut. Res
Fears, Persistence of severe acute respiratory syndrome coronavirus 2 in aerosol suspensions, Emerg. Infect. Dis
Fernandez, Assessing the airborne survival of bacteria in populations of aerosol droplets with a novel technology, J. R. Soc. Interface
Fernandez, Thomas, Oswin, Haddrell, Reid, Transformative approach to investigate the microphysical factors influencing airborne transmission of pathogens, Appl. Environ. Micro
Foglio Bonda, Pattarino, Foglio-Bonda, Kinematic viscosity of unstimulated whole saliva in healthy young adults, Eur. Rev. Med. Pharmacol. Sci
Glogowsky, Hansen, Schächtele, How effective are social distancing policies? Evidence on the fight against COVID-19, PLoS ONE
Gregson, Comparing aerosol concentrations and particle size distributions generated by singing, speaking and breathing, Aerosol Sci. Tech
Haddrell, Differences in airborne stability of SARS-CoV-2 variants of concern is impacted by alkalinity of surrogates of respiratory aerosol, J. R. Soc. Interface
Herstein, Characteristics of SARS-CoV-2 transmission among meat processing workers in Nebraska, USA, and effectiveness of risk mitigation measures, Emerg. Infect. Dis
Kostikas, pH in expired breath condensate of patients with inflammatory airway diseases, Am. J. Resp. Crit. Care
Kudo, Low ambient humidity impairs barrier function and innate resistance against influenza infection, Proc. Natl Acad. Sci
Leech, Mask wearing in community settings reduces SARS-CoV-2 transmission, Proc. Natl Acad. Sci. USA
Li, Airborne dispersion of droplets during coughing: a physical model of viral transmission, Sci. Rep
Lipinski, Ahmad, Serey, Jouhara, Review of ventilation strategies to reduce the risk of disease transmission in high occupancy buildings, Int. J. Thermofluids
Lowen, Steel, Roles of humidity and temperature in shaping influenza seasonality, J. Virol
Majra, Benson, Pitts, Stebbing, SARS-CoV-2 (COVID-19) superspreader events, J. Infect
Moriyama, Hugentobler, Iwasaki, Seasonality of respiratory viral infections, Annu. Rev. Virol
Nissen, Long-distance airborne dispersal of SARS-CoV-2 in COVID-19 wards, Sci. Rep
Oswin, Measuring stability of virus in aerosols under varying environmental conditions, Aerosol Sci. Tech
Oswin, Oxidative stress contributes to bacterial airborne loss of viability, Microbiol. Spectr, doi:10.1128/spectrum.03347-22
Oswin, The dynamics of SARS-CoV-2 infectivity with changes in aerosol microenvironment, Proc. Natl Acad. Sci
Oswin, the importance of aerosol pH for airborne respiratory virus transmission, Proc. Natl Acad. Sci. USA
Park, Effects of temperature, humidity, and diurnal temperature range on influenza incidence in a temperate region, Influenza Other Respir. Viruses
Peng, Jimenez, Exhaled CO(2) as a COVID-19 infection risk proxy for different indoor, Environ. Sci. Technol. Lett
Riley, Murphy, Riley, Airborne spread of measles in a suburban elementary school, Am. J. Epidemiol
Rosias, Childhood asthma: exhaled markers of airway inflammation, asthma control score, and lung function tests, Pediatr. Pulmonol
Russell, Moldoveanu, Ogra, Mestecky, Mucosal immunity in COVID-19: a neglected but critical aspect of SARS-CoV-2 infection, Front. Immunol
Schuit, Airborne SARS-CoV-2 is rapidly inactivated by simulated sunlight, J. Infect. Dis
Smither, Eastaugh, Findlay, Lever, Experimental aerosol survival of SARS-CoV-2 in artificial saliva and tissue culture media at medium and high humidity, Emerg. Microbes Infect
Tanisali, Effectiveness of different types of mask in aerosol dispersion in SARS-CoV-2 infection, Int. J. Infect. Dis
Team, Past SARS-CoV-2 infection protection against re-infection: a systematic review and meta-analysis, Lancet
Thornton, The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: a systematic review of ventilation and coronavirus, PLoS Glob. Public Health
Tian, The microphysics of surrogates of exhaled aerosols from the upper respiratory tract, Aerosol Sci. Tech, doi:10.1080/02786826.2023.2299214
Van Doremalen, Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1, N. Engl. J. Med
Vaughan, Exhaled breath condensate pH is a robust and reproducible assay of airway acidity, Eur. Respir. J
Wang, Airborne transmission of respiratory viruses, Science
Zwart, An experimental test of the independent action hypothesis in virus-insect pathosystems, Proc. Biol. Sci
{ 'indexed': {'date-parts': [[2024, 5, 29]], 'date-time': '2024-05-29T00:50:47Z', 'timestamp': 1716943847044}, 'reference-count': 55, 'publisher': 'Springer Science and Business Media LLC', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T00:00:00Z', 'timestamp': 1714003200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T00:00:00Z', 'timestamp': 1714003200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'funder': [ { 'DOI': '10.13039/501100000268', 'name': 'RCUK | Biotechnology and Biological Sciences Research Council', 'doi-asserted-by': 'publisher', 'award': ['BB/W00884X/1']}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>An improved understanding of the underlying ' 'physicochemical properties of respiratory aerosol that influence viral infectivity may open ' 'new avenues to mitigate the transmission of respiratory diseases such as COVID-19. Previous ' 'studies have shown that an increase in the pH of respiratory aerosols following generation ' 'due to changes in the gas-particle partitioning of pH buffering bicarbonate ions and carbon ' 'dioxide is a significant factor in reducing SARS-CoV-2 infectivity. We show here that a ' 'significant increase in SARS-CoV-2 aerostability results from a moderate increase in the ' 'atmospheric carbon dioxide concentration (e.g. 800 ppm), an effect that is more marked than ' 'that observed for changes in relative humidity. We model the likelihood of COVID-19 ' 'transmission on the ambient concentration of CO<jats:sub>2</jats:sub>, concluding that even ' 'this moderate increase in CO<jats:sub>2</jats:sub> concentration results in a significant ' 'increase in overall risk. These observations confirm the critical importance of ventilation ' 'and maintaining low CO<jats:sub>2</jats:sub> concentrations in indoor environments for ' 'mitigating disease transmission. Moreover, the correlation of increased ' 'CO<jats:sub>2</jats:sub> concentration with viral aerostability need to be better understood ' 'when considering the consequences of increases in ambient CO<jats:sub>2</jats:sub> levels in ' 'our atmosphere.</jats:p>', 'DOI': '10.1038/s41467-024-47777-5', 'type': 'journal-article', 'created': {'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T11:01:44Z', 'timestamp': 1714042904000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 1, 'title': 'Ambient carbon dioxide concentration correlates with SARS-CoV-2 aerostability and infection risk', 'prefix': '10.1038', 'volume': '15', 'author': [ { 'ORCID': 'http://orcid.org/0000-0003-0296-2791', 'authenticated-orcid': False, 'given': 'Allen', 'family': 'Haddrell', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-4183-8593', 'authenticated-orcid': False, 'given': 'Henry', 'family': 'Oswin', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3549-850X', 'authenticated-orcid': False, 'given': 'Mara', 'family': 'Otero-Fernandez', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2613-3667', 'authenticated-orcid': False, 'given': 'Joshua F.', 'family': 'Robinson', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tristan', 'family': 'Cogan', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5864-9051', 'authenticated-orcid': False, 'given': 'Robert', 'family': 'Alexander', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7037-1286', 'authenticated-orcid': False, 'given': 'Jamie F. S.', 'family': 'Mann', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5743-5078', 'authenticated-orcid': False, 'given': 'Darryl', 'family': 'Hill', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1756-5668', 'authenticated-orcid': False, 'given': 'Adam', 'family': 'Finn', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-1136-4008', 'authenticated-orcid': False, 'given': 'Andrew D.', 'family': 'Davidson', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-6022-1778', 'authenticated-orcid': False, 'given': 'Jonathan P.', 'family': 'Reid', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 4, 25]]}, 'reference': [ { 'key': '47777_CR1', 'doi-asserted-by': 'publisher', 'first-page': 'e068743', 'DOI': '10.1136/bmj-2021-068743', 'volume': '377', 'author': 'D Duval', 'year': '2022', 'unstructured': 'Duval, D. et al. Long distance airborne transmission of SARS-CoV-2: ' 'rapid systematic review. BMJ 377, e068743 (2022).', 'journal-title': 'BMJ'}, { 'key': '47777_CR2', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fimmu.2020.611337', 'volume': '11', 'author': 'MW Russell', 'year': '2020', 'unstructured': 'Russell, M. W., Moldoveanu, Z., Ogra, P. L. & Mestecky, J. Mucosal ' 'immunity in COVID-19: a neglected but critical aspect of SARS-CoV-2 ' 'infection. Front. Immunol. 11, 611337 (2020).', 'journal-title': 'Front. Immunol.'}, { 'key': '47777_CR3', 'doi-asserted-by': 'publisher', 'first-page': '833', 'DOI': '10.1016/S0140-6736(22)02465-5', 'volume': '401', 'author': 'C-F Team', 'year': '2023', 'unstructured': 'Team, C.-F. Past SARS-CoV-2 infection protection against re-infection: a ' 'systematic review and meta-analysis. Lancet 401, 833–842 (2023).', 'journal-title': 'Lancet'}, { 'key': '47777_CR4', 'doi-asserted-by': 'publisher', 'first-page': '556', 'DOI': '10.1016/S1473-3099(22)00801-5', 'volume': '23', 'author': 'N Bobrovitz', 'year': '2023', 'unstructured': 'Bobrovitz, N. et al. Protective effectiveness of previous SARS-CoV-2 ' 'infection and hybrid immunity against the omicron variant and severe ' 'disease: a systematic review and meta-regression. Lancet Infect. Dis. ' '23, 556–567 (2023).', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': '47777_CR5', 'doi-asserted-by': 'publisher', 'unstructured': 'Archer, J. et al. Comparing aerosol number and mass exhalation rates ' 'from children and adults during breathing, speaking and singing. ' 'Interface Focus https://doi.org/10.1098/rsfs.2021.0078 (2022).', 'DOI': '10.1098/rsfs.2021.0078'}, { 'key': '47777_CR6', 'doi-asserted-by': 'publisher', 'first-page': '681', 'DOI': '10.1080/02786826.2021.1883544', 'volume': '55', 'author': 'FKA Gregson', 'year': '2021', 'unstructured': 'Gregson, F. K. A. et al. Comparing aerosol concentrations and particle ' 'size distributions generated by singing, speaking and breathing. Aerosol ' 'Sci. Tech. 55, 681–691 (2021).', 'journal-title': 'Aerosol Sci. Tech.'}, { 'key': '47777_CR7', 'doi-asserted-by': 'publisher', 'first-page': 'e0257363', 'DOI': '10.1371/journal.pone.0257363', 'volume': '16', 'author': 'U Glogowsky', 'year': '2021', 'unstructured': 'Glogowsky, U., Hansen, E. & Schächtele, S. How effective are social ' 'distancing policies? Evidence on the fight against COVID-19. PLoS ONE ' '16, e0257363 (2021).', 'journal-title': 'PLoS ONE'}, { 'key': '47777_CR8', 'doi-asserted-by': 'publisher', 'first-page': '310', 'DOI': '10.1016/j.ijid.2021.06.029', 'volume': '109', 'author': 'G Tanisali', 'year': '2021', 'unstructured': 'Tanisali, G. et al. Effectiveness of different types of mask in aerosol ' 'dispersion in SARS-CoV-2 infection. Int. J. Infect. Dis. 109, 310–314 ' '(2021).', 'journal-title': 'Int. J. Infect. Dis.'}, { 'key': '47777_CR9', 'doi-asserted-by': 'publisher', 'first-page': 'e0000552', 'DOI': '10.1371/journal.pgph.0000552', 'volume': '2', 'author': 'GM Thornton', 'year': '2022', 'unstructured': 'Thornton, G. M. et al. The impact of heating, ventilation, and air ' 'conditioning design features on the transmission of viruses, including ' 'the 2019 novel coronavirus: a systematic review of ventilation and ' 'coronavirus. PLoS Glob. Public Health 2, e0000552 (2022).', 'journal-title': 'PLoS Glob. Public Health'}, { 'key': '47777_CR10', 'doi-asserted-by': 'publisher', 'first-page': '564', 'DOI': '10.1093/infdis/jiaa334', 'volume': '222', 'author': 'M Schuit', 'year': '2020', 'unstructured': 'Schuit, M. et al. Airborne SARS-CoV-2 is rapidly inactivated by ' 'simulated sunlight. J. Infect. Dis. 222, 564–571 (2020).', 'journal-title': 'J. Infect. Dis.'}, { 'key': '47777_CR11', 'doi-asserted-by': 'publisher', 'first-page': '1415', 'DOI': '10.1080/22221751.2020.1777906', 'volume': '9', 'author': 'SJ Smither', 'year': '2020', 'unstructured': 'Smither, S. J., Eastaugh, L. S., Findlay, J. S. & Lever, M. S. ' 'Experimental aerosol survival of SARS-CoV-2 in artificial saliva and ' 'tissue culture media at medium and high humidity. Emerg. Microbes ' 'Infect. 9, 1415–1417 (2020).', 'journal-title': 'Emerg. Microbes Infect.'}, { 'key': '47777_CR12', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.1016/j.jobb.2020.12.001', 'volume': '3', 'author': 'C Batéjat', 'year': '2021', 'unstructured': 'Batéjat, C., Grassin, Q., Manuguerra, J. C. & Leclercq, I. Heat ' 'inactivation of the severe acute respiratory syndrome coronavirus 2. J. ' 'Biosaf. Biosecur. 3, 1–3 (2021).', 'journal-title': 'J. Biosaf. Biosecur.'}, { 'key': '47777_CR13', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abd9149', 'volume': '373', 'author': 'CC Wang', 'year': '2021', 'unstructured': 'Wang, C. C. et al. Airborne transmission of respiratory viruses. Science ' '373, eabd9149 (2021).', 'journal-title': 'Science'}, { 'key': '47777_CR14', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2200109119', 'volume': '119', 'author': 'HP Oswin', 'year': '2022', 'unstructured': 'Oswin, H. P. et al. The dynamics of SARS-CoV-2 infectivity with changes ' 'in aerosol microenvironment. Proc. Natl Acad. Sci. USA 119, e2200109119 ' '(2022).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '47777_CR15', 'doi-asserted-by': 'publisher', 'DOI': '10.1098/rsif.2023.0062', 'volume': '20', 'author': 'A Haddrell', 'year': '2023', 'unstructured': 'Haddrell, A. et al. Differences in airborne stability of SARS-CoV-2 ' 'variants of concern is impacted by alkalinity of surrogates of ' 'respiratory aerosol. J. R. Soc. Interface 20, 20230062 (2023).', 'journal-title': 'J. R. Soc. Interface'}, { 'key': '47777_CR16', 'doi-asserted-by': 'publisher', 'unstructured': 'Tian, J. et al. The microphysics of surrogates of exhaled aerosols from ' 'the upper respiratory tract. Aerosol Sci. Tech. ' 'https://doi.org/10.1080/02786826.2023.2299214 (2024).', 'DOI': '10.1080/02786826.2023.2299214'}, { 'key': '47777_CR17', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2212556119', 'volume': '119', 'author': 'HP Oswin', 'year': '2022', 'unstructured': 'Oswin, H. P. et al. Reply to Klein et al.: the importance of aerosol pH ' 'for airborne respiratory virus transmission. Proc. Natl Acad. Sci. USA ' '119, e2212556119 (2022).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '47777_CR18', 'doi-asserted-by': 'publisher', 'first-page': '1364', 'DOI': '10.1164/rccm.200111-068OC', 'volume': '165', 'author': 'K Kostikas', 'year': '2002', 'unstructured': 'Kostikas, K. et al. pH in expired breath condensate of patients with ' 'inflammatory airway diseases. Am. J. Resp. Crit. Care 165, 1364–1370 ' '(2002).', 'journal-title': 'Am. J. Resp. Crit. Care'}, { 'key': '47777_CR19', 'doi-asserted-by': 'publisher', 'first-page': '889', 'DOI': '10.1183/09031936.03.00038803', 'volume': '22', 'author': 'J Vaughan', 'year': '2003', 'unstructured': 'Vaughan, J. et al. Exhaled breath condensate pH is a robust and ' 'reproducible assay of airway acidity. Eur. Respir. J. 22, 889–894 ' '(2003).', 'journal-title': 'Eur. Respir. J.'}, { 'key': '47777_CR20', 'doi-asserted-by': 'publisher', 'first-page': '107', 'DOI': '10.1002/ppul.20056', 'volume': '38', 'author': 'PPR Rosias', 'year': '2004', 'unstructured': 'Rosias, P. P. R. et al. Childhood asthma: exhaled markers of airway ' 'inflammation, asthma control score, and lung function tests. Pediatr. ' 'Pulmonol. 38, 107–114 (2004).', 'journal-title': 'Pediatr. Pulmonol.'}, { 'key': '47777_CR21', 'first-page': '2988', 'volume': '18', 'author': 'A Foglio Bonda', 'year': '2014', 'unstructured': 'Foglio Bonda, A., Pattarino, F. & Foglio-Bonda, P. L. Kinematic ' 'viscosity of unstimulated whole saliva in healthy young adults. Eur. ' 'Rev. Med. Pharmacol. Sci. 18, 2988–2994 (2014).', 'journal-title': 'Eur. Rev. Med. Pharmacol. Sci.'}, { 'key': '47777_CR22', 'doi-asserted-by': 'publisher', 'unstructured': 'Di Gilio, A. et al. CO2 concentration monitoring inside educational ' 'buildings as a strategic tool to reduce the risk of Sars-CoV-2 airborne ' 'transmission. Environ. Res. https://doi.org/10.1016/j.envres.2021.111560 ' '(2021).', 'DOI': '10.1016/j.envres.2021.111560'}, { 'key': '47777_CR23', 'doi-asserted-by': 'crossref', 'unstructured': 'Fernandez, M. O. et al. Assessing the airborne survival of bacteria in ' 'populations of aerosol droplets with a novel technology. J. R. Soc. ' 'Interface 16, 20180779 (2019).', 'DOI': '10.1098/rsif.2018.0779'}, { 'key': '47777_CR24', 'first-page': 'e01543', 'volume': '86', 'author': 'MO Fernandez', 'year': '2020', 'unstructured': 'Fernandez, M. O., Thomas, R. J., Oswin, H., Haddrell, A. E. & Reid, J. ' 'P. Transformative approach to investigate the microphysical factors ' 'influencing airborne transmission of pathogens. Appl. Environ. Micro. ' '86, e01543–01520 (2020).', 'journal-title': 'Appl. Environ. Micro.'}, { 'key': '47777_CR25', 'doi-asserted-by': 'publisher', 'unstructured': 'Oswin, H. P. et al. Oxidative stress contributes to bacterial airborne ' 'loss of viability. Microbiol. Spectr. ' 'https://doi.org/10.1128/spectrum.03347-22 (2023).', 'DOI': '10.1128/spectrum.03347-22'}, { 'key': '47777_CR26', 'doi-asserted-by': 'publisher', 'first-page': '1856', 'DOI': '10.3390/v14091856', 'volume': '14', 'author': 'RW Alexander', 'year': '2022', 'unstructured': 'Alexander, R. W. et al. Mucin transiently sustains coronavirus ' 'infectivity through heterogenous changes in phase morphology of ' 'evaporating aerosol. Viruses 14, 1856 (2022).', 'journal-title': 'Viruses'}, { 'key': '47777_CR27', 'doi-asserted-by': 'publisher', 'first-page': '245', 'DOI': '10.1007/s007840000077', 'volume': '4', 'author': 'A Bardow', 'year': '2000', 'unstructured': 'Bardow, A., Madsen, J. & Nauntofte, B. The bicarbonate concentration in ' 'human saliva does not exceed the plasma level under normal physiological ' 'conditions. Clin. Oral. Investig. 4, 245–253 (2000).', 'journal-title': 'Clin. Oral. Investig.'}, { 'key': '47777_CR28', 'doi-asserted-by': 'publisher', 'first-page': '6099', 'DOI': '10.3390/en13226099', 'volume': '13', 'author': 'S Bogdanovica', 'year': '2020', 'unstructured': 'Bogdanovica, S., Zemitis, J. & Bogdanovics, R. The effect of CO2 ' 'concentration on children’s well-being during the process of learning. ' 'Energies 13, 6099 (2020).', 'journal-title': 'Energies'}, { 'key': '47777_CR29', 'doi-asserted-by': 'publisher', 'first-page': 'e0125117', 'DOI': '10.1371/journal.pone.0125117', 'volume': '10', 'author': 'C-F Chiu', 'year': '2015', 'unstructured': 'Chiu, C.-F., Chen, M.-H. & Chang, F.-H. Carbon dioxide concentrations ' 'and temperatures within tour buses under real-time traffic conditions. ' 'PLoS ONE 10, e0125117 (2015).', 'journal-title': 'PLoS ONE'}, { 'key': '47777_CR30', 'doi-asserted-by': 'publisher', 'first-page': '417', 'DOI': '10.1038/s41557-021-00880-2', 'volume': '14', 'author': 'SJ Cobb', 'year': '2022', 'unstructured': 'Cobb, S. J. et al. Fast CO2 hydration kinetics impair heterogeneous but ' 'improve enzymatic CO2 reduction catalysis. Nat. Chem. 14, 417–424 ' '(2022).', 'journal-title': 'Nat. Chem.'}, { 'key': '47777_CR31', 'doi-asserted-by': 'publisher', 'first-page': '1564', 'DOI': '10.1056/NEJMc2004973', 'volume': '382', 'author': 'N van Doremalen', 'year': '2020', 'unstructured': 'van Doremalen, N. et al. Aerosol and surface stability of SARS-CoV-2 as ' 'compared with SARS-CoV-1. N. Engl. J. Med. 382, 1564–1567 (2020).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '47777_CR32', 'doi-asserted-by': 'publisher', 'first-page': '36', 'DOI': '10.1016/j.jinf.2020.11.021', 'volume': '82', 'author': 'D Majra', 'year': '2021', 'unstructured': 'Majra, D., Benson, J., Pitts, J. & Stebbing, J. SARS-CoV-2 (COVID-19) ' 'superspreader events. J. Infect. 82, 36–40 (2021).', 'journal-title': 'J. Infect.'}, { 'key': '47777_CR33', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41598-020-76442-2', 'volume': '10', 'author': 'K Nissen', 'year': '2020', 'unstructured': 'Nissen, K. et al. Long-distance airborne dispersal of SARS-CoV-2 in ' 'COVID-19 wards. Sci. Rep. 10, 19589 (2020).', 'journal-title': 'Sci. Rep.'}, { 'key': '47777_CR34', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2119266119', 'volume': '119', 'author': 'G Leech', 'year': '2022', 'unstructured': 'Leech, G. et al. Mask wearing in community settings reduces SARS-CoV-2 ' 'transmission. Proc. Natl Acad. Sci. USA 119, e2119266119 (2022).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '47777_CR35', 'doi-asserted-by': 'publisher', 'first-page': '1032', 'DOI': '10.3201/eid2704.204800', 'volume': '27', 'author': 'JJ Herstein', 'year': '2021', 'unstructured': 'Herstein, J. J. et al. Characteristics of SARS-CoV-2 transmission among ' 'meat processing workers in Nebraska, USA, and effectiveness of risk ' 'mitigation measures. Emerg. Infect. Dis. 27, 1032–1038 (2021).', 'journal-title': 'Emerg. Infect. Dis.'}, { 'key': '47777_CR36', 'doi-asserted-by': 'publisher', 'unstructured': 'Dabisch, P. A. et al. Comparison of the survival of different isolates ' 'of SARS-CoV-2 in evaporating aerosols. Aerosol Sci. Tech. ' 'https://doi.org/10.1080/02786826.2022.2128712 (2022).', 'DOI': '10.1080/02786826.2022.2128712'}, { 'key': '47777_CR37', 'doi-asserted-by': 'publisher', 'first-page': '1315', 'DOI': '10.1080/02786826.2021.1976718', 'volume': '55', 'author': 'HP Oswin', 'year': '2021', 'unstructured': 'Oswin, H. P. et al. Measuring stability of virus in aerosols under ' 'varying environmental conditions. Aerosol Sci. Tech. 55, 1315–1320 ' '(2021).', 'journal-title': 'Aerosol Sci. Tech.'}, { 'key': '47777_CR38', 'doi-asserted-by': 'publisher', 'first-page': '421', 'DOI': '10.1093/oxfordjournals.aje.a112560', 'volume': '107', 'author': 'EC Riley', 'year': '1978', 'unstructured': 'Riley, E. C., Murphy, G. & Riley, R. L. Airborne spread of measles in a ' 'suburban elementary school. Am. J. Epidemiol. 107, 421–432 (1978).', 'journal-title': 'Am. J. Epidemiol.'}, { 'key': '47777_CR39', 'doi-asserted-by': 'publisher', 'unstructured': 'Bazant, M. Z. & Bush, J. W. M. A guideline to limit indoor airborne ' 'transmission of COVID-19. Proc. Natl Acad. Sci. USA ' 'https://doi.org/10.1073/pnas.2018995118 (2021).', 'DOI': '10.1073/pnas.2018995118'}, { 'key': '47777_CR40', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ijft.2020.100045', 'volume': '7', 'author': 'T Lipinski', 'year': '2020', 'unstructured': 'Lipinski, T., Ahmad, D., Serey, N. & Jouhara, H. Review of ventilation ' 'strategies to reduce the risk of disease transmission in high occupancy ' 'buildings. Int. J. Thermofluids 7–8, 100045 (2020).', 'journal-title': 'Int. J. Thermofluids'}, { 'key': '47777_CR41', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.1080/02786826.2022.2145179', 'volume': '57', 'author': 'GH Downing', 'year': '2023', 'unstructured': 'Downing, G. H. et al. Computational and experimental study of aerosol ' 'dispersion in a ventilated room. Aerosol Sci. Tech. 57, 50–62 (2023).', 'journal-title': 'Aerosol Sci. Tech.'}, { 'key': '47777_CR42', 'first-page': '2233', 'volume': '276', 'author': 'MP Zwart', 'year': '2009', 'unstructured': 'Zwart, M. P. et al. An experimental test of the independent action ' 'hypothesis in virus-insect pathosystems. Proc. Biol. Sci. 276, 2233–2242 ' '(2009).', 'journal-title': 'Proc. Biol. Sci.'}, { 'key': '47777_CR43', 'doi-asserted-by': 'crossref', 'unstructured': 'Peng, Z., Jimenez, J. L. Exhaled CO(2) as a COVID-19 infection risk ' 'proxy for different indoor. Environ. Sci. Technol. Lett. 8, 392–397 ' '(2021).', 'DOI': '10.1021/acs.estlett.1c00183'}, { 'key': '47777_CR44', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41597-022-01196-7', 'volume': '9', 'author': 'W Cheng', 'year': '2022', 'unstructured': 'Cheng, W. et al. Global monthly gridded atmospheric carbon dioxide ' 'concentrations under the historical and future scenarios. Sci. Data 9, ' '83 (2022).', 'journal-title': 'Sci. Data'}, { 'key': '47777_CR45', 'doi-asserted-by': 'publisher', 'first-page': '83', 'DOI': '10.1146/annurev-virology-012420-022445', 'volume': '7', 'author': 'M Moriyama', 'year': '2020', 'unstructured': 'Moriyama, M., Hugentobler, W. J. & Iwasaki, A. Seasonality of ' 'respiratory viral infections. Annu. Rev. Virol. 7, 83–101 (2020).', 'journal-title': 'Annu. Rev. Virol.'}, { 'key': '47777_CR46', 'doi-asserted-by': 'publisher', 'first-page': '11', 'DOI': '10.1111/irv.12682', 'volume': '14', 'author': 'JE Park', 'year': '2020', 'unstructured': 'Park, J. E. et al. Effects of temperature, humidity, and diurnal ' 'temperature range on influenza incidence in a temperate region. ' 'Influenza Other Respir. Viruses 14, 11–18 (2020).', 'journal-title': 'Influenza Other Respir. Viruses'}, { 'key': '47777_CR47', 'doi-asserted-by': 'publisher', 'first-page': '7692', 'DOI': '10.1128/JVI.03544-13', 'volume': '88', 'author': 'AC Lowen', 'year': '2014', 'unstructured': 'Lowen, A. C. & Steel, J. Roles of humidity and temperature in shaping ' 'influenza seasonality. J. Virol. 88, 7692–7695 (2014).', 'journal-title': 'J. Virol.'}, { 'key': '47777_CR48', 'doi-asserted-by': 'publisher', 'first-page': '10905', 'DOI': '10.1073/pnas.1902840116', 'volume': '116', 'author': 'E Kudo', 'year': '2019', 'unstructured': 'Kudo, E. et al. Low ambient humidity impairs barrier function and innate ' 'resistance against influenza infection. Proc. Natl Acad. Sci. USA 116, ' '10905–10910 (2019).', 'journal-title': 'Proc. Natl Acad. Sci. USA'}, { 'key': '47777_CR49', 'doi-asserted-by': 'publisher', 'first-page': '4617', 'DOI': '10.1038/s41598-021-84245-2', 'volume': '11', 'author': 'H Li', 'year': '2021', 'unstructured': 'Li, H. et al. Airborne dispersion of droplets during coughing: a ' 'physical model of viral transmission. Sci. Rep. 11, 4617 (2021).', 'journal-title': 'Sci. Rep.'}, { 'key': '47777_CR50', 'doi-asserted-by': 'publisher', 'unstructured': 'Abdelnabi, R. et al. Comparing infectivity and virulence of emerging ' 'SARS-CoV-2 variants in Syrian hamsters. Ebiomedicine ' 'https://doi.org/10.1016/j.ebiom.2021.103403 (2021).', 'DOI': '10.1016/j.ebiom.2021.103403'}, { 'key': '47777_CR51', 'doi-asserted-by': 'publisher', 'first-page': '79', 'DOI': '10.1016/j.buildenv.2019.04.038', 'volume': '157', 'author': 'S Deng', 'year': '2019', 'unstructured': 'Deng, S. & Lau, J. Seasonal variations of indoor air quality and thermal ' 'conditions and their correlations in 220 classrooms in the Midwestern ' 'United States. Build Environ. 157, 79–88 (2019).', 'journal-title': 'Build Environ.'}, { 'key': '47777_CR52', 'doi-asserted-by': 'publisher', 'first-page': '315', 'DOI': '10.5094/APR.2014.037', 'volume': '5', 'author': 'M Elbayoumi', 'year': '2014', 'unstructured': 'Elbayoumi, M., Ramli, N. A., Md Yusof, N. F. F. & Madhoun, W. A. The ' 'effect of seasonal variation on indoor and outdoor carbon monoxide ' 'concentrations in Eastern Mediterranean climate. Atmos. Pollut. Res. 5, ' '315–324 (2014).', 'journal-title': 'Atmos. Pollut. Res.'}, { 'key': '47777_CR53', 'doi-asserted-by': 'publisher', 'first-page': '1033', 'DOI': '10.3201/eid2905.221752', 'volume': '29', 'author': 'T Bushmaker', 'year': '2023', 'unstructured': 'Bushmaker, T. et al. Comparative aerosol and surface stability of ' 'SARS-CoV-2 variants of concern. Emerg. Infect. Dis. 29, 1033–1037 ' '(2023).', 'journal-title': 'Emerg. Infect. Dis.'}, { 'key': '47777_CR54', 'doi-asserted-by': 'publisher', 'first-page': '2168', 'DOI': '10.3201/eid2609.201806', 'volume': '26', 'author': 'AC Fears', 'year': '2020', 'unstructured': 'Fears, A. C. et al. Persistence of severe acute respiratory syndrome ' 'coronavirus 2 in aerosol suspensions. Emerg. Infect. Dis. 26, 2168–2171 ' '(2020).', 'journal-title': 'Emerg. Infect. Dis.'}, { 'key': '47777_CR55', 'doi-asserted-by': 'publisher', 'first-page': '142', 'DOI': '10.1080/02786826.2020.1829536', 'volume': '55', 'author': 'P Dabisch', 'year': '2021', 'unstructured': 'Dabisch, P. et al. The influence of temperature, humidity, and simulated ' 'sunlight on the infectivity of SARS-CoV-2 in aerosols. Aerosol Sci. ' 'Tech. 55, 142–153 (2021).', 'journal-title': 'Aerosol Sci. Tech.'}], 'container-title': 'Nature Communications', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41467-024-47777-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41467-024-47777-5', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41467-024-47777-5.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 4, 25]], 'date-time': '2024-04-25T11:03:15Z', 'timestamp': 1714042995000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41467-024-47777-5'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 4, 25]]}, 'references-count': 55, 'journal-issue': {'issue': '1', 'published-online': {'date-parts': [[2024, 12]]}}, 'alternative-id': ['47777'], 'URL': 'http://dx.doi.org/10.1038/s41467-024-47777-5', 'relation': { 'has-preprint': [ { 'id-type': 'doi', 'id': '10.21203/rs.3.rs-3228966/v1', 'asserted-by': 'object'}]}, 'ISSN': ['2041-1723'], 'subject': [], 'container-title-short': 'Nat Commun', 'published': {'date-parts': [[2024, 4, 25]]}, 'assertion': [ { 'value': '2 August 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '11 April 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '25 April 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'The authors declare no competing interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}], 'article-number': '3487'}
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit