Targeting asparagine and cysteine in SARS-CoV-2 variants and human pro-inflammatory mediators to alleviate COVID-19 severity; a cross-section and in-silico study
et al., Scientific Reports, doi:10.1038/s41598-025-19359-y, Nov 2025
Cross-sectional and in silico study showing that asparagine (Asn) and cysteine (Cys) residues are shared structural determinants between the SARS-CoV-2 spike protein and human inflammatory mediators (IL-17R, IL-6R, CD41/CD61, CD47/SIRP).
Fadel et al., 3 Nov 2025, Egypt, peer-reviewed, mean age 19.0, 8 authors, study period 13 October, 2020 - 31 August, 2021.
Contact: hewida.fadel@pua.edu.eg.
Targeting asparagine and cysteine in SARS-CoV-2 variants and human pro-inflammatory mediators to alleviate COVID-19 severity; a cross-section and in-silico study
Scientific Reports, doi:10.1038/s41598-025-19359-y
To date, COVID-19 continues to pose a global health challenge, with substantial morbidity, mortality, and long-term post-COVID-19 complications threatening public health resilience. During the early pandemic, the IL-6 inhibitor (tocilizumab) was the widely used approved immunotherapy for critically ill patients; however, a subset of ICU cases exhibited normal interleukin-6 (IL-6) levels and failed to respond. We hypothesized that interleukin-17 (IL-17), which acts synergistically with IL-6, contributes to cytokine storm progression and severe inflammation. Our study uniquely integrates a clinical cross-sectional analysis with advanced in-silico modelling, directly linking patient-derived biomarker, radiological, and statistical data to molecular-level mechanisms of COVID-19 severity. Serum IL-17 was significantly elevated in critical versus moderate COVID-19 cases, with a threshold of 187.9 ng/mL predicting poor outcomes by ROC analysis. Logistic regression identified age and monocytes as independent predictors of severity, supporting a combined biomarker approach for improving the prognosis and clinical outcomes. Radiological findings, including ground-glass opacities and consolidations, alongside hematological abnormalities, were more frequent in critical cases. Computational docking revealed key amino acid residues-particularly asparagine (Asn) and cysteine (Cys)-as structural determinants shared by SARS-CoV-2 spike protein and human inflammatory mediators (IL-17R, IL-6R, CD41/CD61, CD47/SIRP). Asparaginase (ASNase) targeted critical residues such as the invariant gate residue "Asn343" and Cys213 of spike protein, Asn240 of IL-17R, and Asn136 of IL-6R. Several phytochemicals, including phytic acid and amygdalin, as well as synthetic agents such as candesartan, remdesivir, and enalapril, were found to preferentially bind to cysteine (Cys) residues-and, to a lesser extent, asparagine (Asn) residues-within key binding interfaces, in addition to targeting B-cell epitopes. This conserved residue preference supports the rationale for a dual-action therapeutic strategy in which asparaginase (ASNase) is combined with selected plant-derived ligands to simultaneously disrupt viral entry mechanisms and attenuate the inflammatory signalling. This dual-perspective approach not only identified IL-17 and IL-6 as independent severity predictors but
Author contributions H.F. laboratory analysis, interpreted the biochemical data, analysis the bioinformatic data and wrote the manuscript, H.E. programming, optimized the molecules and analysed the bioinformatic data, M.A. interpreted the haematological data and supervision the study, M.R. contributed the clinical data, M.K. followed up moderate cases in regular ward, K.G. followed up the critical cases in ICU, A.E. and H.A. Haematology analysis.
Declarations Competing interests The authors declare no competing interests.
Ethics approval and consent to participate Informed consent was obtained from all subjects involved in our study.
Consent for publication The manuscript has been read and approved for submission by all the authors.
Additional information
Supplementary Information The online version contains supplementary material available at h t t p s : / / d o i . o r g / 1 0 . 1 0 3 8 / s 4 1 5 9 8 -0 2 5 -1 9 3 5 9 -y . Correspondence and requests for materials should be addressed to H.H.F. Reprints and permissions information is available at www.nature.com/reprints . Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
References
Abdelaziz, Abdelmageed, Suddek, Molsidomine ameliorates DEXA-induced insulin resistance: involvement of HMGB1/JAK1/STAT3 signaling pathway, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2025.177832
Ahmad, Flavonoids as promising molecules in the cancer therapy: an insight, Curr. Res. Pharmacol. Drug Discovery, doi:10.1016/j.crphar.2023.100167
Aisha, Anticancer L-Asparaginase and phytoactive compounds from plant Solanum nigrum against MDR (Methicillindrug resistant) Staphylococcus aureus and fungal isolates, Dose-Response
Alekseenko, Ignatov, Jones, Sabitova, Kozakov, Protein-protein and protein-peptide docking with ClusPro server, Methods Mol. Biol, doi:10.1007/978-1-0716-0708-4_9
Alfvén, Placing children and adolescents at the centre of the sustainable development goals will deliver for current and future generations, Global Health Action, doi:10.1080/16549716.2019.1670015
Alqaaf, Discovering natural products as potential inhibitors of SARS-CoV-2 Spike proteins, Sci. Rep, doi:10.1038/s41598-024-83637-4
Andrejeva, Novel SIRPα antibodies that induce Single-Agent phagocytosis of tumor cells while preserving T cells, J. Immunol, doi:10.4049/jimmunol.2001019
Angiolillo, Pharmacokinetic and pharmacodynamic profile of a novel phospholipid aspirin formulation, Clin. Pharmacokinet, doi:10.1007/s40262-021-01090-2
Aouadi, Chemical composition's effect on Solanum nigrum linn.'s antioxidant capacity and erythrocyte protection: bioactive components and molecular Docking analysis, Open. Life Sci, doi:10.1515/biol-2022-0944
Arbeitman, Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells, Sci. Rep, doi:10.1038/s41598-020-78711-6
Atkins, Physical Chemistry 11
Attia, Current COVID-19 situation in children: 2025 statement, Afro-Egyptian J. Infect. Endemic Dis, doi:10.21608/aeji.2025.372531.1463
Becker, The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management, J. Thromb. Thrombolysis, doi:10.1007/s11239-024-03028-4
Bekker, Protein data bank Japan: Improved tools for sequence-oriented analysis of protein structures, Protein Sci, doi:10.1002/pro.70052
Bouhamdani, Successful treatment of prolonged COVID-19 with Remdesivir and nirmatrelvir/ritonavir in a patient with a history of diffuse large B-cell lymphoma: a case report, J. Egypt. Natl. Canc Inst, doi:10.1186/s43046-025-00291-1
Boulanger, Chow, Brevnova, Garcia, Hexameric structure and assembly of the Interleukin-6/IL-6-Receptor/gp130 complex, Science
Carbone, Interleukin-6 receptor Blockade selectively reduces IL-21 production by CD4 T cells and IgG4 autoantibodies in rheumatoid arthritis, Int. J. Biol. Sci, doi:10.7150/ijbs.5996
Chen, Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients, OncoImmunology, doi:10.1080/2162402X.2019.1652540
Chen, Xu, Jiang, Impacts of COVID-19 on SDGs revealed by satellite remote sensing: a bibliometric analysis and systematic review, Discover Sustain, doi:10.1007/s43621-024-00526-6
Cheng, Dores, Nayernama, Jones, Rabik, Hepatic veno-occlusive disease with asparaginase products: a review of cases reported to the FDA adverse event reporting system and published in the literature, Pediatr. Hematol. Oncol, doi:10.1080/08880018.2024.2395365
Cheng, Exploring the effects of N234 and N343 linked glycans to SARS CoV 2 Spike protein pocket accessibility using Gaussian accelerated molecular dynamics simulations, Sci. Rep, doi:10.1038/s41598-025-85153-5
Chung, Lam, Tan, Tsang, Sze-Chuen et al., Comprehensive review of COVID-19: epidemiology, pathogenesis, advancement in diagnostic and detection techniques, and Post-Pandemic treatment strategies, Int. J. Mol. Sci, doi:10.3390/ijms25158155
Cozzi, Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19, Jpn. J. Radiol. h t t, doi:10.1007/s11604-021-01120-w
Dariusz Łaszczych, Czernicka, Gostomczyk, Łukasz, The role of IL-17 in the pathogenesis and treatment of glioblastoma-an update on the state of the art and future perspectives, Med. Oncol, doi:10.1007/s12032-024-02434-1
Das, N-glycosylation of the SARS-CoV-2 Spike protein at Asn331 and Asn343 is involved in Spike-ACE2 binding, virus entry, and regulation of IL-6, Microbiol. Immunol, doi:10.1111/1348-0421.13121
Fadel, Ahmed, Mohamed, Almiry, Determination of the cut-off score of human platelets membrane glycoprotein iib/ iiia in COVID19: A novel biomarker and a therapeutic target, J. Chem, doi:10.21608/ejchem.2021.100838.4685
Fang, An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif, Sci. Immunol, doi:10.1126/sciimmunol.abp9962
Fedry, Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11, Sci. Adv, doi:10.1126/sciadv.abf5632
Fulzele, Fulzele, Dharwal, Mapping the impact of COVID-19 crisis on the progress of sustainable Development Goals (SDGs)-a focus on global environment and energy efficiencies, Mater. Today Proc, doi:10.1016/j.matpr.2021.09.517
García-Álvarez, Impact of prior antihypertensive treatment on COVID-19 outcomes, by active ingredient, Inflammopharmacology, doi:10.1007/s10787-024-01475-2
Ghasemitarei, The effect of cysteine oxidation on conformational changes of SARS-CoV-2 spike protein using atomistic simulations, Sci. Rep, doi:10.1038/s41598-025-90918-z
Greer, Wintrobe's Clinical Hematology
Hagiyama, Indigo plant leaf extract inhibits the binding of SARSCoV-2 spike protein to angiotensinconverting enzyme 2, Exp. Therap. Med, doi:10.3892/etm.2022.11200
Hailemichael, Interleukin-6 Blockade abrogates immunotherapy toxicity and promotes tumor immunity, Cancer Cell, doi:10.1016/j.ccell.2022.04.004
Hanisch, Site-Specific O-glycosylation of SARS-CoV-2 Spike protein and its impact on immune and autoimmune responses, Cells, doi:10.3390/cells13020107
Hanson, Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19, Nat. Immunol, doi:10.1038/s41590-024-01754-8
Hasan, Islam, Matsumoto, Kawai, SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs, Sci. Rep, doi:10.1038/s41598-021-96110-3
Hatherley, Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47, Mol. Cell, doi:10.1016/j.molcel.2008.05.026
Hills, Geoghegan, Bostina, Architects of infection: A structural overview of SARS-related coronavirus Spike glycoproteins, Virology, doi:10.1016/j.virol.2024.110383
Hou, Jin, Kang, Kim, Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function, J. Virol, doi:10.1128/JVI.00724-14
Hsu, Chen, Lin, Yang, Igemdock, A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis, BMC Bioinform, doi:10.1186/1471-2105-12-S1-S33
Ibrahim, Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome, PubMed, doi:10.22038/ijbms.2024.77203.16693
Jespersen, Peters, Nielsen, Marcatili, BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes, Nucleic Acids Res, doi:10.1093/nar/gkx346
Jiao, Predicting and empowering health for generation Z by comparing health information seeking and digital health literacy: Cross-Sectional questionnaire study, J. Med. Internet. Res, doi:10.2196/47595
Johansson, Zoete, Michielin, Guex, Defining and searching for structural motifs using DeepView/Swiss-PdbViewer, BMC Bioinform
Kelleni, The African kelleni's roadmap using Nitazoxanide and broad-spectrum antimicrobials to abort returning to COVID-19 square one, Inflammopharmacology, doi:10.1007/s10787-023-01263-4
Khan, Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study, Braz J. Biol, doi:10.1590/1519-6984.25066
Korn, Hiltensperger, Role of IL-6 in the commitment of T cell subsets, Cytokine
Kulakova, Glycoengineering of the hepatitis C virus E2 glycoprotein improves biochemical properties and enhances immunogenicity, Npj Vaccines, doi:10.1038/s41541-025-01161-6
Lai, Efficiency of combination therapy versus monotherapy for the treatment of infections due to carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis, Syst. Rev, doi:10.1186/s13643-024-02695-x
Lauren, Ely, Fischer, Christopher Garcia, Structural basis of receptor sharing by Interleukin 17 cytokines, Nat. Immunol, doi:10.1038/ni.1813
Li, Unveiling novel insights into human IL-6 -IL-6R interaction sites through 3D computer-guided docking and systematic site mutagenesis, Sci. Rep, doi:10.1038/s41598-024-69429-w
Liang, Prognostic significance of serum interleukin-6 in severe/critical COVID-19 patients treated with tocilizumab: a detailed observational study analysis, Sci. Rep, doi:10.1038/s41598-024-81028-3
Lieu, Rapid and robust antibody fab fragment crystallization utilizing edge-to-edge beta-sheet packing, PLOS ONE, doi:10.1371/journal.pone.0232311
Lin, -Chun, Involvement of IL-17 A/IL-17 Receptor A with Neutrophil Recruitment and the Severity of Coronary Arteritis in Kawasaki Disease, Journal of Clinical Immunology, doi:10.1007/s10875-024-01673-1
Liu, Crystal structures of interleukin 17A and its complex with IL-17 receptor A, Nat. Commun. h t t, doi:10.1038/ncomms2880
Liu, Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity, Natl. Sci. Rev, doi:10.1093/nsr/nwae206
Liu, The compensatory effect of S375F on S371F is vital for maintaining the infectivity of SARS-CoV-2 omicron variants, J. Med. Virol, doi:10.1002/jmv.70242
Logtenberg, Scheeren, Schumacher, The CD47-SIRPα immune checkpoint, Immunity, doi:10.1016/j.immuni.2020.04.011
Lubkowski, Dauter, Aghaiypour, Wlodawer, Dauter, Atomic resolution structure of Erwinia chrysanthemiLasparaginase, Acta Crystallogr. Sect. D Biol. Crystallogr, doi:10.1107/s0907444902019443
Luiza Koop, Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: sources, classification and enhanced stabilization by encapsulation and adsorption, Food Res. Int, doi:10.1016/j.foodres.2021.110929
Luo, Associations between CT pulmonary opacity score on admission and clinical characteristics and outcomes in patients with COVID-19, Intern. Emerg. Med, doi:10.1007/s11739-021-02795-9
Ma, Li, Li, Lv, Tian, Targeting immune checkpoints on myeloid cells: current status and future directions, Cancer Immunol. Immunotherapy, doi:10.1007/s00262-024-03856-6
Maese, Real-World treatment patterns among patients with acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LBL) who initiated an asparaginase treatment after the approval of Recombinant Erwinia (Rylaze), Blood, doi:10.1182/blood-2023-172591
Mahmood, Furqan, Muhammad, Hassan, The effects of COVID-19 on agriculture supply chain, food security, and environment: a review, PeerJ, doi:10.7717/peerj.17281
Matteo, Pharmacological and clinical monitoring in children with acute lymphoblastic leukemia treated with a biogeneric PEG-l-asparaginase product, Pediatr. Blood Cancer, doi:10.1002/pbc.29753
Maute, Xu, Weissman, CD47-SIRPα-targeted therapeutics: status and prospects, Immuno-Oncology Technol, doi:10.1016/j.iotech.2022.100070
Meng, Nie, Wang, Role of CD4 + T cell-derived cytokines in the pathogenesis of uveitis, Clin. Exp. Med. h t t p s, doi:10.1007/s10238-025-01565-7
Miller, Krebs, Hambidge, A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate, J. Nutr, doi:10.1093/jn/137.1.135
Monto, Cowling, Peiris, Coronaviruses: the common cold, SARS, and MERS, Viral Infect. Hum. h t t, doi:10.1007/978-1-4939-9544-8_67-1
Moritz, Hall, Connolly, Simpson, Determination of the disulfide structure and N-Glycosylation sites of the extracellular domain of the human signal transducer gp130, J. Biol. Chem
Moyo, Tashu, Revenue Constraints on the Implementation of Sustainable Development Goals: COVID-19 Pandemic in Africa. Implementing the UN Sustainable Development Goals -Regional Perspectives, doi:10.1007/978-3-031-17465-0_56
Nimavat, Is it time to re-evaluate SDGs in the light of COVID-19 pandemic?, Clin. Epidemiol. Global Health, doi:10.1016/j.cegh.2022.101046
Ogura, Interleukin-17 promotes autoimmunity by triggering a Positive-Feedback loop via Interleukin-6 induction, Immunity, doi:10.1016/j.immuni.2008.07.018
Oláh, A comparative investigation of the pulmonary vasodilating effects of inhaled NO gas therapy and inhalation of a new drug formulation containing a NO donor metabolite (SIN-1A), Int. J. Mol. Sci, doi:10.3390/ijms25147981
Pacha, Sallman, Evans, COVID-19: a case for inhibiting IL-17?, Nat. Rev. Immunol, doi:10.1038/s41577-020-0328-z
Pan, Bisabosqual A: A novel asparagine synthetase inhibitor suppressing the proliferation and migration of human nonsmall cell lung cancer A549 cells, Eur. J. Pharmacol, doi:10.1016/j.ejphar.2023.176156
Riethmueller, Proteolytic origin of the soluble human IL-6R in vivo and a decisive role of N-Glycosylation, PLoS Biol, doi:10.1371/journal.pbio.2000080
Sabit, Vitamin D: A key player in COVID-19 immunity and lessons from the pandemic to combat immune-evasive variants, Inflammopharmacol, doi:10.1007/s10787-024-01578-w
Sadeghi, Afkhami, Madrakian, Ghavami, A new approach for simultaneous calculation of pIC50 and logp through QSAR/QSPR modeling on anthracycline derivatives: a comparable study, J. Iran. Chem. Soc
Schoonjans, MedCalc statistical software, MedCalc Statistical Software version
Shajahan, Pepi, Kumar, Murray, Azadi, Site specific N-and O-glycosylation mapping of the spike proteins of SARS-CoV-2 variants of concern, Sci. Rep, doi:10.1038/s41598-023-33088-0
Sharma, in COVID-19 and post-COVID complications: a propitious candidate, Mol. Cell. Biochem, doi:10.1007/s11010-022-04654
Sheik Ismail, HIV protease hinge region insertions at codon 38 affect enzyme kinetics, conformational stability and dynamics, Protein J, doi:10.1007/s10930-023-10132-6
Sievers, Higgins, Clustal Omega for making accurate alignments of many protein sequences, Protein Sci, doi:10.1002/pro.3290
Singla, CD47 activation by Thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis, Arterioscler. Thromb. Vascular Biology, doi:10.1016/j.immuni.2020.04.011
Sun, Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization, Cell. Rep, doi:10.1016/j.celrep.2024.115168
Sztain, A glycan gate controls opening of the SARS-CoV-2 Spike protein, Nat. Chem, doi:10.1038/s41557-021-00758-3
Tannous, Badr, A TNF-NF-κB-STAT3 loop triggers resistance of glioma-stem-like cells to Smac mimetics while sensitizing to EZH2 inhibitors, Cell Death Dis, doi:10.1038/s41419-019-1505-5
Tian, Platelets and diseases: signal transduction and advances in targeted therapy, Signal. Transduct. Target. Therapy, doi:10.1038/s41392-025-02198-8
Tietz, Clinical guide to laboratory tests 3rd edn
Tomasiewicz, Polański, Tański, Advancing the Understanding of malnutrition in the elderly population: current insights and future directions, Nutrients, doi:10.3390/nu16152502
Villaescusa, A new approach to the management of COVID-19, Antagonists of IL, doi:10.1007/s12325-022-02042-3
Vimal, Kumar, l-Asparaginase: a feasible therapeutic molecule for multiple diseases, Biotech, doi:10.1007/s13205-018-1282-3
Walsh, COVID-19 school closures and peer violence in adolescents in 42 countries: evidence from the health behaviour in School-Aged children study, Int. J. Bullying Prev, doi:10.1007/s42380-025-00296-3
Wang, Baudys, Osman, Barr, Analysis of the N-glycosylation profiles of the Spike proteins from the alpha, beta, gamma, and delta variants of SARS-CoV-2, Anal. Bioanal. Chem, doi:10.1007/s00216-023-04771-y
Wang, The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking, Food Nutr. Res, doi:10.29219/fnr.v65.5623
Waterhouse, The structure assessment web server: for proteins, complexes and more, Nucleic Acids Res, doi:10.1093/nar/gkae270
Xiao, Takagi, Coller, Wang, Springer, Structural basis for allostery in integrins and binding to fibrinogenmimetic therapeutics, Nature, doi:10.1038/nature02976
Xin, Structure, signal transduction, activation, and inhibition of integrin αIIbβ3, Thromb. J. h t t p s, doi:10.1186/s12959-023-00463-w
Xue, Rodrigues, Kastritis, Bonvin, Vangone, PRODIGY: a web server for predicting the binding affinity of protein-protein complexes, Bioinformatics, doi:10.1093/bioinformatics/btw514
Yurkovetskiy, Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant, Cell, doi:10.1016/j.cell.2020.09.032
Zhang, Analysis of deletional hereditary persistence of fetal hemoglobin/δβ-thalassemia and δ-globin gene mutations in Southerwestern China, Mol. Genet. Genom. Med, doi:10.1002/mgg3.706
Zhang, SARS-CoV-2 Spike glycosylation affects function and neutralization sensitivity, d o i . o r g / 1 0, doi:10.1128/mbio.01672-23
Zhang, Zhang, Chen, Xie, The interplay between integrins and immune cells as a regulator in cancer immunology, Int. J. Mol. Sci, doi:10.3390/ijms24076170
Zhao, Omicron SARS-CoV-2 mutations stabilize Spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape, Nat. Commun, doi:10.1038/s41467-022-32665-7
Zheng, Dynamic Changes in the Immune Response Correlate with Disease Severity and Outcomes During Infection with SARS-CoV-2, Infectious Diseases and Therapy, doi:10.1007/s40121-021-00458-y
Zhou, Chen, Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis, Drug. Des. Devel. Ther, doi:10.2147/dddt.s86396
Zhu, Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces, Mol. Cell
Özkan, Güneş, Do the natural and herbal remedies used for fighting against COVID-19 pose a risk for surgical patients?, J. Herb. Med
DOI record:
{
"DOI": "10.1038/s41598-025-19359-y",
"ISSN": [
"2045-2322"
],
"URL": "http://dx.doi.org/10.1038/s41598-025-19359-y",
"abstract": "<jats:title>Abstract</jats:title>\n <jats:p>To date, COVID-19 continues to pose a global health challenge, with substantial morbidity, mortality, and long-term post-COVID-19 complications threatening public health resilience. During the early pandemic, the IL-6 inhibitor (tocilizumab) was the widely used approved immunotherapy for critically ill patients; however, a subset of ICU cases exhibited normal interleukin-6 (IL-6) levels and failed to respond. We hypothesized that interleukin-17 (IL-17), which acts synergistically with IL-6, contributes to cytokine storm progression and severe inflammation. Our study uniquely integrates a clinical cross-sectional analysis with advanced in-silico modelling, directly linking patient-derived biomarker, radiological, and statistical data to molecular-level mechanisms of COVID-19 severity. Serum IL-17 was significantly elevated in critical versus moderate COVID-19 cases, with a threshold of 187.9 ng/mL predicting poor outcomes by ROC analysis. Logistic regression identified age and monocytes as independent predictors of severity, supporting a combined biomarker approach for improving the prognosis and clinical outcomes. Radiological findings, including ground-glass opacities and consolidations, alongside hematological abnormalities, were more frequent in critical cases. Computational docking revealed key amino acid residues—particularly asparagine (Asn) and cysteine (Cys)—as structural determinants shared by SARS-CoV-2 spike protein and human inflammatory mediators (IL-17R, IL-6R, CD41/CD61, CD47/SIRP). Asparaginase (ASNase) targeted critical residues such as the invariant gate residue “Asn343” and Cys213 of spike protein, Asn240 of IL-17R, and Asn136 of IL-6R. Several phytochemicals, including phytic acid and amygdalin, as well as synthetic agents such as candesartan, remdesivir, and enalapril, were found to preferentially bind to cysteine (Cys) residues—and, to a lesser extent, asparagine (Asn) residues—within key binding interfaces, in addition to targeting B-cell epitopes. This conserved residue preference supports the rationale for a dual-action therapeutic strategy in which asparaginase (ASNase) is combined with selected plant-derived ligands to simultaneously disrupt viral entry mechanisms and attenuate the inflammatory signalling. This dual-perspective approach not only identified IL-17 and IL-6 as independent severity predictors but also revealed conserved Asn and Cys motifs as critical therapeutic targets, leading to novel strategies—such as ASNase, synthetic agents and phytochemical combinations—for simultaneously blocking viral entry and modulating hyperinflammatory pathways. These findings warrant rigorous experimental and clinical validation to facilitate translation into effective therapeutic interventions.</jats:p>",
"alternative-id": [
"19359"
],
"article-number": "38445",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "1 May 2025"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "8 September 2025"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "3 November 2025"
},
{
"group": {
"label": "Declarations",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Competing interests",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "The authors declare no competing interests."
},
{
"group": {
"label": "Ethics approval and consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "Informed consent was obtained from all subjects involved in our study."
},
{
"group": {
"label": "Consent for publication",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 4,
"value": "The manuscript has been read and approved for submission by all the authors."
}
],
"author": [
{
"ORCID": "https://orcid.org/0000-0002-6696-0405",
"affiliation": [],
"authenticated-orcid": false,
"family": "Fadel",
"given": "Hewida H.",
"sequence": "first"
},
{
"ORCID": "https://orcid.org/0000-0003-3145-2416",
"affiliation": [],
"authenticated-orcid": false,
"family": "EL-Esseily",
"given": "Hadeer Adel",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-6079-2984",
"affiliation": [],
"authenticated-orcid": false,
"family": "Ahmed",
"given": "Mohammed Abd EL-Rahman",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Khamis Mohamed",
"given": "Mohammed Ahmed",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-3659-3616",
"affiliation": [],
"authenticated-orcid": false,
"family": "Roushdy",
"given": "Mohamed Nabil",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-8087-0898",
"affiliation": [],
"authenticated-orcid": false,
"family": "ElSherif",
"given": "Amr",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0001-5553-8842",
"affiliation": [],
"authenticated-orcid": false,
"family": "Gharbeya",
"given": "Kareem Mahamoud",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-8107-9384",
"affiliation": [],
"authenticated-orcid": false,
"family": "Abdelsalam",
"given": "Hadeel Said",
"sequence": "additional"
}
],
"container-title": "Scientific Reports",
"container-title-short": "Sci Rep",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2025,
11,
3
]
],
"date-time": "2025-11-03T15:13:57Z",
"timestamp": 1762182837000
},
"deposited": {
"date-parts": [
[
2025,
11,
4
]
],
"date-time": "2025-11-04T04:45:16Z",
"timestamp": 1762231516000
},
"funder": [
{
"name": "Pharos University"
}
],
"indexed": {
"date-parts": [
[
2026,
1,
16
]
],
"date-time": "2026-01-16T10:56:32Z",
"timestamp": 1768560992486,
"version": "3.49.0"
},
"is-referenced-by-count": 1,
"issue": "1",
"issued": {
"date-parts": [
[
2025,
11,
3
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2025,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
11,
3
]
],
"date-time": "2025-11-03T00:00:00Z",
"timestamp": 1762128000000
}
},
{
"URL": "https://creativecommons.org/licenses/by/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
11,
3
]
],
"date-time": "2025-11-03T00:00:00Z",
"timestamp": 1762128000000
}
}
],
"link": [
{
"URL": "https://www.nature.com/articles/s41598-025-19359-y.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41598-025-19359-y",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://www.nature.com/articles/s41598-025-19359-y.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1038",
"published": {
"date-parts": [
[
2025,
11,
3
]
]
},
"published-online": {
"date-parts": [
[
2025,
11,
3
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.1007/978-1-4939-9544-8_67-1",
"author": "AS Monto",
"doi-asserted-by": "publisher",
"journal-title": "Viral Infect. Hum.",
"key": "19359_CR1",
"unstructured": "Monto, A. S., Cowling, B. J. & Peiris, J. S. M. Coronaviruses: the common cold, SARS, and MERS. Viral Infect. Hum. https://doi.org/10.1007/978-1-4939-9544-8_67-1 (2024).",
"year": "2024"
},
{
"key": "19359_CR2",
"unstructured": "https://www.who.int/publications/m/item/covid-19-epidemiological-update-edition-177"
},
{
"DOI": "10.21608/aeji.2025.372531.1463",
"author": "TH Attia",
"doi-asserted-by": "publisher",
"first-page": "217",
"journal-title": "Afro-Egyptian J. Infect. Endemic Dis.",
"key": "19359_CR3",
"unstructured": "Attia, T. H. et al. Current COVID-19 situation in children: 2025 statement. Afro-Egyptian J. Infect. Endemic Dis. 15, 217–225. https://doi.org/10.21608/aeji.2025.372531.1463 (2025).",
"volume": "15",
"year": "2025"
},
{
"DOI": "10.3390/ijms25158155",
"author": "YS Chung",
"doi-asserted-by": "publisher",
"first-page": "8155",
"journal-title": "Int. J. Mol. Sci.",
"key": "19359_CR4",
"unstructured": "Chung, Y. S., Lam, C. Y., Tan, P. H. & Tsang, H. F. Sze-Chuen Cesar wong. Comprehensive review of COVID-19: epidemiology, pathogenesis, advancement in diagnostic and detection techniques, and Post-Pandemic treatment strategies. Int. J. Mol. Sci. 25, 8155–8155. https://doi.org/10.3390/ijms25158155 (2024).",
"volume": "25",
"year": "2024"
},
{
"DOI": "10.1007/s42380-025-00296-3",
"author": "SD Walsh",
"doi-asserted-by": "publisher",
"journal-title": "Int. J. Bullying Prev.",
"key": "19359_CR5",
"unstructured": "Walsh, S. D. et al. COVID-19 school closures and peer violence in adolescents in 42 countries: evidence from the health behaviour in School-Aged children study. Int. J. Bullying Prev. https://doi.org/10.1007/s42380-025-00296-3 (2025). Advance online publication.",
"year": "2025"
},
{
"DOI": "10.1007/978-3-031-17465-0_56",
"doi-asserted-by": "publisher",
"key": "19359_CR6",
"unstructured": "Moyo, T. & Tashu, K. T. Revenue Constraints on the Implementation of Sustainable Development Goals: COVID-19 Pandemic in Africa. Implementing the UN Sustainable Development Goals – Regional Perspectives 853–870 (2024). https://doi.org/10.1007/978-3-031-17465-0_56"
},
{
"DOI": "10.1007/s43621-024-00526-6",
"author": "X Chen",
"doi-asserted-by": "publisher",
"journal-title": "Discover Sustain.",
"key": "19359_CR7",
"unstructured": "Chen, X., Xu, Z. & Jiang, T. Impacts of COVID-19 on SDGs revealed by satellite remote sensing: a bibliometric analysis and systematic review. Discover Sustain. https://doi.org/10.1007/s43621-024-00526-6 (2024).",
"year": "2024"
},
{
"DOI": "10.1016/j.matpr.2021.09.517",
"author": "R Fulzele",
"doi-asserted-by": "publisher",
"journal-title": "Mater. Today Proc.",
"key": "19359_CR8",
"unstructured": "Fulzele, R., Fulzele, V. & Dharwal, M. Mapping the impact of COVID-19 crisis on the progress of sustainable Development Goals (SDGs)—a focus on global environment and energy efficiencies. Mater. Today Proc. https://doi.org/10.1016/j.matpr.2021.09.517 (2021).",
"year": "2021"
},
{
"DOI": "10.1007/s11239-024-03028-4",
"author": "RC Becker",
"doi-asserted-by": "publisher",
"first-page": "15",
"journal-title": "J. Thromb. Thrombolysis",
"key": "19359_CR9",
"unstructured": "Becker, R. C. et al. The COVID-19 thrombus: distinguishing pathological, mechanistic, and phenotypic features and management. J. Thromb. Thrombolysis. 58, 15–49. https://doi.org/10.1007/s11239-024-03028-4 (2025).",
"volume": "58",
"year": "2025"
},
{
"DOI": "10.1038/s41598-024-81028-3",
"author": "P Liang",
"doi-asserted-by": "publisher",
"first-page": "29634",
"journal-title": "Sci. Rep.",
"key": "19359_CR10",
"unstructured": "Liang, P. et al. Prognostic significance of serum interleukin-6 in severe/critical COVID-19 patients treated with tocilizumab: a detailed observational study analysis. Sci. Rep. 14, 29634. https://doi.org/10.1038/s41598-024-81028-3 (2024).",
"volume": "14",
"year": "2024"
},
{
"DOI": "10.1126/sciadv.abf5632",
"author": "J Fedry",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Adv.",
"key": "19359_CR11",
"unstructured": "Fedry, J. et al. Structural insights into the cross-neutralization of SARS-CoV and SARS-CoV-2 by the human monoclonal antibody 47D11. Sci. Adv. https://doi.org/10.1126/sciadv.abf5632 (2021).",
"year": "2021"
},
{
"DOI": "10.1074/jbc.M009979200",
"author": "RL Moritz",
"doi-asserted-by": "publisher",
"first-page": "8244",
"journal-title": "J. Biol. Chem.",
"key": "19359_CR12",
"unstructured": "Moritz, R. L., Hall, N. E., Connolly, L. M. & Simpson, R. J. Determination of the disulfide structure and N-Glycosylation sites of the extracellular domain of the human signal transducer gp130. J. Biol. Chem. 276, 8244–8253 (2001).",
"volume": "276",
"year": "2001"
},
{
"DOI": "10.1038/ncomms2880",
"author": "S Liu",
"doi-asserted-by": "publisher",
"journal-title": "Nat. Commun.",
"key": "19359_CR13",
"unstructured": "Liu, S. et al. Crystal structures of interleukin 17A and its complex with IL-17 receptor A. Nat. Commun. https://doi.org/10.1038/ncomms2880 (2013).",
"year": "2013"
},
{
"DOI": "10.1016/j.molcel.2008.11.018",
"author": "J Zhu",
"doi-asserted-by": "publisher",
"first-page": "849",
"journal-title": "Mol. Cell",
"key": "19359_CR14",
"unstructured": "Zhu, J. et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Mol. Cell. 32, 849–861 (2008).",
"volume": "32",
"year": "2008"
},
{
"DOI": "10.1016/j.molcel.2008.05.026",
"author": "D Hatherley",
"doi-asserted-by": "publisher",
"first-page": "266",
"journal-title": "Mol. Cell",
"key": "19359_CR15",
"unstructured": "Hatherley, D. et al. Paired receptor specificity explained by structures of signal regulatory proteins alone and complexed with CD47. Mol. Cell. 31, 266–277. https://doi.org/10.1016/j.molcel.2008.05.026 (2008).",
"volume": "31",
"year": "2008"
},
{
"DOI": "10.1038/s41598-023-33088-0",
"author": "LE Asif Shajahan, Pepi",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Rep.",
"key": "19359_CR16",
"unstructured": "Asif Shajahan, Pepi, L. E., Kumar, B., Murray, N. B. & Azadi, P. Site specific N- and O-glycosylation mapping of the spike proteins of SARS-CoV-2 variants of concern. Sci. Rep. https://doi.org/10.1038/s41598-023-33088-0 (2023).",
"year": "2023"
},
{
"DOI": "10.1038/s41557-021-00758-3",
"author": "T Sztain",
"doi-asserted-by": "publisher",
"first-page": "963",
"journal-title": "Nat. Chem.",
"key": "19359_CR17",
"unstructured": "Sztain, T. et al. A glycan gate controls opening of the SARS-CoV-2 Spike protein. Nat. Chem. 13, 963–968. https://doi.org/10.1038/s41557-021-00758-3 (2021).",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1007/s12032-024-02434-1",
"author": "A Dariusz Łaszczych",
"doi-asserted-by": "publisher",
"journal-title": "Med. Oncol.",
"key": "19359_CR18",
"unstructured": "Dariusz Łaszczych, A., Czernicka, Gostomczyk, K. & Łukasz, S. The role of IL-17 in the pathogenesis and treatment of glioblastoma—an update on the state of the art and future perspectives. Med. Oncol. https://doi.org/10.1007/s12032-024-02434-1 (2024).",
"year": "2024"
},
{
"DOI": "10.1038/s41392-025-02198-8",
"author": "Y Tian",
"doi-asserted-by": "publisher",
"first-page": "159",
"journal-title": "Signal. Transduct. Target. Therapy",
"key": "19359_CR19",
"unstructured": "Tian, Y. et al. Platelets and diseases: signal transduction and advances in targeted therapy. Signal. Transduct. Target. Therapy. 10, 159. https://doi.org/10.1038/s41392-025-02198-8 (2025).",
"volume": "10",
"year": "2025"
},
{
"DOI": "10.4049/jimmunol.2001019",
"author": "G Andrejeva",
"doi-asserted-by": "publisher",
"first-page": "712",
"journal-title": "J. Immunol.",
"key": "19359_CR20",
"unstructured": "Andrejeva, G. et al. Novel SIRPα antibodies that induce Single-Agent phagocytosis of tumor cells while preserving T cells. J. Immunol. 206, 712–721. https://doi.org/10.4049/jimmunol.2001019 (2021).",
"volume": "206",
"year": "2021"
},
{
"DOI": "10.1371/journal.pone.0232311",
"author": "R Lieu",
"doi-asserted-by": "publisher",
"first-page": "e0232311",
"journal-title": "PLOS ONE",
"key": "19359_CR21",
"unstructured": "Lieu, R. et al. Rapid and robust antibody fab fragment crystallization utilizing edge-to-edge beta-sheet packing. PLOS ONE. 15, e0232311–e0232311. https://doi.org/10.1371/journal.pone.0232311 (2020).",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1177/15593258221092379",
"author": "A Aisha",
"doi-asserted-by": "publisher",
"first-page": "155932582210923",
"journal-title": "Dose-Response",
"key": "19359_CR22",
"unstructured": "Aisha, A. et al. Anticancer L-Asparaginase and phytoactive compounds from plant Solanum nigrum against MDR (Methicillindrug resistant) Staphylococcus aureus and fungal isolates. Dose-Response 20, 155932582210923 (2022).",
"volume": "20",
"year": "2022"
},
{
"author": "NW Tietz",
"edition": "3",
"key": "19359_CR23",
"unstructured": "Tietz, N. W. Clinical guide to laboratory tests 3rd edn. (WB saunders, 1995).",
"volume-title": "Clinical guide to laboratory tests",
"year": "1995"
},
{
"author": "JP Greer",
"key": "19359_CR24",
"unstructured": "Greer, J. P. et al. Wintrobe’s Clinical Hematology (Lippincott Williams & Wilkins, 2018).",
"volume-title": "Wintrobe’s Clinical Hematology",
"year": "2018"
},
{
"DOI": "10.1002/pro.70052",
"author": "GJ Bekker",
"doi-asserted-by": "publisher",
"journal-title": "Protein Sci.",
"key": "19359_CR25",
"unstructured": "Bekker, G. J. et al. Protein data bank Japan: Improved tools for sequence‐oriented analysis of protein structures. Protein Sci. https://doi.org/10.1002/pro.70052 (2025).",
"year": "2025"
},
{
"DOI": "10.1002/pro.3290",
"author": "F Sievers",
"doi-asserted-by": "publisher",
"first-page": "135",
"journal-title": "Protein Sci.",
"key": "19359_CR26",
"unstructured": "Sievers, F. & Higgins, D. G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 27, 135–145. https://doi.org/10.1002/pro.3290 (2017).",
"volume": "27",
"year": "2017"
},
{
"DOI": "10.1186/1471-2105-13-173",
"author": "MU Johansson",
"doi-asserted-by": "publisher",
"first-page": "173",
"journal-title": "BMC Bioinform.",
"key": "19359_CR27",
"unstructured": "Johansson, M. U., Zoete, V., Michielin, O. & Guex, N. Defining and searching for structural motifs using DeepView/Swiss-PdbViewer. BMC Bioinform. 13, 173 (2012).",
"volume": "13",
"year": "2012"
},
{
"DOI": "10.1007/978-1-0716-0708-4_9",
"author": "M Andrey Alekseenko, Ignatov",
"doi-asserted-by": "publisher",
"journal-title": "Methods Mol. Biol.",
"key": "19359_CR28",
"unstructured": "Andrey Alekseenko, Ignatov, M., Jones, G., Sabitova, M. & Kozakov, D. G. Protein–protein and protein–peptide docking with ClusPro server. Methods Mol. Biol. https://doi.org/10.1007/978-1-0716-0708-4_9 (2020).",
"year": "2020"
},
{
"DOI": "10.1093/nar/gkae270",
"author": "AM Waterhouse",
"doi-asserted-by": "publisher",
"first-page": "318",
"journal-title": "Nucleic Acids Res.",
"key": "19359_CR29",
"unstructured": "Waterhouse, A. M. et al. The structure assessment web server: for proteins, complexes and more. Nucleic Acids Res. 52, 318–323. https://doi.org/10.1093/nar/gkae270 (2024).",
"volume": "52",
"year": "2024"
},
{
"DOI": "10.1093/bioinformatics/btw514",
"author": "LC Xue",
"doi-asserted-by": "publisher",
"first-page": "btw514",
"journal-title": "Bioinformatics",
"key": "19359_CR30",
"unstructured": "Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M. & Vangone, A. PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 32, btw514. https://doi.org/10.1093/bioinformatics/btw514 (2016).",
"volume": "32",
"year": "2016"
},
{
"DOI": "10.1186/1471-2105-12-S1-S33",
"author": "KC Hsu",
"doi-asserted-by": "publisher",
"journal-title": "BMC Bioinform.",
"key": "19359_CR31",
"unstructured": "Hsu, K. C., Chen, Y. F., Lin, S. R. & Yang, J. M. iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinform. https://doi.org/10.1186/1471-2105-12-S1-S33 (2011).",
"year": "2011"
},
{
"DOI": "10.1093/nar/gkx346",
"author": "MC Jespersen",
"doi-asserted-by": "publisher",
"first-page": "W24",
"journal-title": "Nucleic Acids Res.",
"key": "19359_CR32",
"unstructured": "Jespersen, M. C., Peters, B., Nielsen, M. & Marcatili, P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 45, W24–W29. https://doi.org/10.1093/nar/gkx346 (2017).",
"volume": "45",
"year": "2017"
},
{
"key": "19359_CR33",
"unstructured": "Schoonjans, F. MedCalc statistical software. MedCalc Statistical Software version 23.0.8 (MedCalc Software Ltd, Ostend, Belgium; (2024). https://www.medcalc.org"
},
{
"author": "W Atkins, Peter",
"edition": "11",
"key": "19359_CR34",
"unstructured": "Atkins, Peter, W. et al. Atkins’ Physical Chemistry 11th edn. (Oxford University Press, 2018).",
"volume-title": "Atkins’ Physical Chemistry",
"year": "2018"
},
{
"DOI": "10.1007/s13738-021-02233-9",
"author": "F Sadeghi",
"doi-asserted-by": "publisher",
"first-page": "2785",
"journal-title": "J. Iran. Chem. Soc.",
"key": "19359_CR35",
"unstructured": "Sadeghi, F., Afkhami, A., Madrakian, T. & Ghavami, R. A new approach for simultaneous calculation of pIC50 and logp through QSAR/QSPR modeling on anthracycline derivatives: a comparable study. J. Iran. Chem. Soc. 18, 2785–2800 (2021).",
"volume": "18",
"year": "2021"
},
{
"DOI": "10.2196/47595",
"author": "W Jiao",
"doi-asserted-by": "publisher",
"first-page": "e47595",
"journal-title": "J. Med. Internet. Res.",
"key": "19359_CR36",
"unstructured": "Jiao, W. et al. Predicting and empowering health for generation Z by comparing health information seeking and digital health literacy: Cross-Sectional questionnaire study. J. Med. Internet. Res. 25, e47595. https://doi.org/10.2196/47595 (2023).",
"volume": "25",
"year": "2023"
},
{
"DOI": "10.7717/peerj.17281",
"author": "H Mahmood",
"doi-asserted-by": "publisher",
"first-page": "e17281",
"journal-title": "PeerJ",
"key": "19359_CR37",
"unstructured": "Mahmood, H., Furqan, M. & Muhammad Shahid Hassan. The effects of COVID-19 on agriculture supply chain, food security, and environment: a review. PeerJ 12, e17281–e17281. https://doi.org/10.7717/peerj.17281 (2024).",
"volume": "12",
"year": "2024"
},
{
"DOI": "10.1038/s41598-025-90918-z",
"author": "M Ghasemitarei",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Rep.",
"key": "19359_CR38",
"unstructured": "Ghasemitarei, M. et al. The effect of cysteine oxidation on conformational changes of SARS-CoV-2 spike protein using atomistic simulations. Sci. Rep. https://doi.org/10.1038/s41598-025-90918-z (2025).",
"year": "2025"
},
{
"DOI": "10.1093/nsr/nwae206",
"author": "P Liu",
"doi-asserted-by": "publisher",
"first-page": "nwae206",
"journal-title": "Natl. Sci. Rev.",
"key": "19359_CR39",
"unstructured": "Liu, P. et al. Spike N354 glycosylation augments SARS-CoV-2 fitness for human adaptation through structural plasticity. Natl. Sci. Rev. 11, nwae206. https://doi.org/10.1093/nsr/nwae206 (2024).",
"volume": "11",
"year": "2024"
},
{
"DOI": "10.1016/j.cell.2020.09.032",
"author": "L Yurkovetskiy",
"doi-asserted-by": "publisher",
"first-page": "739",
"journal-title": "Cell",
"key": "19359_CR40",
"unstructured": "Yurkovetskiy, L. et al. Structural and functional analysis of the D614G SARS-CoV-2 Spike protein variant. Cell 183, 739–751e8. https://doi.org/10.1016/j.cell.2020.09.032 (2020).",
"volume": "183",
"year": "2020"
},
{
"DOI": "10.1007/s12015-021-10322-8",
"author": "Romy",
"doi-asserted-by": "publisher",
"first-page": "1809",
"journal-title": "Stem Cell. Reviews Rep.",
"key": "19359_CR41",
"unstructured": "Romy et al. SARS-CoV-2 infects red blood cell progenitors and dysregulates hemoglobin and iron metabolism. Stem Cell. Reviews Rep. 18, 1809–1821. https://doi.org/10.1007/s12015-021-10322-8 (2022).",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.3390/nu16152502",
"author": "A Tomasiewicz",
"doi-asserted-by": "publisher",
"first-page": "2502",
"journal-title": "Nutrients",
"key": "19359_CR42",
"unstructured": "Tomasiewicz, A. Jacek Polański & Wojciech tański. Advancing the Understanding of malnutrition in the elderly population: current insights and future directions. Nutrients 16, 2502–2502. https://doi.org/10.3390/nu16152502 (2024).",
"volume": "16",
"year": "2024"
},
{
"DOI": "10.1038/s41590-024-01754-8",
"author": "AL Hanson",
"doi-asserted-by": "publisher",
"first-page": "471",
"journal-title": "Nat. Immunol.",
"key": "19359_CR43",
"unstructured": "Hanson, A. L. et al. Iron dysregulation and inflammatory stress erythropoiesis associates with long-term outcome of COVID-19. Nat. Immunol. 25, 471–482. https://doi.org/10.1038/s41590-024-01754-8 (2024).",
"volume": "25",
"year": "2024"
},
{
"DOI": "10.1002/mgg3.706",
"author": "J Zhang",
"doi-asserted-by": "publisher",
"journal-title": "Mol. Genet. Genom. Med.",
"key": "19359_CR44",
"unstructured": "Zhang, J. et al. Analysis of deletional hereditary persistence of fetal hemoglobin/δβ-thalassemia and δ‐globin gene mutations in Southerwestern China. Mol. Genet. Genom. Med. https://doi.org/10.1002/mgg3.706 (2019).",
"year": "2019"
},
{
"DOI": "10.1038/s41598-020-78711-6",
"author": "CR Arbeitman",
"doi-asserted-by": "publisher",
"first-page": "21779",
"journal-title": "Sci. Rep.",
"key": "19359_CR45",
"unstructured": "Arbeitman, C. R. et al. Structural and functional comparison of SARS-CoV-2-spike receptor binding domain produced in Pichia pastoris and mammalian cells. Sci. Rep. 10, 21779. https://doi.org/10.1038/s41598-020-78711-6 (2020).",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1007/s00216-023-04771-y",
"author": "D Wang",
"doi-asserted-by": "publisher",
"first-page": "4779",
"journal-title": "Anal. Bioanal. Chem.",
"key": "19359_CR46",
"unstructured": "Wang, D., Baudys, J., Osman, S. H. & Barr, J. R. Analysis of the N-glycosylation profiles of the Spike proteins from the alpha, beta, gamma, and delta variants of SARS-CoV-2. Anal. Bioanal. Chem. 415, 4779–4793. https://doi.org/10.1007/s00216-023-04771-y (2023).",
"volume": "415",
"year": "2023"
},
{
"DOI": "10.1111/1348-0421.13121",
"author": "T Das",
"doi-asserted-by": "publisher",
"first-page": "165",
"journal-title": "Microbiol. Immunol.",
"key": "19359_CR47",
"unstructured": "Das, T. et al. N-glycosylation of the SARS‐CoV‐2 Spike protein at Asn331 and Asn343 is involved in Spike‐ACE2 binding, virus entry, and regulation of IL‐6. Microbiol. Immunol. 68, 165–178. https://doi.org/10.1111/1348-0421.13121 (2024).",
"volume": "68",
"year": "2024"
},
{
"DOI": "10.1038/s41598-025-85153-5",
"author": "RL Cheng",
"doi-asserted-by": "publisher",
"first-page": "7052",
"journal-title": "Sci. Rep.",
"key": "19359_CR48",
"unstructured": "Cheng, R. L. et al. Exploring the effects of N234 and N343 linked glycans to SARS CoV 2 Spike protein pocket accessibility using Gaussian accelerated molecular dynamics simulations. Sci. Rep. 15, 7052. https://doi.org/10.1038/s41598-025-85153-5 (2025).",
"volume": "15",
"year": "2025"
},
{
"DOI": "10.1128/mbio.01672-23",
"author": "F Zhang",
"doi-asserted-by": "publisher",
"journal-title": "MBio",
"key": "19359_CR49",
"unstructured": "Zhang, F. et al. SARS-CoV-2 Spike glycosylation affects function and neutralization sensitivity. MBio https://doi.org/10.1128/mbio.01672-23 (2024).",
"year": "2024"
},
{
"DOI": "10.1016/j.virol.2024.110383",
"author": "FR Hills",
"doi-asserted-by": "publisher",
"first-page": "110383",
"journal-title": "Virology",
"key": "19359_CR50",
"unstructured": "Hills, F. R., Geoghegan, J. L. & Bostina, M. Architects of infection: A structural overview of SARS-related coronavirus Spike glycoproteins. Virology 604, 110383. https://doi.org/10.1016/j.virol.2024.110383 (2025).",
"volume": "604",
"year": "2025"
},
{
"DOI": "10.1002/jmv.70242",
"author": "S Liu",
"doi-asserted-by": "publisher",
"journal-title": "J. Med. Virol.",
"key": "19359_CR51",
"unstructured": "Liu, S. et al. The compensatory effect of S375F on S371F is vital for maintaining the infectivity of SARS-CoV‐2 omicron variants. J. Med. Virol. https://doi.org/10.1002/jmv.70242 (2025).",
"year": "2025"
},
{
"DOI": "10.1182/blood-2023-172591",
"author": "L Maese",
"doi-asserted-by": "publisher",
"first-page": "7374",
"journal-title": "Blood",
"key": "19359_CR52",
"unstructured": "Maese, L. et al. Real-World treatment patterns among patients with acute lymphoblastic leukemia (ALL) or lymphoblastic lymphoma (LBL) who initiated an asparaginase treatment after the approval of Recombinant Erwinia (Rylaze). Blood 142, 7374–7374. https://doi.org/10.1182/blood-2023-172591 (2023).",
"volume": "142",
"year": "2023"
},
{
"DOI": "10.1002/pbc.29753",
"author": "C Matteo",
"doi-asserted-by": "publisher",
"journal-title": "Pediatr. Blood Cancer",
"key": "19359_CR53",
"unstructured": "Matteo, C. et al. Pharmacological and clinical monitoring in children with acute lymphoblastic leukemia treated with a biogeneric PEG-l‐asparaginase product. Pediatr. Blood Cancer https://doi.org/10.1002/pbc.29753 (2022).",
"year": "2022"
},
{
"DOI": "10.1080/08880018.2024.2395365",
"author": "C Cheng",
"doi-asserted-by": "publisher",
"first-page": "519",
"journal-title": "Pediatr. Hematol. Oncol.",
"key": "19359_CR54",
"unstructured": "Cheng, C., Dores, G. M., Nayernama, A., Jones, S. C. & Rabik, C. A. Hepatic veno-occlusive disease with asparaginase products: a review of cases reported to the FDA adverse event reporting system and published in the literature. Pediatr. Hematol. Oncol. 41, 519–529. https://doi.org/10.1080/08880018.2024.2395365 (2024).",
"volume": "41",
"year": "2024"
},
{
"DOI": "10.1038/s41598-024-83637-4",
"author": "M Alqaaf",
"doi-asserted-by": "publisher",
"first-page": "200",
"journal-title": "Sci. Rep.",
"key": "19359_CR55",
"unstructured": "Alqaaf, M. et al. Discovering natural products as potential inhibitors of SARS-CoV-2 Spike proteins. Sci. Rep. 15, 200. https://doi.org/10.1038/s41598-024-83637-4 (2025).",
"volume": "15",
"year": "2025"
},
{
"DOI": "10.1038/s41467-022-32665-7",
"author": "Z Zhao",
"doi-asserted-by": "publisher",
"first-page": "4958",
"journal-title": "Nat. Commun.",
"key": "19359_CR56",
"unstructured": "Zhao, Z. et al. Omicron SARS-CoV-2 mutations stabilize Spike up-RBD conformation and lead to a non-RBM-binding monoclonal antibody escape. Nat. Commun. 13, 4958. https://doi.org/10.1038/s41467-022-32665-7 (2022).",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1126/sciimmunol.abp9962",
"author": "Y Fang",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Immunol.",
"key": "19359_CR57",
"unstructured": "Fang, Y. et al. An antibody that neutralizes SARS-CoV-1 and SARS-CoV-2 by binding to a conserved spike epitope outside the receptor binding motif. Sci. Immunol. https://doi.org/10.1126/sciimmunol.abp9962 (2022).",
"year": "2022"
},
{
"DOI": "10.1007/s12325-022-02042-3",
"author": "L Villaescusa",
"doi-asserted-by": "publisher",
"first-page": "1126",
"journal-title": "Adv. Ther.",
"key": "19359_CR58",
"unstructured": "Villaescusa, L. et al. A new approach to the management of COVID-19. Antagonists of IL-6: Siltuximab. Adv. Ther. 39, 1126–1148. https://doi.org/10.1007/s12325-022-02042-3 (2022).",
"volume": "39",
"year": "2022"
},
{
"DOI": "10.1007/s40121-021-00458-y",
"author": "F Zheng",
"doi-asserted-by": "publisher",
"first-page": "1391",
"journal-title": "Infectious Diseases and Therapy",
"key": "19359_CR59",
"unstructured": "Zheng, F. et al. Dynamic Changes in the Immune Response Correlate with Disease Severity and Outcomes During Infection with SARS-CoV-2. Infectious Diseases and Therapy 10, 1391–1405. https://doi.org/10.1007/s40121-021-00458-y (2021).",
"volume": "10",
"year": "2021"
},
{
"DOI": "10.1007/s10875-024-01673-1",
"doi-asserted-by": "crossref",
"key": "19359_CR60",
"unstructured": "Lin, I-Chun. et al. Involvement of IL-17 A/IL-17 Receptor A with Neutrophil Recruitment and the Severity of Coronary Arteritis in Kawasaki Disease. Journal of Clinical Immunology 44, 3. https://doi.org/10.1007/s10875-024-01673-1(2024)."
},
{
"DOI": "10.1128/JVI.00724-14",
"author": "W Hou",
"doi-asserted-by": "publisher",
"first-page": "8479",
"journal-title": "J. Virol.",
"key": "19359_CR61",
"unstructured": "Hou, W., Jin, Y. H., Kang, H. S. & Kim, B. S. Interleukin-6 (IL-6) and IL-17 synergistically promote viral persistence by inhibiting cellular apoptosis and cytotoxic T cell function. J. Virol. 88, 8479–8489. https://doi.org/10.1128/JVI.00724-14 (2014).",
"volume": "88",
"year": "2014"
},
{
"DOI": "10.1016/j.immuni.2008.07.018",
"author": "H Ogura",
"doi-asserted-by": "publisher",
"first-page": "628",
"journal-title": "Immunity",
"key": "19359_CR62",
"unstructured": "Ogura, H. et al. Interleukin-17 promotes autoimmunity by triggering a Positive-Feedback loop via Interleukin-6 induction. Immunity 29, 628–636. https://doi.org/10.1016/j.immuni.2008.07.018 (2008).",
"volume": "29",
"year": "2008"
},
{
"DOI": "10.1007/s10238-025-01565-7",
"author": "T Meng",
"doi-asserted-by": "publisher",
"journal-title": "Clin. Exp. Med.",
"key": "19359_CR63",
"unstructured": "Meng, T., Nie, L. & Wang, Y. Role of CD4 + T cell-derived cytokines in the pathogenesis of uveitis. Clin. Exp. Med. https://doi.org/10.1007/s10238-025-01565-7 (2025).",
"year": "2025"
},
{
"DOI": "10.2147/dddt.s86396",
"author": "SF Zhou",
"doi-asserted-by": "publisher",
"journal-title": "Drug. Des. Devel. Ther.",
"key": "19359_CR64",
"unstructured": "Zhou, S. F. & Chen, X. W. Inflammation, cytokines, the IL-17/IL-6/STAT3/NF-κB axis, and tumorigenesis. Drug. Des. Devel. Ther. https://doi.org/10.2147/dddt.s86396 (2015).",
"year": "2015"
},
{
"DOI": "10.1038/s41419-019-1505-5",
"author": "BA Tannous",
"doi-asserted-by": "publisher",
"journal-title": "Cell Death Dis.",
"key": "19359_CR65",
"unstructured": "Tannous, B. A. & Badr, C. E. A TNF-NF-κB-STAT3 loop triggers resistance of glioma-stem-like cells to Smac mimetics while sensitizing to EZH2 inhibitors. Cell Death Dis. https://doi.org/10.1038/s41419-019-1505-5 (2019).",
"year": "2019"
},
{
"DOI": "10.1016/j.ccell.2022.04.004",
"author": "Y Hailemichael",
"doi-asserted-by": "publisher",
"first-page": "509",
"journal-title": "Cancer Cell.",
"key": "19359_CR66",
"unstructured": "Hailemichael, Y. et al. Interleukin-6 Blockade abrogates immunotherapy toxicity and promotes tumor immunity. Cancer Cell. 40, 509–523. https://doi.org/10.1016/j.ccell.2022.04.004 (2022). .e6.",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.7150/ijbs.5996",
"author": "G Carbone",
"doi-asserted-by": "publisher",
"first-page": "279",
"journal-title": "Int. J. Biol. Sci.",
"key": "19359_CR67",
"unstructured": "Carbone, G. et al. Interleukin-6 receptor Blockade selectively reduces IL-21 production by CD4 T cells and IgG4 autoantibodies in rheumatoid arthritis. Int. J. Biol. Sci. 9, 279–288. https://doi.org/10.7150/ijbs.5996 (2013).",
"volume": "9",
"year": "2013"
},
{
"DOI": "10.1038/s41577-020-0328-z",
"author": "O Pacha",
"doi-asserted-by": "publisher",
"first-page": "345",
"journal-title": "Nat. Rev. Immunol.",
"key": "19359_CR68",
"unstructured": "Pacha, O., Sallman, M. A. & Evans, S. E. COVID-19: a case for inhibiting IL-17?. Nat. Rev. Immunol. 20, 345–346. https://doi.org/10.1038/s41577-020-0328-z (2020).",
"volume": "20",
"year": "2020"
},
{
"DOI": "10.1038/s41598-021-96110-3",
"author": "MZ Hasan",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Rep.",
"key": "19359_CR69",
"unstructured": "Hasan, M. Z., Islam, S., Matsumoto, K. & Kawai, T. SARS-CoV-2 infection initiates interleukin-17-enriched transcriptional response in different cells from multiple organs. Sci. Rep. https://doi.org/10.1038/s41598-021-96110-3 (2021).",
"year": "2021"
},
{
"DOI": "10.1038/ni.1813",
"author": "K Lauren",
"doi-asserted-by": "publisher",
"first-page": "1245",
"journal-title": "Nat. Immunol.",
"key": "19359_CR70",
"unstructured": "Lauren, K. & Ely, Fischer, S. Christopher garcia. Structural basis of receptor sharing by Interleukin 17 cytokines. Nat. Immunol. 10, 1245–1251. https://doi.org/10.1038/ni.1813 (2009).",
"volume": "10",
"year": "2009"
},
{
"DOI": "10.3390/cells13020107",
"author": "FG Hanisch",
"doi-asserted-by": "publisher",
"first-page": "107",
"journal-title": "Cells",
"key": "19359_CR71",
"unstructured": "Hanisch, F. G. & Site-Specific O-glycosylation of SARS-CoV-2 Spike protein and its impact on immune and autoimmune responses. Cells 13, 107–107. https://doi.org/10.3390/cells13020107 (2024).",
"volume": "13",
"year": "2024"
},
{
"DOI": "10.1371/journal.pbio.2000080",
"author": "S Riethmueller",
"doi-asserted-by": "publisher",
"first-page": "e2000080",
"journal-title": "PLoS Biol.",
"key": "19359_CR72",
"unstructured": "Riethmueller, S. et al. Proteolytic origin of the soluble human IL-6R in vivo and a decisive role of N-Glycosylation. PLoS Biol. 15, e2000080. https://doi.org/10.1371/journal.pbio.2000080 (2017).",
"volume": "15",
"year": "2017"
},
{
"DOI": "10.1016/j.cyto.2021.155654",
"author": "T Korn",
"doi-asserted-by": "publisher",
"first-page": "155654",
"journal-title": "Cytokine",
"key": "19359_CR73",
"unstructured": "Korn, T. & Hiltensperger, M. Role of IL-6 in the commitment of T cell subsets. Cytokine 146, 155654 (2021).",
"volume": "146",
"year": "2021"
},
{
"DOI": "10.1007/s10787-024-01578-w",
"author": "H Sabit",
"doi-asserted-by": "publisher",
"first-page": "3631",
"journal-title": "Inflammopharmacol",
"key": "19359_CR74",
"unstructured": "Sabit, H. et al. Vitamin D: A key player in COVID-19 immunity and lessons from the pandemic to combat immune-evasive variants. Inflammopharmacol 32, 3631–3652. https://doi.org/10.1007/s10787-024-01578-w (2024).",
"volume": "32",
"year": "2024"
},
{
"DOI": "10.1186/s43046-025-00291-1",
"author": "N Bouhamdani",
"doi-asserted-by": "publisher",
"first-page": "32",
"journal-title": "J. Egypt. Natl. Canc Inst.",
"key": "19359_CR75",
"unstructured": "Bouhamdani, N. et al. Successful treatment of prolonged COVID-19 with Remdesivir and nirmatrelvir/ritonavir in a patient with a history of diffuse large B-cell lymphoma: a case report. J. Egypt. Natl. Canc Inst. 37, 32. https://doi.org/10.1186/s43046-025-00291-1 (2025).",
"volume": "37",
"year": "2025"
},
{
"DOI": "10.1007/s13205-018-1282-3",
"author": "A Vimal",
"doi-asserted-by": "publisher",
"first-page": "278",
"journal-title": "Biotech",
"key": "19359_CR76",
"unstructured": "Vimal, A. & Kumar, A. l-Asparaginase: a feasible therapeutic molecule for multiple diseases. Biotech 8, 278. https://doi.org/10.1007/s13205-018-1282-3 (2018).",
"volume": "8",
"year": "2018"
},
{
"DOI": "10.1126/science.1083901",
"author": "MJ Boulanger",
"doi-asserted-by": "publisher",
"first-page": "2101",
"journal-title": "Science",
"key": "19359_CR77",
"unstructured": "Boulanger, M. J., Chow, D. C., Brevnova, E. E. & Garcia, K. C. Hexameric structure and assembly of the Interleukin-6/IL-6-Receptor/gp130 complex. Science 300, 2101–2104 (2003).",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.1038/s41598-024-69429-w",
"author": "K Li",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Rep.",
"key": "19359_CR78",
"unstructured": "Li, K. et al. Unveiling novel insights into human IL-6 – IL-6R interaction sites through 3D computer-guided docking and systematic site mutagenesis. Sci. Rep. https://doi.org/10.1038/s41598-024-69429-w (2024).",
"year": "2024"
},
{
"DOI": "10.3390/ijms24076170",
"author": "Q Zhang",
"doi-asserted-by": "publisher",
"first-page": "6170",
"journal-title": "Int. J. Mol. Sci.",
"key": "19359_CR79",
"unstructured": "Zhang, Q., Zhang, S., Chen, J. & Xie, Z. The interplay between integrins and immune cells as a regulator in cancer immunology. Int. J. Mol. Sci. 24, 6170–6170. https://doi.org/10.3390/ijms24076170 (2023).",
"volume": "24",
"year": "2023"
},
{
"DOI": "10.1080/2162402X.2019.1652540",
"author": "J Chen",
"doi-asserted-by": "publisher",
"first-page": "e1652540",
"journal-title": "OncoImmunology",
"key": "19359_CR80",
"unstructured": "Chen, J. et al. Macrophages induce CD47 upregulation via IL-6 and correlate with poor survival in hepatocellular carcinoma patients. OncoImmunology 8, e1652540–e1652540. https://doi.org/10.1080/2162402X.2019.1652540 (2019).",
"volume": "8",
"year": "2019"
},
{
"DOI": "10.21608/ejchem.2021.100838.4685",
"author": "H Fadel",
"doi-asserted-by": "publisher",
"journal-title": "Egypt. J. Chem.",
"key": "19359_CR81",
"unstructured": "Fadel, H., Ahmed, M., Mohamed, M. & Almiry, R. Determination of the cut-off score of human platelets membrane glycoprotein iib/iiia in COVID19: A novel biomarker and a therapeutic target. Egypt. J. Chem. https://doi.org/10.21608/ejchem.2021.100838.4685 (2021).",
"year": "2021"
},
{
"DOI": "10.1038/nature02976",
"author": "T Xiao",
"doi-asserted-by": "publisher",
"first-page": "59",
"journal-title": "Nature",
"key": "19359_CR82",
"unstructured": "Xiao, T., Takagi, J., Coller, B. S., Wang, J. H. & Springer, T. A. Structural basis for allostery in integrins and binding to fibrinogen-mimetic therapeutics. Nature 432, 59–67. https://doi.org/10.1038/nature02976 (2004).",
"volume": "432",
"year": "2004"
},
{
"DOI": "10.1007/s11739-021-02795-9",
"author": "H Luo",
"doi-asserted-by": "publisher",
"first-page": "153",
"journal-title": "Intern. Emerg. Med.",
"key": "19359_CR83",
"unstructured": "Luo, H. et al. Associations between CT pulmonary opacity score on admission and clinical characteristics and outcomes in patients with COVID-19. Intern. Emerg. Med. 17, 153–163. https://doi.org/10.1007/s11739-021-02795-9 (2021).",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1007/s11604-021-01120-w",
"author": "D Cozzi",
"doi-asserted-by": "publisher",
"journal-title": "Jpn. J. Radiol.",
"key": "19359_CR84",
"unstructured": "Cozzi, D. et al. Ground-glass opacity (GGO): a review of the differential diagnosis in the era of COVID-19. Jpn. J. Radiol. https://doi.org/10.1007/s11604-021-01120-w (2021).",
"year": "2021"
},
{
"DOI": "10.1186/s12959-023-00463-w",
"author": "H Xin",
"doi-asserted-by": "publisher",
"journal-title": "Thromb. J.",
"key": "19359_CR85",
"unstructured": "Xin, H. et al. Structure, signal transduction, activation, and inhibition of integrin αIIbβ3. Thromb. J. https://doi.org/10.1186/s12959-023-00463-w (2023).",
"year": "2023"
},
{
"DOI": "10.1161/ATVBAHA.122.318904",
"author": "B Singla",
"doi-asserted-by": "publisher",
"first-page": "1234",
"journal-title": "Arterioscler. Thromb. Vascular Biology",
"key": "19359_CR86",
"unstructured": "Singla, B. et al. CD47 activation by Thrombospondin-1 in lymphatic endothelial cells suppresses lymphangiogenesis and promotes atherosclerosis. Arterioscler. Thromb. Vascular Biology. 43, 1234–1250. https://doi.org/10.1161/ATVBAHA.122.318904 (2023).",
"volume": "43",
"year": "2023"
},
{
"DOI": "10.1016/j.immuni.2020.04.011",
"author": "MEW Logtenberg",
"doi-asserted-by": "publisher",
"first-page": "742",
"journal-title": "Immunity",
"key": "19359_CR87",
"unstructured": "Logtenberg, M. E. W., Scheeren, F. A. & Schumacher, T. N. The CD47-SIRPα immune checkpoint. Immunity 52, 742–752. https://doi.org/10.1016/j.immuni.2020.04.011 (2020).",
"volume": "52",
"year": "2020"
},
{
"DOI": "10.1007/s00262-024-03856-6",
"author": "C Ma",
"doi-asserted-by": "publisher",
"journal-title": "Cancer Immunol. Immunotherapy",
"key": "19359_CR88",
"unstructured": "Ma, C., Li, Y., Li, M., Lv, C. & Tian, Y. Targeting immune checkpoints on myeloid cells: current status and future directions. Cancer Immunol. Immunotherapy https://doi.org/10.1007/s00262-024-03856-6 (2025).",
"year": "2025"
},
{
"DOI": "10.1016/j.iotech.2022.100070",
"author": "R Maute",
"doi-asserted-by": "publisher",
"first-page": "100070",
"journal-title": "Immuno-Oncology Technol.",
"key": "19359_CR89",
"unstructured": "Maute, R., Xu, J. & Weissman, I. L. CD47–SIRPα-targeted therapeutics: status and prospects. Immuno-Oncology Technol. 13, 100070. https://doi.org/10.1016/j.iotech.2022.100070 (2022).",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1007/s10787-023-01263-4",
"author": "MT Kelleni",
"doi-asserted-by": "publisher",
"first-page": "3335",
"issue": "6",
"journal-title": "Inflammopharmacology",
"key": "19359_CR90",
"unstructured": "Kelleni, M. T. The African kelleni’s roadmap using Nitazoxanide and broad-spectrum antimicrobials to abort returning to COVID-19 square one. Inflammopharmacology 31 (6), 3335–3338. https://doi.org/10.1007/s10787-023-01263-4 (2023).",
"volume": "31",
"year": "2023"
},
{
"DOI": "10.1007/s10787-024-01475-2",
"author": "RM García-Álvarez",
"doi-asserted-by": "publisher",
"first-page": "1805",
"journal-title": "Inflammopharmacology",
"key": "19359_CR91",
"unstructured": "García-Álvarez, R. M. et al. Impact of prior antihypertensive treatment on COVID-19 outcomes, by active ingredient. Inflammopharmacology 32, 1805–1815. https://doi.org/10.1007/s10787-024-01475-2 (2024).",
"volume": "32",
"year": "2024"
},
{
"DOI": "10.1016/j.ejphar.2025.177832",
"author": "HM Abdelaziz",
"doi-asserted-by": "publisher",
"first-page": "177832",
"journal-title": "Eur. J. Pharmacol.",
"key": "19359_CR92",
"unstructured": "Abdelaziz, H. M., Abdelmageed, M. E. & Suddek, G. M. Molsidomine ameliorates DEXA-induced insulin resistance: involvement of HMGB1/JAK1/STAT3 signaling pathway. Eur. J. Pharmacol. 1002, 177832. https://doi.org/10.1016/j.ejphar.2025.177832 (2025).",
"volume": "1002",
"year": "2025"
},
{
"DOI": "10.3390/ijms25147981",
"author": "A Oláh",
"doi-asserted-by": "publisher",
"first-page": "7981",
"journal-title": "Int. J. Mol. Sci.",
"key": "19359_CR93",
"unstructured": "Oláh, A. et al. A comparative investigation of the pulmonary vasodilating effects of inhaled NO gas therapy and inhalation of a new drug formulation containing a NO donor metabolite (SIN-1A). Int. J. Mol. Sci. 25, 7981. https://doi.org/10.3390/ijms25147981 (2024).",
"volume": "25",
"year": "2024"
},
{
"DOI": "10.1093/jn/137.1.135",
"author": "LV Miller",
"doi-asserted-by": "publisher",
"first-page": "135",
"journal-title": "J. Nutr.",
"key": "19359_CR94",
"unstructured": "Miller, L. V., Krebs, N. F. & Hambidge, K. M. A mathematical model of zinc absorption in humans as a function of dietary zinc and phytate. J. Nutr. 137, 135–141. https://doi.org/10.1093/jn/137.1.135 (2007).",
"volume": "137",
"year": "2007"
},
{
"DOI": "10.1107/s0907444902019443",
"author": "J Lubkowski",
"doi-asserted-by": "publisher",
"first-page": "84",
"journal-title": "Acta Crystallogr. Sect. D Biol. Crystallogr.",
"key": "19359_CR95",
"unstructured": "Lubkowski, J., Dauter, M., Aghaiypour, K., Wlodawer, A. & Dauter, Z. Atomic resolution structure of Erwinia chrysanthemiL-asparaginase. Acta Crystallogr. Sect. D Biol. Crystallogr. 59, 84–92. https://doi.org/10.1107/s0907444902019443 (2002).",
"volume": "59",
"year": "2002"
},
{
"DOI": "10.1016/j.ejphar.2023.176156",
"author": "Y Pan",
"doi-asserted-by": "publisher",
"first-page": "176156",
"journal-title": "Eur. J. Pharmacol.",
"key": "19359_CR96",
"unstructured": "Pan, Y. et al. Bisabosqual A: A novel asparagine synthetase inhibitor suppressing the proliferation and migration of human non-small cell lung cancer A549 cells. Eur. J. Pharmacol. 960, 176156. https://doi.org/10.1016/j.ejphar.2023.176156 (2023).",
"volume": "960",
"year": "2023"
},
{
"DOI": "10.1515/biol-2022-0944",
"author": "A Aouadi",
"doi-asserted-by": "publisher",
"first-page": "20220944",
"journal-title": "Open. Life Sci.",
"key": "19359_CR97",
"unstructured": "Aouadi, A. et al. Chemical composition’s effect on Solanum nigrum linn.‘s antioxidant capacity and erythrocyte protection: bioactive components and molecular Docking analysis. Open. Life Sci. 19, 20220944. https://doi.org/10.1515/biol-2022-0944 (2024).",
"volume": "19",
"year": "2024"
},
{
"DOI": "10.1007/s11010-022-04654",
"author": "D Sharma",
"doi-asserted-by": "publisher",
"journal-title": "Mol. Cell. Biochem.",
"key": "19359_CR98",
"unstructured": "Sharma, D. et al. Solanum nigrum L. in COVID-19 and post-COVID complications: a propitious candidate. Mol. Cell. Biochem. https://doi.org/10.1007/s11010-022-04654 (2023).",
"year": "2023"
},
{
"DOI": "10.29219/fnr.v65.5623",
"author": "Y Wang",
"doi-asserted-by": "publisher",
"journal-title": "Food Nutr. Res.",
"key": "19359_CR99",
"unstructured": "Wang, Y. et al. The mechanism and active compounds of semen armeniacae amarum treating coronavirus disease 2019 based on network pharmacology and molecular docking. Food Nutr. Res. https://doi.org/10.29219/fnr.v65.5623 (2021).",
"year": "2021"
},
{
"DOI": "10.1590/1519-6984.25066",
"author": "MT Khan",
"doi-asserted-by": "publisher",
"first-page": "e250667",
"journal-title": "Braz J. Biol.",
"key": "19359_CR100",
"unstructured": "Khan, M. T. et al. Inhibitory effect of thymoquinone from Nigella sativa against SARS-CoV-2 main protease. An in-silico study. Braz J. Biol. 84, e250667. https://doi.org/10.1590/1519-6984.25066 (2022).",
"volume": "84",
"year": "2022"
},
{
"DOI": "10.3892/etm.2022.11200",
"author": "M Hagiyama",
"doi-asserted-by": "publisher",
"journal-title": "Exp. Therap. Med.",
"key": "19359_CR101",
"unstructured": "Hagiyama, M. et al. Indigo plant leaf extract inhibits the binding of SARSCoV-2 spike protein to angiotensinconverting enzyme 2. Exp. Therap. Med. https://doi.org/10.3892/etm.2022.11200 (2022).",
"year": "2022"
},
{
"DOI": "10.22038/ijbms.2024.77203.16693",
"author": "KG Ibrahim",
"doi-asserted-by": "publisher",
"first-page": "1214",
"journal-title": "PubMed",
"key": "19359_CR102",
"unstructured": "Ibrahim, K. G. et al. Thymoquinone: A comprehensive review of its potential role as a monotherapy for metabolic syndrome. PubMed 27, 1214–1227. https://doi.org/10.22038/ijbms.2024.77203.16693 (2024).",
"volume": "27",
"year": "2024"
},
{
"DOI": "10.1016/j.hermed.2024.100902",
"author": "M Özkan",
"doi-asserted-by": "publisher",
"first-page": "100902",
"journal-title": "J. Herb. Med.",
"key": "19359_CR103",
"unstructured": "Özkan, M. & Güneş, H. Do the natural and herbal remedies used for fighting against COVID-19 pose a risk for surgical patients? J. Herb. Med. 46, 100902 (2024).",
"volume": "46",
"year": "2024"
},
{
"DOI": "10.1016/j.foodres.2021.110929",
"author": "B Luiza Koop",
"doi-asserted-by": "publisher",
"first-page": "110929",
"journal-title": "Food Res. Int.",
"key": "19359_CR104",
"unstructured": "Luiza Koop, B. et al. Flavonoids, anthocyanins, betalains, curcumin, and carotenoids: sources, classification and enhanced stabilization by encapsulation and adsorption. Food Res. Int. 153, 110929. https://doi.org/10.1016/j.foodres.2021.110929 (2022).",
"volume": "153",
"year": "2022"
},
{
"DOI": "10.1186/s13643-024-02695-x",
"author": "C Lai",
"doi-asserted-by": "publisher",
"journal-title": "Syst. Rev.",
"key": "19359_CR105",
"unstructured": "Lai, C. et al. Efficiency of combination therapy versus monotherapy for the treatment of infections due to carbapenem-resistant Gram-negative bacteria: a systematic review and meta-analysis. Syst. Rev. https://doi.org/10.1186/s13643-024-02695-x (2024).",
"year": "2024"
},
{
"DOI": "10.1016/j.crphar.2023.100167",
"author": "Suhail Ahmad",
"doi-asserted-by": "publisher",
"first-page": "100167",
"journal-title": "Curr. Res. Pharmacol. Drug Discovery",
"key": "19359_CR106",
"unstructured": "Suhail Ahmad et al. Flavonoids as promising molecules in the cancer therapy: an insight. Curr. Res. Pharmacol. Drug Discovery. 6, 100167–100167. https://doi.org/10.1016/j.crphar.2023.100167 (2024).",
"volume": "6",
"year": "2024"
},
{
"DOI": "10.1007/s40262-021-01090-2",
"author": "DJ Angiolillo",
"doi-asserted-by": "publisher",
"first-page": "465",
"journal-title": "Clin. Pharmacokinet.",
"key": "19359_CR107",
"unstructured": "Angiolillo, D. J. et al. Pharmacokinetic and pharmacodynamic profile of a novel phospholipid aspirin formulation. Clin. Pharmacokinet. 61, 465–479. https://doi.org/10.1007/s40262-021-01090-2 (2022).",
"volume": "61",
"year": "2022"
},
{
"DOI": "10.1016/j.cegh.2022.101046",
"author": "N Nimavat",
"doi-asserted-by": "publisher",
"first-page": "101046",
"journal-title": "Clin. Epidemiol. Global Health",
"key": "19359_CR108",
"unstructured": "Nimavat, N. et al. Is it time to re-evaluate SDGs in the light of COVID-19 pandemic? Clin. Epidemiol. Global Health. 15, 101046. https://doi.org/10.1016/j.cegh.2022.101046 (2022).",
"volume": "15",
"year": "2022"
},
{
"DOI": "10.1080/16549716.2019.1670015",
"author": "T Alfvén",
"doi-asserted-by": "publisher",
"first-page": "1670015",
"journal-title": "Global Health Action",
"key": "19359_CR109",
"unstructured": "Alfvén, T. et al. Placing children and adolescents at the centre of the sustainable development goals will deliver for current and future generations. Global Health Action. 12, 1670015. https://doi.org/10.1080/16549716.2019.1670015 (2019).",
"volume": "12",
"year": "2019"
},
{
"DOI": "10.1038/s41541-025-01161-6",
"author": "L Kulakova",
"doi-asserted-by": "publisher",
"first-page": "121",
"journal-title": "Npj Vaccines",
"key": "19359_CR110",
"unstructured": "Kulakova, L. et al. Glycoengineering of the hepatitis C virus E2 glycoprotein improves biochemical properties and enhances immunogenicity. Npj Vaccines. 10, 121. https://doi.org/10.1038/s41541-025-01161-6 (2025).",
"volume": "10",
"year": "2025"
},
{
"DOI": "10.1007/s10930-023-10132-6",
"author": "Z Sheik Ismail",
"doi-asserted-by": "publisher",
"first-page": "490",
"journal-title": "Protein J.",
"key": "19359_CR111",
"unstructured": "Sheik Ismail, Z. et al. HIV protease hinge region insertions at codon 38 affect enzyme kinetics, conformational stability and dynamics. Protein J. 42, 490–501. https://doi.org/10.1007/s10930-023-10132-6 (2023).",
"volume": "42",
"year": "2023"
},
{
"DOI": "10.1016/j.celrep.2024.115168",
"author": "C Sun",
"doi-asserted-by": "publisher",
"first-page": "115168",
"issue": "1",
"journal-title": "Cell. Rep.",
"key": "19359_CR112",
"unstructured": "Sun, C. et al. Structural basis of Epstein-Barr virus gp350 receptor recognition and neutralization. Cell. Rep. 44 (1), 115168. https://doi.org/10.1016/j.celrep.2024.115168 (2025).",
"volume": "44",
"year": "2025"
}
],
"reference-count": 112,
"references-count": 112,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.nature.com/articles/s41598-025-19359-y"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Targeting asparagine and cysteine in SARS-CoV-2 variants and human pro-inflammatory mediators to alleviate COVID-19 severity; a cross-section and in-silico study",
"type": "journal-article",
"update-policy": "https://doi.org/10.1007/springer_crossmark_policy",
"volume": "15"
}