Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchEnisamiumEnisamium (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Enisamium Inhibits SARS-CoV-2 RNA Synthesis

Elli et al., Biomedicines, doi:10.3390/biomedicines9091254, Sep 2021
https://c19early.org/elli.html
In vitro study showing inhibition of SARS-CoV-2 RNA synthesis by enisamium and its metabolite VR17-04. Authors showed that enisamium inhibited SARS-CoV-2 infection in Caco-2 cells with an IC50 of 1.2 mM and coronavirus HCoV-NL63 infection in normal human bronchial epithelial (NHBE) cells with an IC50 of ~60 μg/mL. Molecular dynamics simulations suggest VR17-04 works by forming hydrogen bonds with cytosine or adenine bases in the viral RNA template, preventing GTP and UTP incorporation during RNA synthesis. The active metabolite VR17-04 showed stronger binding to the viral RNA polymerase complex than unmetabolized enisamium.
Elli et al., 17 Sep 2021, USA, peer-reviewed, 15 authors. Contact: lutz.mueller@regenold.com (corresponding author), elli@ronzoni.it, sala@ronzoni.it, cosentino@ronzoni.it, guerrini@ronzoni.it, denisa.bojkova@kgu.de, marco.bechtel94@gmx.de, tv293@cam.ac.uk, dboltz@iitri.org, mmuzzio@iitri.org, xpeng@iitri.org, a.goy@farmak.ua, v.margitich@farmak.ua, cinatl@em.uni-frankfurt.de, ajwt6@cam.ac.uk.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
Enisamium Inhibits SARS-CoV-2 RNA Synthesis
Stefano Elli, Denisa Bojkova, Marco Bechtel, Thomas Vial, David Boltz, Miguel Muzzio, Xinjian Peng, Federico Sala, Cesare Cosentino, Andrew Goy, Marco Guerrini, Lutz Müller, Jindrich Cinatl, Victor Margitich, Aartjan J W Te Velthuis
Biomedicines, doi:10.3390/biomedicines9091254
Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 . While control of the SARS-CoV-2 spread partly depends on vaccineinduced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro.
References
Beigel, Tomashek, Dodd, Mehta, Zingman et al., Remdesivir for the Treatment of Covid-19-Final Report, N. Engl. J. Med, doi:10.1056/NEJMoa2007764
Bojkova, Bechtel, Mclaughlin, Mcgreig, Klann et al., Aprotinin Inhibits SARS-CoV-2 Replication, Cells, doi:10.3390/cells9112377
Bojkova, Klann, Koch, Widera, Krause et al., Proteomics of SARS-CoV-2-infected host cells reveals therapy targets, Nature, doi:10.1038/s41586-020-2332-7
Boltz, Peng, Muzzio, Dash, Thomas et al., Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells, Antivir Chem. Chemother, doi:10.1177/2040206618811416
Case, Cheatham, Darden, Gohlke, Luo et al., The Amber biomolecular simulation programs, J. Comput. Chem, doi:10.1002/jcc.20290
Chen, Malone, Llewellyn, Grasso, Shelton et al., Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex, Cell, doi:10.1016/j.cell.2020.07.033
Cox, Wolf, Plemper, Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets, Nat. Microbiol, doi:10.1038/s41564-020-00835-2
Frisch, Trucks, Schlegel, Scuseria, Robb et al., Revision C.01
Gesteiger, Marsili, Iterative partial equalization of orbital electronegativity a rapid access to atomic charges, Tetrahedron, doi:10.1016/0040-4020(80)80168-2
Goldhill, .; Te, Velthuis, Fletcher, Langat et al., The mechanism of resistance to favipiravir in influenza, Proc. Natl. Acad. Sci, doi:10.1073/pnas.1811345115
Hartenian, Nandakumar, Lari, Ly, Tucker et al., The molecular virology of coronaviruses, J. Biol. Chem, doi:10.1074/jbc.REV120.013930
Hillen, Kokic, Farnung, Dienemann, Tegunov et al., Structure of replicating SARS-CoV-2 polymerase, Nature, doi:10.1038/s41586-020-2368-8
Humphrey, Dalke, Schulten, Vmd, Visual molecular dynamics, J. Mol. Graph, doi:10.1016/0263-7855(96)00018-5
Jorgensen, Chandrasekhar, Madura, Impey, Klein, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys, doi:10.1063/1.445869
Morris, Huey, Lindstrom, Sanner, Belew et al., AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J. Comput. Chem, doi:10.1002/jcc.21256
Phillips, Braun, Wang, Gumbart, Tajkhorshid et al., Scalable molecular dynamics with NAMD, J. Comput. Chem, doi:10.1002/jcc.20289
Shannon, Selisko, Le, Huchting, Touret et al., Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis, Nat. Commun, doi:10.1038/s41467-020-18463-z
Sheahan, Sims, Zhou, Graham, Pruijssers et al., An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice, Sci. Transl. Med, doi:10.1126/scitranslmed.abb5883
Srinivasan, Cheatham, Iii; Cieplak, Kollman, Case, Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate-DNA helices, J. Am. Chem. Soc, doi:10.1021/ja981844+
Subissi, Imbert, Ferron, Collet, Coutard et al., SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets, Antivir. Res, doi:10.1016/j.antiviral.2013.11.006
Subissi, Posthuma, Collet, Zevenhoven-Dobbe, Gorbalenya et al., One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities, Proc. Natl. Acad. Sci, doi:10.1073/pnas.1323705111
Toptan, Hoehl, Westhaus, Bojkova, Berger et al., Optimized qRT-PCR Approach for the Detection of Intra-and Extra-Cellular SARS-CoV-2 RNAs, Int. J. Mol. Sci, doi:10.3390/ijms21124396
Velthuis, Arnold, Cameron, Van Den Worm, Snijder, The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent, Nucleic Acids Res, doi:10.1093/nar/gkp904
Velthuis, Zubkova, Shaw, Mehle, Boltz et al., Enisamium Reduces Influenza Virus Shedding and Improves Patient Recovery by Inhibiting Viral RNA Polymerase Activity, Antimicrob Agents Chemother, doi:10.1128/AAC.02605-20
Vial, Oade, Russell, Eggink, Velthuis, A SARS-CoV-2 mini-genome assay based on negative-sense RNA to study replication inhibitors and emerging mutations, BioRxiv, doi:10.1101/2021.06.28.450211
Walker, Fan, Keown, Margitich, Grimes et al., Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases, bioRxiv, doi:10.1101/2020.04.21.053017
Weis, Katebzadeh, Söderhjelm, Nilsson, Ryde, Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field, J. Med. Chem, doi:10.1021/jm0608210
Yan, Zhang, Ge, Zheng, Gao et al., Architecture of a SARS-CoV-2 mini replication and transcription complex, Nat. Commun, doi:10.1038/s41467-020-19770-1
Yin, Mao, Luan, Shen, Shen et al., Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir, Science, doi:10.1126/science.abc1560
Zurbaev, Slita, Sinegubova, Muryleva, Lavrentieva, Anti-viral activity of enisamium iodide against viruses of influenza and ARVI's on different cell lines, Ther. Arch, doi:10.26442/00403660.2020.11.000872
DOI record: { "DOI": "10.3390/biomedicines9091254", "ISSN": [ "2227-9059" ], "URL": "http://dx.doi.org/10.3390/biomedicines9091254", "abstract": "<jats:p>Pandemic SARS-CoV-2 causes a mild to severe respiratory disease called coronavirus disease 2019 (COVID-19). While control of the SARS-CoV-2 spread partly depends on vaccine-induced or naturally acquired protective herd immunity, antiviral strategies are still needed to manage COVID-19. Enisamium is an inhibitor of influenza A and B viruses in cell culture and clinically approved in countries of the Commonwealth of Independent States. In vitro, enisamium acts through metabolite VR17-04 and inhibits the activity of the influenza A virus RNA polymerase. Here we show that enisamium can inhibit coronavirus infections in NHBE and Caco-2 cells, and the activity of the SARS-CoV-2 RNA polymerase in vitro. Docking and molecular dynamics simulations provide insight into the mechanism of action and indicate that enisamium metabolite VR17-04 prevents GTP and UTP incorporation. Overall, these results suggest that enisamium is an inhibitor of SARS-CoV-2 RNA synthesis in vitro.</jats:p>", "alternative-id": [ "biomedicines9091254" ], "author": [ { "ORCID": "https://orcid.org/0000-0003-0686-2480", "affiliation": [ { "name": "Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy" } ], "authenticated-orcid": false, "family": "Elli", "given": "Stefano", "sequence": "first" }, { "affiliation": [ { "name": "Institute of Medical Virology, University Hospital Frankfurt am Main, Goethe University, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany" } ], "family": "Bojkova", "given": "Denisa", "sequence": "additional" }, { "affiliation": [ { "name": "Institute of Medical Virology, University Hospital Frankfurt am Main, Goethe University, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany" } ], "family": "Bechtel", "given": "Marco", "sequence": "additional" }, { "affiliation": [ { "name": "Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK" } ], "family": "Vial", "given": "Thomas", "sequence": "additional" }, { "affiliation": [ { "name": "IIT Research Institute, 10 W 35th St, Chicago, IL 60616, USA" } ], "family": "Boltz", "given": "David", "sequence": "additional" }, { "affiliation": [ { "name": "IIT Research Institute, 10 W 35th St, Chicago, IL 60616, USA" } ], "family": "Muzzio", "given": "Miguel", "sequence": "additional" }, { "affiliation": [ { "name": "IIT Research Institute, 10 W 35th St, Chicago, IL 60616, USA" } ], "family": "Peng", "given": "Xinjian", "sequence": "additional" }, { "affiliation": [ { "name": "Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy" } ], "family": "Sala", "given": "Federico", "sequence": "additional" }, { "affiliation": [ { "name": "Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy" } ], "family": "Cosentino", "given": "Cesare", "sequence": "additional" }, { "affiliation": [ { "name": "Farmak Joint Stock Company, Kyrylivska Street, 04080 Kyiv, Ukraine" } ], "family": "Goy", "given": "Andrew", "sequence": "additional" }, { "affiliation": [ { "name": "Istituto di Ricerche Chimiche e Biochimiche “G. Ronzoni”, Via Giuseppe Colombo 81, 20133 Milano, Italy" } ], "family": "Guerrini", "given": "Marco", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-3633-1309", "affiliation": [ { "name": "Regenold GmbH, Zöllinplatz 4, 79410 Badenweiler, Germany" } ], "authenticated-orcid": false, "family": "Müller", "given": "Lutz", "sequence": "additional" }, { "affiliation": [ { "name": "Institute of Medical Virology, University Hospital Frankfurt am Main, Goethe University, Paul-Ehrlich-Straße 40, 60596 Frankfurt am Main, Germany" } ], "family": "Cinatl", "given": "Jindrich", "sequence": "additional" }, { "affiliation": [ { "name": "Farmak Joint Stock Company, Kyrylivska Street, 04080 Kyiv, Ukraine" } ], "family": "Margitich", "given": "Victor", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-5129-3953", "affiliation": [ { "name": "Division of Virology, Department of Pathology, Addenbrooke’s Hospital, University of Cambridge, Hills Road, Cambridge CB2 2QQ, UK" } ], "authenticated-orcid": false, "family": "te Velthuis", "given": "Aartjan J. W.", "sequence": "additional" } ], "container-title": "Biomedicines", "container-title-short": "Biomedicines", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2021, 9, 18 ] ], "date-time": "2021-09-18T01:23:29Z", "timestamp": 1631928209000 }, "deposited": { "date-parts": [ [ 2024, 7, 18 ] ], "date-time": "2024-07-18T23:31:43Z", "timestamp": 1721345503000 }, "funder": [ { "DOI": "10.13039/100004440", "award": [ "206579/Z/17/Z" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/100004440", "id-type": "DOI" } ], "name": "Wellcome" }, { "DOI": "10.13039/501100001826", "award": [ "10430 01 201 0018" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100001826", "id-type": "DOI" } ], "name": "ZonMw" } ], "indexed": { "date-parts": [ [ 2025, 2, 21 ] ], "date-time": "2025-02-21T20:46:35Z", "timestamp": 1740170795183, "version": "3.37.3" }, "is-referenced-by-count": 5, "issue": "9", "issued": { "date-parts": [ [ 2021, 9, 17 ] ] }, "journal-issue": { "issue": "9", "published-online": { "date-parts": [ [ 2021, 9 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2021, 9, 17 ] ], "date-time": "2021-09-17T00:00:00Z", "timestamp": 1631836800000 } } ], "link": [ { "URL": "https://www.mdpi.com/2227-9059/9/9/1254/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "1254", "prefix": "10.3390", "published": { "date-parts": [ [ 2021, 9, 17 ] ] }, "published-online": { "date-parts": [ [ 2021, 9, 17 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1126/scitranslmed.abb5883", "article-title": "An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice", "author": "Sheahan", "doi-asserted-by": "crossref", "first-page": "541", "journal-title": "Sci. Transl. Med.", "key": "ref_1", "volume": "12", "year": "2020" }, { "DOI": "10.1038/s41564-020-00835-2", "article-title": "Therapeutically administered ribonucleoside analogue MK-4482/EIDD-2801 blocks SARS-CoV-2 transmission in ferrets", "author": "Cox", "doi-asserted-by": "crossref", "first-page": "11", "journal-title": "Nat. Microbiol.", "key": "ref_2", "volume": "6", "year": "2021" }, { "DOI": "10.1038/s41467-020-18463-z", "article-title": "Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis", "author": "Shannon", "doi-asserted-by": "crossref", "first-page": "1", "journal-title": "Nat. Commun.", "key": "ref_3", "volume": "11", "year": "2020" }, { "DOI": "10.1073/pnas.1811345115", "article-title": "The mechanism of resistance to favipiravir in influenza", "author": "Goldhill", "doi-asserted-by": "crossref", "first-page": "11613", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "ref_4", "volume": "115", "year": "2018" }, { "DOI": "10.1074/jbc.REV120.013930", "article-title": "The molecular virology of coronaviruses", "author": "Hartenian", "doi-asserted-by": "crossref", "first-page": "12910", "journal-title": "J. Biol. Chem.", "key": "ref_5", "volume": "295", "year": "2020" }, { "DOI": "10.1038/s41564-020-0695-z", "doi-asserted-by": "crossref", "key": "ref_6", "unstructured": "Coronaviridae Study Group of the International Committee on Taxonomy of V (2020). The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol., 5, 536–544." }, { "DOI": "10.1016/j.antiviral.2013.11.006", "article-title": "SARS-CoV ORF1b-encoded nonstructural proteins 12-16: Replicative enzymes as antiviral targets", "author": "Subissi", "doi-asserted-by": "crossref", "first-page": "122", "journal-title": "Antivir. Res.", "key": "ref_7", "volume": "101", "year": "2014" }, { "DOI": "10.1093/nar/gkp904", "article-title": "The RNA polymerase activity of SARS-coronavirus nsp12 is primer dependent", "author": "Arnold", "doi-asserted-by": "crossref", "first-page": "203", "journal-title": "Nucleic Acids Res.", "key": "ref_8", "volume": "38", "year": "2010" }, { "DOI": "10.1073/pnas.1323705111", "article-title": "One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities", "author": "Subissi", "doi-asserted-by": "crossref", "first-page": "E3900", "journal-title": "Proc. Natl. Acad. Sci. USA", "key": "ref_9", "volume": "111", "year": "2014" }, { "DOI": "10.1038/s41467-020-19770-1", "article-title": "Architecture of a SARS-CoV-2 mini replication and transcription complex", "author": "Yan", "doi-asserted-by": "crossref", "first-page": "5874", "journal-title": "Nat. Commun.", "key": "ref_10", "volume": "11", "year": "2020" }, { "DOI": "10.1038/s41586-020-2368-8", "article-title": "Structure of replicating SARS-CoV-2 polymerase", "author": "Hillen", "doi-asserted-by": "crossref", "first-page": "154", "journal-title": "Nature", "key": "ref_11", "volume": "584", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.07.033", "article-title": "Structural Basis for Helicase-Polymerase Coupling in the SARS-CoV-2 Replication-Transcription Complex", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "1560", "journal-title": "Cell", "key": "ref_12", "volume": "182", "year": "2020" }, { "DOI": "10.1128/AAC.02605-20", "doi-asserted-by": "crossref", "key": "ref_13", "unstructured": "Te Velthuis, A.J.W., Zubkova, T.G., Shaw, M., Mehle, A., Boltz, D., Gmeinwieser, N., Stammer, H., Milde, J., Muller, L., and Margitich, V. (2021). Enisamium Reduces Influenza Virus Shedding and Improves Patient Recovery by Inhibiting Viral RNA Polymerase Activity. Antimicrob Agents Chemother, 65." }, { "DOI": "10.1101/2021.06.28.450211", "doi-asserted-by": "crossref", "key": "ref_14", "unstructured": "Vial, T., Oade, M.S., Russell, C.A., Eggink, D., and te Velthuis, A.J.W. (2021). A SARS-CoV-2 mini-genome assay based on negative-sense RNA to study replication inhibitors and emerging mutations. BioRxiv." }, { "DOI": "10.1101/2020.04.21.053017", "doi-asserted-by": "crossref", "key": "ref_15", "unstructured": "Walker, A.P., Fan, H., Keown, J.R., Margitich, V., Grimes, J.M., Fodor, E., and Te Velthuis, A.J.W. (2021). Enisamium is a small molecule inhibitor of the influenza A virus and SARS-CoV-2 RNA polymerases. bioRxiv." }, { "DOI": "10.1056/NEJMoa2007764", "article-title": "Remdesivir for the Treatment of Covid-19—Final Report", "author": "Beigel", "doi-asserted-by": "crossref", "first-page": "1813", "journal-title": "N. Engl. J. Med.", "key": "ref_16", "volume": "383", "year": "2020" }, { "DOI": "10.1177/2040206618811416", "article-title": "Activity of enisamium, an isonicotinic acid derivative, against influenza viruses in differentiated normal human bronchial epithelial cells", "author": "Boltz", "doi-asserted-by": "crossref", "first-page": "2040206618811416", "journal-title": "Antivir Chem. Chemother.", "key": "ref_17", "volume": "26", "year": "2018" }, { "DOI": "10.26442/00403660.2020.11.000872", "article-title": "Anti-viral activity of enisamium iodide against viruses of influenza and ARVI’s on different cell lines", "author": "Zurbaev", "doi-asserted-by": "crossref", "first-page": "45", "journal-title": "Ther. Arch.", "key": "ref_18", "volume": "92", "year": "2020" }, { "DOI": "10.1038/s41586-020-2332-7", "article-title": "Proteomics of SARS-CoV-2-infected host cells reveals therapy targets", "author": "Bojkova", "doi-asserted-by": "crossref", "first-page": "469", "journal-title": "Nature", "key": "ref_19", "volume": "583", "year": "2020" }, { "DOI": "10.3390/cells9112377", "doi-asserted-by": "crossref", "key": "ref_20", "unstructured": "Bojkova, D., Bechtel, M., McLaughlin, K.M., McGreig, J.E., Klann, K., Bellinghausen, C., Rohde, G., Jonigk, D., Braubach, P., and Ciesek, S. (2020). Aprotinin Inhibits SARS-CoV-2 Replication. Cells, 9." }, { "DOI": "10.1101/2020.04.20.052258", "doi-asserted-by": "crossref", "key": "ref_21", "unstructured": "Toptan, T., Hoehl, S., Westhaus, S., Bojkova, D., Berger, A., Rotter, B., Hoffmeier, K., Cinatl, J., Ciesek, S., and Widera, M. (2020). Optimized qRT-PCR Approach for the Detection of Intra- and Extra-Cellular SARS-CoV-2 RNAs. Int. J. Mol. Sci., 21." }, { "key": "ref_22", "unstructured": "Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., and Nakatsuji, H. (2016). Gaussian 16, Revision C.01, Gaussian Inc." }, { "DOI": "10.1002/jcc.21256", "article-title": "AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility", "author": "Morris", "doi-asserted-by": "crossref", "first-page": "2785", "journal-title": "J. Comput. Chem.", "key": "ref_23", "volume": "30", "year": "2009" }, { "DOI": "10.1126/science.abc1560", "article-title": "Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir", "author": "Yin", "doi-asserted-by": "crossref", "first-page": "1499", "journal-title": "Science", "key": "ref_24", "volume": "368", "year": "2020" }, { "DOI": "10.1016/0040-4020(80)80168-2", "article-title": "Iterative partial equalization of orbital electronegativity a rapid access to atomic charges", "author": "Gesteiger", "doi-asserted-by": "crossref", "first-page": "3219", "journal-title": "Tetrahedron", "key": "ref_25", "volume": "36", "year": "1980" }, { "DOI": "10.1002/jcc.20289", "article-title": "Scalable molecular dynamics with NAMD", "author": "Phillips", "doi-asserted-by": "crossref", "first-page": "1781", "journal-title": "J. Comput. Chem.", "key": "ref_26", "volume": "26", "year": "2005" }, { "DOI": "10.1002/jcc.20290", "article-title": "The Amber biomolecular simulation programs", "author": "Case", "doi-asserted-by": "crossref", "first-page": "1668", "journal-title": "J. Comput. Chem.", "key": "ref_27", "volume": "26", "year": "2005" }, { "DOI": "10.1063/1.445869", "article-title": "Comparison of simple potential functions for simulating liquid water", "author": "Jorgensen", "doi-asserted-by": "crossref", "first-page": "926", "journal-title": "J. Chem. Phys.", "key": "ref_28", "volume": "79", "year": "1983" }, { "DOI": "10.1016/0263-7855(96)00018-5", "article-title": "VMD: Visual molecular dynamics", "author": "Humphrey", "doi-asserted-by": "crossref", "first-page": "27", "journal-title": "J. Mol. Graph.", "key": "ref_29", "volume": "14", "year": "1996" }, { "DOI": "10.1021/jm0608210", "article-title": "Ligand affinities predicted with the MM/PBSA method: Dependence on the simulation method and the force field", "author": "Weis", "doi-asserted-by": "crossref", "first-page": "6596", "journal-title": "J. Med. Chem.", "key": "ref_30", "volume": "49", "year": "2006" }, { "DOI": "10.1021/ja981844+", "article-title": "Continuum solvent studies of the stability of DNA, RNA, and phosphoramidate–DNA helices", "author": "Srinivasan", "doi-asserted-by": "crossref", "first-page": "9401", "journal-title": "J. Am. Chem. Soc.", "key": "ref_31", "volume": "120", "year": "1998" } ], "reference-count": 31, "references-count": 31, "relation": { "has-preprint": [ { "asserted-by": "object", "id": "10.1101/2021.01.05.21249237", "id-type": "doi" } ] }, "resource": { "primary": { "URL": "https://www.mdpi.com/2227-9059/9/9/1254" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Enisamium Inhibits SARS-CoV-2 RNA Synthesis", "type": "journal-article", "volume": "9" }
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit