Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation
Rahmi Dianty, Junki Hirano, Itsuki Anzai, Yuta Kanai, Tsuyoshi Hayashi, Masae Morimoto, Chikako Kataoka-Nakamura, Sakura Kobayashi, Kentaro Uemura, Chikako Ono, Tokiko Watanabe, Takeshi Kobayashi, Kosuke Murakami, Kenji Kikuchi, Kunimoto Hotta, Toshikazu Yoshikawa, Shuhei Taguwa, Yoshiharu Matsuura
Frontiers in Microbiology, doi:10.3389/fmicb.2023.1284274
It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.
Author contributions
Conflict of interest The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material The Supplementary material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fmicb.2023.1284274/ full#supplementary-material
References
Albrich, Mccarthy, Hurst, Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase, Proc. Natl. Acad. Sci. U. S. A,
doi:10.1073/pnas.78.1.210
Boyce, Celma, Roy, Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts, J. Virol,
doi:10.1128/JVI.00808-08
Carabelli, Peacock, Thorne, Harvey, Hughes et al., SARS-CoV-2 variant biology: immune escape, transmission and fitness, Nat. Rev. Microbiol,
doi:10.1038/s41579-022-00841-7
Carr, Vissers, Domigan, Winterbourn, Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins, Redox Rep,
doi:10.1080/13510002.1997.11747122
Clark, Szot, The myeloperoxidase-hydrogen peroxide-halide system as effector of neutrophil-mediated tumor cell cytotoxicity, J. Immunol,
doi:10.4049/jimmunol.126.4.1295
Ettayebi, Crawford, Murakami, Broughman, Karandikar et al., Replication of human noroviruses in stem cell-derived human enteroids, Science,
doi:10.1126/science.aaf5211
Fauzyah, Ono, Torii, Anzai, Suzuki et al., Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation, Antiviral Res,
doi:10.1016/j.antiviral.2020.104999
Fukuzaki, Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes, Biocontrol Sci,
doi:10.4265/bio.11.147
Ganem, Prince, Hepatitis B virus infection--natural history and clinical consequences, N. Engl. J. Med,
doi:10.1056/NEJMra031087
Hakim, Thammakarn, Suguro, Ishida, Kawamura et al., Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments, J. Vet. Med. Sci,
doi:10.1292/jvms.14-0413
Hawkins, Davies, Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals, Chem. Res. Toxicol,
doi:10.1021/tx015548d
Hawkins, Davies, Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function, Chem. Res. Toxicol,
doi:10.1021/tx050207b
Hawkins, Davies, Reaction of HOCl with amino acids and peptides: EPR evidence for rapid rearrangement and fragmentation reactions of nitrogen-centred radicals, J. Chem. Soc. Perkin Trans,
doi:10.1039/a802949k
Hayashi, Murakami, Hirano, Fujii, Yamaoka et al., Dasabuvir inhibits human norovirus infection in human intestinal enteroids, mSphere,
doi:10.1128/mSphere.00623-21
Hazen, D' Avignon, Anderson, Hsu, Heinecke, Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize α-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway, J. Biol. Chem,
doi:10.1074/jbc.273.9.4997
Hu, Liu, Complete and incomplete hepatitis B virus particles: formation, function, and application, Viruses,
doi:10.3390/v9030056
Ishihara, Murakami, Fukuda, Nakamura, Kuwabara et al., Stability of weakly acidic hypochlorous acid solution with microbicidal activity, Biocontrol Sci,
doi:10.4265/bio.22.223
Jiang, Blount, Ames, 5-Chlorouracil, a marker of DNA damage from hypochlorous acid during inflammation. A gas chromatography-mass spectrometry assay, J. Biol. Chem,
doi:10.1074/jbc.M304021200
Jiang, Liang, Effect of hypochlorous acid nasal spray as an adjuvant therapy after functional endoscopic sinus surgery, Am. J. Otolaryngol,
doi:10.1016/j.amjoto.2021.103264
John, Colin, Hubbard, Catalysis or convenience? Perborate in context
Kageyama, Kojima, Shinohara, Uchida, Fukushi et al., Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR, J. Clin. Microbiol,
doi:10.1128/JCM.41.4.1548-1557.2003
Kawagishi, Kanai, Tani, Shimojima, Saijo et al., Reverse genetics for Fusogenic bat-borne Orthoreovirus associated with acute respiratory tract infections in humans: role of outer capsid protein σC in viral replication and pathogenesis, PLoS Pathog,
doi:10.1371/journal.ppat.1005455
Kawamura-Sato, Wachino, Kondo, Ito, Arakawa, Reduction of disinfectant bactericidal activities in clinically isolated Acinetobacter species in the presence of organic material, J. Antimicrob. Chemother,
doi:10.1093/jac/dkm498
Knox, Stumpf, Green, Auerbach, The inhibition of sulfhydryl enzymes as the basis of the bactericidal action of chlorine, J. Bacteriol,
doi:10.1128/JB.55.4.451-458.1948
Kumorkiewicz-Jamro, Starzak, Sutor, Nemzer, Pietrzkowski et al., Structural study on hypochlorous acid-mediated chlorination of betanin and its decarboxylated derivatives from an anti-inflammatory Beta vulgaris L. extract, Molecules,
doi:10.3390/molecules25020378
Mckenna, Davies, The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes, Biochem. J,
doi:10.1042/bj2540685
Miyaoka, Kabir, Hasan, Yamaguchi, Shoham et al., Virucidal activity of slightly acidic hypochlorous acid water toward influenza virus and coronavirus with tests simulating practical usage, Virus Res,
doi:10.1016/j.virusres.2021.198383
Miyaoka, Kadota, Kabir, Hakim, Yamaguchi et al., Isolation, molecular characterization, and disinfectants susceptibility of swinecarried mammalian orthoreoviruses in Japan in 2020-2022, J. Vet. Med. Sci,
doi:10.1292/jvms.22-0476
Murakami, Tenge, Karandikar, Lin, Ramani et al., Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids, Proc. Natl. Acad. Sci. U. S. A,
doi:10.1073/pnas.1910138117
Okano, Sakamoto, Ishikawa, Sakamoto, Mizuta et al., Disinfection of otorhinolaryngological endoscopes with electrolyzed acid water: Dianty et al. 10.3389/fmicb.2023.1284274 Frontiers in Microbiology frontiersin.org A cross-sectional and multicenter study, PloS One,
doi:10.1371/journal.pone.0275488
Overholt, Reynolds, Wheeler, A safer, more effective method for cleaning and disinfecting GI endoscopic procedure rooms, Open Forum Infect. Dis,
doi:10.1093/ofid/ofy210.984
Park, Boston, Kase, Sampson, Sobsey, Evaluation of liquid-and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus, Appl. Environ. Microbiol,
doi:10.1128/AEM.02839-06
Peacock, Sheppard, Brown, Goonawardane, Zhou et al., The SARS-CoV-2 variants associated with infections in India, B.1.617, show enhanced spike cleavage by furin
Suquet, Warren, Seth, Hurst, Comparative study of HOClinflicted damage to bacterial DNA ex vivo and within cells, Arch. Biochem. Biophys,
doi:10.1016/j.abb.2009.10.006
Tantry, Waris, Habib, Khan, Mahmood et al., Hypochlorous acid induced structural and conformational modifications in human DNA: A multi-spectroscopic study, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2017.08.051
Villamena, Chemistry of reactive species in reactive species detection in biology, Elsevier
Vossmann, Kirst, Ludolfs, Schreiber, West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E, Virology,
doi:10.1016/j.virol.2007.12.008
Wang, Bassiri, Najafi, Najafi, Yang et al., Hypochlorous acid as a potential wound care agent: part I. stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity, J. Burns Wounds
Winterbourn, Hampton, Livesey, Kettle, Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing, J. Biol. Chem,
doi:10.1074/jbc.M605898200
Winterbourn, Reconciling the chemistry and biology of reactive oxygen species, Nat. Chem. Biol,
doi:10.1038/nchembio.85
Yan, Chelliah, Jo, Oh, Research trends on the application of electrolyzed water in food preservation and sanitation, Processes,
doi:10.3390/pr9122240
DOI record:
{
"DOI": "10.3389/fmicb.2023.1284274",
"ISSN": [
"1664-302X"
],
"URL": "http://dx.doi.org/10.3389/fmicb.2023.1284274",
"abstract": "<jats:p>It is essential to employ efficient measures to prevent the transmission of pathogenic agents during a pandemic. One such method involves using hypochlorous acid (HClO) solution. The oxidative properties of HClO water (HAW) can contribute to its ability to eliminate viral particles. Here, we examined a highly purified slightly acidic hypochlorous acid water (Hp-SA-HAW) obtained from the reverse osmosis membrane treatment of an electrolytically-generated SA-HAW for its anti-viral activity and mode of action on viral proteins. Hp-SA-HAW exhibited broad-spectrum antiviral effects against various viruses, including adenovirus, hepatitis B virus, Japanese encephalitis virus (JEV), and rotavirus. Additionally, Hp-SA-HAW treatment dose-dependently resulted in irreversibly aggregated multimers of the JEV envelope and capsid proteins. However, Hp-SA-HAW treatment had no discernible effect on viral RNA, indicating that Hp-SA-HAW acts against amino acids rather than nucleic acids. Furthermore, Hp-SA-HAW substantially reduced the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), including the ancestral variant and other multiple variants. Hp-SA-HAW treatment induced the aggregation of the SARS-CoV-2 spike and nuclear proteins and disrupted the binding of the purified spike protein of SARS-CoV-2 to human ACE2. This study demonstrates that the broad-spectrum virucidal activity of highly purified HClO is attributed to viral protein aggregation of virion via protein oxidation.</jats:p>",
"alternative-id": [
"10.3389/fmicb.2023.1284274"
],
"article-number": "1284274",
"author": [
{
"affiliation": [],
"family": "Dianty",
"given": "Rahmi",
"sequence": "first"
},
{
"affiliation": [],
"family": "Hirano",
"given": "Junki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Anzai",
"given": "Itsuki",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kanai",
"given": "Yuta",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hayashi",
"given": "Tsuyoshi",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Morimoto",
"given": "Masae",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kataoka-Nakamura",
"given": "Chikako",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kobayashi",
"given": "Sakura",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Uemura",
"given": "Kentaro",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Ono",
"given": "Chikako",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Watanabe",
"given": "Tokiko",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kobayashi",
"given": "Takeshi",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Murakami",
"given": "Kosuke",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kikuchi",
"given": "Kenji",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Hotta",
"given": "Kunimoto",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yoshikawa",
"given": "Toshikazu",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Taguwa",
"given": "Shuhei",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Matsuura",
"given": "Yoshiharu",
"sequence": "additional"
}
],
"container-title": "Frontiers in Microbiology",
"container-title-short": "Front. Microbiol.",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"frontiersin.org"
]
},
"created": {
"date-parts": [
[
2023,
10,
19
]
],
"date-time": "2023-10-19T07:39:40Z",
"timestamp": 1697701180000
},
"deposited": {
"date-parts": [
[
2023,
10,
19
]
],
"date-time": "2023-10-19T07:39:45Z",
"timestamp": 1697701185000
},
"indexed": {
"date-parts": [
[
2025,
10,
28
]
],
"date-time": "2025-10-28T15:17:29Z",
"timestamp": 1761664649530,
"version": "3.41.2"
},
"is-referenced-by-count": 9,
"issued": {
"date-parts": [
[
2023,
10,
19
]
]
},
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2023,
10,
19
]
],
"date-time": "2023-10-19T00:00:00Z",
"timestamp": 1697673600000
}
}
],
"link": [
{
"URL": "https://www.frontiersin.org/articles/10.3389/fmicb.2023.1284274/full",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1965",
"original-title": [],
"prefix": "10.3389",
"published": {
"date-parts": [
[
2023,
10,
19
]
]
},
"published-online": {
"date-parts": [
[
2023,
10,
19
]
]
},
"publisher": "Frontiers Media SA",
"reference": [
{
"DOI": "10.1073/pnas.78.1.210",
"article-title": "Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase",
"author": "Albrich",
"doi-asserted-by": "publisher",
"first-page": "210",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "ref1",
"volume": "78",
"year": "1981"
},
{
"DOI": "10.1096/fasebj.5.3.1848195",
"article-title": "Nucleotide chloramines and neutrophil-mediated cytotoxicity",
"author": "Bernofsky",
"doi-asserted-by": "publisher",
"first-page": "295",
"journal-title": "FASEB J.",
"key": "ref2",
"volume": "5",
"year": "1991"
},
{
"DOI": "10.1016/j.joms.2020.06.029",
"article-title": "Hypochlorous acid: A review",
"author": "Block",
"doi-asserted-by": "publisher",
"first-page": "1461",
"journal-title": "J. Oral Maxillofac. Surg.",
"key": "ref3",
"volume": "78",
"year": "2020"
},
{
"DOI": "10.1126/science.325649",
"article-title": "Australia antigen and the biology of hepatitis B",
"author": "Blumberg",
"doi-asserted-by": "publisher",
"first-page": "17",
"journal-title": "Science",
"key": "ref4",
"volume": "197",
"year": "1977"
},
{
"DOI": "10.1128/JVI.00808-08",
"article-title": "Development of reverse genetics systems for bluetongue virus: recovery of infectious virus from synthetic RNA transcripts",
"author": "Boyce",
"doi-asserted-by": "publisher",
"first-page": "8339",
"journal-title": "J. Virol.",
"key": "ref5",
"volume": "82",
"year": "2008"
},
{
"DOI": "10.1038/s41579-022-00841-7",
"article-title": "SARS-CoV-2 variant biology: immune escape, transmission and fitness",
"author": "Carabelli",
"doi-asserted-by": "publisher",
"first-page": "162",
"journal-title": "Nat. Rev. Microbiol.",
"key": "ref6",
"volume": "21",
"year": "2023"
},
{
"DOI": "10.1080/13510002.1997.11747122",
"article-title": "Modification of red cell membrane lipids by hypochlorous acid and haemolysis by preformed lipid chlorohydrins",
"author": "Carr",
"doi-asserted-by": "publisher",
"first-page": "263",
"journal-title": "Redox Rep.",
"key": "ref7",
"volume": "3",
"year": "1997"
},
{
"DOI": "10.4049/jimmunol.126.4.1295",
"article-title": "The myeloperoxidase-hydrogen peroxide-halide system as effector of neutrophil-mediated tumor cell cytotoxicity",
"author": "Clark",
"doi-asserted-by": "publisher",
"first-page": "1295",
"journal-title": "J. Immunol.",
"key": "ref8",
"volume": "126",
"year": "1981"
},
{
"DOI": "10.1126/science.aaf5211",
"article-title": "Replication of human noroviruses in stem cell-derived human enteroids",
"author": "Ettayebi",
"doi-asserted-by": "publisher",
"first-page": "1387",
"journal-title": "Science",
"key": "ref9",
"volume": "353",
"year": "2016"
},
{
"DOI": "10.1016/j.antiviral.2020.104999",
"article-title": "Ponesimod suppresses hepatitis B virus infection by inhibiting endosome maturation",
"author": "Fauzyah",
"doi-asserted-by": "publisher",
"first-page": "104999",
"journal-title": "Antiviral Res.",
"key": "ref10",
"volume": "186",
"year": "2021"
},
{
"DOI": "10.4265/bio.11.147",
"article-title": "Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes",
"author": "Fukuzaki",
"doi-asserted-by": "publisher",
"first-page": "147",
"journal-title": "Biocontrol Sci.",
"key": "ref11",
"volume": "11",
"year": "2006"
},
{
"DOI": "10.1056/NEJMra031087",
"article-title": "Hepatitis B virus infection--natural history and clinical consequences",
"author": "Ganem",
"doi-asserted-by": "publisher",
"first-page": "1118",
"journal-title": "N. Engl. J. Med.",
"key": "ref12",
"volume": "350",
"year": "2004"
},
{
"DOI": "10.1292/jvms.14-0413",
"article-title": "Evaluation of sprayed hypochlorous acid solutions for their virucidal activity against avian influenza virus through in vitro experiments",
"author": "Hakim",
"doi-asserted-by": "publisher",
"first-page": "211",
"journal-title": "J. Vet. Med. Sci.",
"key": "ref13",
"volume": "77",
"year": "2015"
},
{
"DOI": "10.1039/a802949k",
"article-title": "Reaction of HOCl with amino acids and peptides: EPR evidence for rapid rearrangement and fragmentation reactions of nitrogen-centred radicals",
"author": "Hawkins",
"doi-asserted-by": "publisher",
"first-page": "1937",
"journal-title": "J. Chem. Soc. Perkin Trans.",
"key": "ref14",
"volume": "2",
"year": "1998"
},
{
"DOI": "10.1021/tx015548d",
"article-title": "Hypochlorite-induced damage to DNA, RNA, and polynucleotides: formation of chloramines and nitrogen-centered radicals",
"author": "Hawkins",
"doi-asserted-by": "publisher",
"first-page": "83",
"journal-title": "Chem. Res. Toxicol.",
"key": "ref15",
"volume": "15",
"year": "2002"
},
{
"DOI": "10.1021/tx050207b",
"article-title": "Inactivation of protease inhibitors and lysozyme by hypochlorous acid: role of side-chain oxidation and protein unfolding in loss of biological function",
"author": "Hawkins",
"doi-asserted-by": "publisher",
"first-page": "1600",
"journal-title": "Chem. Res. Toxicol.",
"key": "ref16",
"volume": "18",
"year": "2005"
},
{
"DOI": "10.1007/s00726-003-0016-x",
"article-title": "Hypochlorite-induced oxidation of amino acids, peptides and proteins",
"author": "Hawkins",
"doi-asserted-by": "publisher",
"first-page": "259",
"journal-title": "Amino Acids",
"key": "ref17",
"volume": "25",
"year": "2003"
},
{
"DOI": "10.1128/mSphere.00623-21",
"article-title": "Dasabuvir inhibits human norovirus infection in human intestinal enteroids",
"author": "Hayashi",
"doi-asserted-by": "publisher",
"first-page": "e0062321",
"journal-title": "mSphere.",
"key": "ref18",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1074/jbc.273.9.4997",
"article-title": "Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to oxidize α-amino acids to a family of reactive aldehydes. Mechanistic studies identifying labile intermediates along the reaction pathway",
"author": "Hazen",
"doi-asserted-by": "publisher",
"first-page": "4997",
"journal-title": "J. Biol. Chem.",
"key": "ref19",
"volume": "273",
"year": "1998"
},
{
"DOI": "10.3390/v9030056",
"article-title": "Complete and incomplete hepatitis B virus particles: formation, function, and application",
"author": "Hu",
"doi-asserted-by": "publisher",
"first-page": "56",
"journal-title": "Viruses",
"key": "ref20",
"volume": "9",
"year": "2017"
},
{
"DOI": "10.4265/bio.22.223",
"article-title": "Stability of weakly acidic hypochlorous acid solution with microbicidal activity",
"author": "Ishihara",
"doi-asserted-by": "publisher",
"first-page": "223",
"journal-title": "Biocontrol Sci.",
"key": "ref21",
"volume": "22",
"year": "2017"
},
{
"DOI": "10.1074/jbc.M304021200",
"article-title": "5-Chlorouracil, a marker of DNA damage from hypochlorous acid during inflammation. A gas chromatography-mass spectrometry assay",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "32834",
"journal-title": "J. Biol. Chem.",
"key": "ref22",
"volume": "278",
"year": "2003"
},
{
"DOI": "10.1016/j.amjoto.2021.103264",
"article-title": "Effect of hypochlorous acid nasal spray as an adjuvant therapy after functional endoscopic sinus surgery",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "103264",
"journal-title": "Am. J. Otolaryngol.",
"key": "ref23",
"volume": "43",
"year": "2022"
},
{
"article-title": "Catalysis or convenience? Perborate in context",
"author": "John",
"first-page": "217",
"key": "ref24",
"volume-title": "Advances in Inorganic Chemistry",
"year": "2013"
},
{
"DOI": "10.1128/JCM.41.4.1548-1557.2003",
"article-title": "Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR",
"author": "Kageyama",
"doi-asserted-by": "publisher",
"first-page": "1548",
"journal-title": "J. Clin. Microbiol.",
"key": "ref25",
"volume": "41",
"year": "2003"
},
{
"DOI": "10.1371/journal.ppat.1005455",
"article-title": "Reverse genetics for Fusogenic bat-borne Orthoreovirus associated with acute respiratory tract infections in humans: role of outer capsid protein σC in viral replication and pathogenesis",
"author": "Kawagishi",
"doi-asserted-by": "publisher",
"first-page": "e1005455",
"journal-title": "PLoS Pathog.",
"key": "ref26",
"volume": "12",
"year": "2016"
},
{
"DOI": "10.1093/jac/dkm498",
"article-title": "Reduction of disinfectant bactericidal activities in clinically isolated Acinetobacter species in the presence of organic material",
"author": "Kawamura-Sato",
"doi-asserted-by": "publisher",
"first-page": "568",
"journal-title": "J. Antimicrob. Chemother.",
"key": "ref27",
"volume": "61",
"year": "2008"
},
{
"DOI": "10.1126/science.169.3950.1095",
"article-title": "Myeloperoxidase: contribution to the microbicidal activity of intact leukocytes",
"author": "Klebanoff",
"doi-asserted-by": "publisher",
"first-page": "1095",
"journal-title": "Science",
"key": "ref28",
"volume": "169",
"year": "1970"
},
{
"DOI": "10.1128/JB.55.4.451-458.1948",
"article-title": "The inhibition of sulfhydryl enzymes as the basis of the bactericidal action of chlorine",
"author": "Knox",
"doi-asserted-by": "publisher",
"first-page": "451",
"journal-title": "J. Bacteriol.",
"key": "ref29",
"volume": "55",
"year": "1948"
},
{
"DOI": "10.3390/molecules25020378",
"article-title": "Structural study on hypochlorous acid-mediated chlorination of betanin and its decarboxylated derivatives from an anti-inflammatory Beta vulgaris L. extract",
"author": "Kumorkiewicz-Jamro",
"doi-asserted-by": "publisher",
"first-page": "378",
"journal-title": "Molecules",
"key": "ref30",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.1042/bj2540685",
"article-title": "The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes",
"author": "McKenna",
"doi-asserted-by": "publisher",
"first-page": "685",
"journal-title": "Biochem. J.",
"key": "ref31",
"volume": "254",
"year": "1988"
},
{
"DOI": "10.1016/j.virusres.2021.198383",
"article-title": "Virucidal activity of slightly acidic hypochlorous acid water toward influenza virus and coronavirus with tests simulating practical usage",
"author": "Miyaoka",
"doi-asserted-by": "publisher",
"first-page": "198383",
"journal-title": "Virus Res.",
"key": "ref32",
"volume": "297",
"year": "2021"
},
{
"DOI": "10.1292/jvms.22-0476",
"article-title": "Isolation, molecular characterization, and disinfectants susceptibility of swine-carried mammalian orthoreoviruses in Japan in 2020-2022",
"author": "Miyaoka",
"doi-asserted-by": "publisher",
"first-page": "185",
"journal-title": "J. Vet. Med. Sci.",
"key": "ref33",
"volume": "85",
"year": "2023"
},
{
"DOI": "10.1038/s41586-021-03944-y",
"article-title": "SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion",
"author": "Mlcochova",
"doi-asserted-by": "publisher",
"first-page": "114",
"journal-title": "Nature",
"key": "ref34",
"volume": "599",
"year": "2021"
},
{
"DOI": "10.1073/pnas.1910138117",
"article-title": "Bile acids and ceramide overcome the entry restriction for GII.3 human norovirus replication in human intestinal enteroids",
"author": "Murakami",
"doi-asserted-by": "publisher",
"first-page": "1700",
"journal-title": "Proc. Natl. Acad. Sci. U. S. A.",
"key": "ref35",
"volume": "117",
"year": "2020"
},
{
"key": "ref36",
"year": "2023"
},
{
"DOI": "10.1371/journal.pone.0275488",
"article-title": "Disinfection of otorhinolaryngological endoscopes with electrolyzed acid water: A cross-sectional and multicenter study",
"author": "Okano",
"doi-asserted-by": "publisher",
"first-page": "e0275488",
"journal-title": "PloS One",
"key": "ref37",
"volume": "17",
"year": "2022"
},
{
"DOI": "10.1093/ofid/ofy210.984",
"article-title": "A safer, more effective method for cleaning and disinfecting GI endoscopic procedure rooms",
"author": "Overholt",
"doi-asserted-by": "publisher",
"first-page": "S346",
"journal-title": "Open Forum Infect. Dis.",
"key": "ref38",
"volume": "5",
"year": "2018"
},
{
"DOI": "10.1128/AEM.02839-06",
"article-title": "Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus",
"author": "Park",
"doi-asserted-by": "publisher",
"first-page": "4463",
"journal-title": "Appl. Environ. Microbiol.",
"key": "ref39",
"volume": "73",
"year": "2007"
},
{
"author": "Peacock",
"key": "ref40",
"year": "2021"
},
{
"DOI": "10.1007/s13671-013-0052-z",
"article-title": "Topical hypochlorous acid (HOCl) as a potential treatment of pruritus",
"author": "Pelgrift",
"doi-asserted-by": "publisher",
"first-page": "181",
"journal-title": "Curr. Derm. Rep.",
"key": "ref41",
"volume": "2",
"year": "2013"
},
{
"DOI": "10.1182/blood.V55.2.347.347",
"article-title": "A potential role for hypochlorous acid in granulocyte-mediated tumor cell cytotoxicity",
"author": "Slivka",
"doi-asserted-by": "publisher",
"first-page": "347",
"journal-title": "Blood",
"key": "ref42",
"volume": "55",
"year": "1980"
},
{
"DOI": "10.1016/j.abb.2009.10.006",
"article-title": "Comparative study of HOCl-inflicted damage to bacterial DNA ex vivo and within cells",
"author": "Suquet",
"doi-asserted-by": "publisher",
"first-page": "135",
"journal-title": "Arch. Biochem. Biophys.",
"key": "ref43",
"volume": "493",
"year": "2010"
},
{
"DOI": "10.1016/j.ijbiomac.2017.08.051",
"article-title": "Hypochlorous acid induced structural and conformational modifications in human DNA: A multi-spectroscopic study",
"author": "Tantry",
"doi-asserted-by": "publisher",
"first-page": "551",
"journal-title": "Int. J. Biol. Macromol.",
"key": "ref44",
"volume": "106",
"year": "2018"
},
{
"DOI": "10.1016/B978-0-12-420017-3.00005-0",
"author": "Villamena",
"doi-asserted-by": "crossref",
"first-page": "13",
"key": "ref45",
"volume-title": "Chemistry of reactive species in reactive species detection in biology",
"year": "2017"
},
{
"DOI": "10.1016/j.virol.2007.12.008",
"article-title": "West Nile virus is neutralized by HOCl-modified human serum albumin that binds to domain III of the viral envelope protein E",
"author": "Vossmann",
"doi-asserted-by": "publisher",
"first-page": "322",
"journal-title": "Virology",
"key": "ref46",
"volume": "373",
"year": "2008"
},
{
"article-title": "Hypochlorous acid as a potential wound care agent: part I. stabilized hypochlorous acid: A component of the inorganic armamentarium of innate immunity",
"author": "Wang",
"first-page": "e5",
"journal-title": "J. Burns Wounds.",
"key": "ref47",
"volume": "6",
"year": "2007"
},
{
"DOI": "10.1038/nchembio.85",
"article-title": "Reconciling the chemistry and biology of reactive oxygen species",
"author": "Winterbourn",
"doi-asserted-by": "publisher",
"first-page": "278",
"journal-title": "Nat. Chem. Biol.",
"key": "ref48",
"volume": "4",
"year": "2008"
},
{
"DOI": "10.1074/jbc.M605898200",
"article-title": "Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing",
"author": "Winterbourn",
"doi-asserted-by": "publisher",
"first-page": "39860",
"journal-title": "J. Biol. Chem.",
"key": "ref49",
"volume": "281",
"year": "2006"
},
{
"DOI": "10.3390/pr9122240",
"article-title": "Research trends on the application of electrolyzed water in food preservation and sanitation",
"author": "Yan",
"doi-asserted-by": "publisher",
"first-page": "2240",
"journal-title": "Processes",
"key": "ref50",
"volume": "9",
"year": "2021"
}
],
"reference-count": 50,
"references-count": 50,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.frontiersin.org/articles/10.3389/fmicb.2023.1284274/full"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Electrolyzed hypochlorous acid water exhibits potent disinfectant activity against various viruses through irreversible protein aggregation",
"type": "journal-article",
"update-policy": "https://doi.org/10.3389/crossmark-policy",
"volume": "14"
}