Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

 

SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming

Jan 2023  
  Post
  Facebook
Share
  Source   PDF  
Analysis of SARS-CoV-2 replication in an aiwary organoid model incorporating many aspects the airway in vivo. Authors found that SARS-CoV-2 infects nasal epithelial cells in a two-step process, first attaching to cilia via the ACE2 receptor to penetrate the mucus layer barrier. The virus then hijacks the host cell machinery 24-48 hours later to induce elongated microvilli that facilitate viral spread. Authors suggest that treatments targeting cilia binding or microvillar signaling, if administered early, could potentially prevent viral spread beyond the nasopharynx. Specifically, they propose that nasal sprays containing cilia function inhibitors or microvilli signaling inhibitors like PAK kinase inhibitors, administered within the first 24 hours of infection, could potentially block SARS-CoV-2 replication and spread in nasal epithelial cells.
Wu et al., 31 Jan 2023, USA, peer-reviewed, 22 authors. Contact: raul.andino@ucsf.edu (corresponding author), raul.andino@ucsf.edu (corresponding author), pjackson@stanford.edu.
This PaperMiscellaneousAll
SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming
Chien-Ting Wu, Peter V Lidsky, Yinghong Xiao, Ran Cheng, Ivan T Lee, Tsuguhisa Nakayama, Sizun Jiang, Wei He, Janos Demeter, Miguel G Knight, Rachel E Turn, Laura S Rojas-Hernandez, Chengjin Ye, Kevin Chiem, Judy Shon, Luis Martinez-Sobrido, Carolyn R Bertozzi, Garry P Nolan, Jayakar V Nayak, Carlos Milla, Raul Andino, Peter K Jackson
Cell, doi:10.1016/j.cell.2022.11.030
Highlights d SARS-CoV-2 binds ACE2 on multicilia in airway epithelia immediately upon infection d Depleting motile cilia inhibits viral entry by SARS-CoV-2 and other respiratory viruses d SARS-CoV-2 activates PAK kinases to rearrange airway microvilli driving viral exit d Omicron variants accelerate cilia-dependent entry through the airway mucin barrier Authors
AUTHOR CONTRIBUTIONS Concept and study coordination, C.-T.W. and P.K.J. Experimental design/ execution, C.-T.W., P.L., Y.X., R.C., I.T.L., T.N., S.J., W.H., R.A., P.K.J., R.E.T., and M.G.K. Microscopy, C.-T.W., IHC, I.T.L., and T.N. Virus production/human nasal epithelial cell infection, C.-T.W., P.L., Y.X., M.G.K., K.C., J.S. T.W. with help from I.T.L., S.J., and G.P.N. Funding/scientific guidance, R.A. and P.K.J. All authors reviewed the manuscript. DECLARATION OF INTERESTS The authors declare no competing interests. KEY RESOURCES Lead contact Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Peter Jackson (pjackson@stanford.edu). Materials availability This study did not generate new unique reagents. Data and code availability The analysis code used to support the findings of this study are available at https://doi.org/10.5281/zenodo.7343831. EXPERIMENTAL MODEL AND SUBJECT DETAILS Primary human nasal cell culture Human tracheobronchial epithelial cells were obtained from patients who underwent bronchoscopy or surgical lung resection during diagnostic procedures for pulmonary diseases at Stanford (Tables S1 and S2 ). Nasal epithelial cultures were generated using an already well-established protocol in our laboratories. 28 After obtaining informed consent (Stanford IRB protocol #42710), subjects underwent brushing of the inferior turbinate from both nasal cavities to obtain a cell..
References
Abe, La, Miyagaki, Oya, Wei et al., Phosphorylation of cortactin by cyclin-dependent kinase 5 modulates actin bundling by the dynamin 1-cortactin ring-like complex and formation of filopodia and lamellipodia in NG108-15 glioma-derived cells, Int. J. Oncol, doi:10.3892/ijo.2018.4663
Abo, Qu, Cammarano, Dan, Fritsch et al., PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia, EMBO J, doi:10.1093/emboj/17.22.6527
Ahn, Kim, Hong, Choi, Yang et al., Nasal ciliated cells are primary targets for SARS-CoV-2 replication in early stage of COVID-19
Amano, Nakayama, Kaibuchi, Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity, Cytoskeleton (Hoboken), doi:10.1002/cm.20472
Anderson, Chu, Wang, Mereness, Ren et al., CX3CR1 as a respiratory syncytial virus receptor in pediatric human lung, Pediatr. Res, doi:10.1038/s41390-019-0677-0
Augusto, Mohsen, Zinkhan, Liu, Vogel et al., In vitro data suggest that Indian delta variant B.1.617 of SARS-CoV-2 escapes neutralization by both receptor affinity and immune evasion, Allergy, doi:10.1111/all.15065
Bayati, Kumar, Francis, Mcpherson, SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis, J. Biol. Chem, doi:10.1016/j.jbc.2021.100306
Belle, Ali, Lonic, Li, Paltridge et al., The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking, Sci. Signal. 8, ra, doi:10.1126/scisignal.2005547
Bokoch, Biology of the p21-activated kinases, Annu. Rev. Biochem, doi:10.1146/annurev.biochem.72.121801.161742
Bouhaddou, Memon, Meyer, White, Rezelj et al., The global phosphorylation landscape of SARS-CoV-2 infection, Cell, doi:10.1016/j.cell.2020.06.034
Bustamante-Marin, Ostrowski, Cilia and mucociliary clearance, Cold Spring Harb. Perspect. Biol, doi:10.1101/cshperspect.a028241
Button, Cai, Ehre, Kesimer, Hill et al., A periciliary brush promotes the lung health by separating the mucus layer from airway epithelia, Science, doi:10.1126/science.1223012
Caldas, Carneiro, Higa, Monteiro, Da Silva et al., Ultrastructural analysis of SARS-CoV-2 interactions with the host cell via high resolution scanning electron microscopy, Sci. Rep, doi:10.1038/s41598-020-73162-5
Callow, Zozulya, Gishizky, Jallal, Smeal, PAK4 mediates morphological changes through the regulation of GEF-H1
Cenni, Sirri, Riccio, Lattanzi, Santi et al., Targeting of the Akt/PKB kinase to the actin skeleton, Cell. Mol. Life Sci, doi:10.1007/s00018-003-3349-4
Chen, Winkler, Case, Aziati, Bricker et al., In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains, Nature, doi:10.1038/s41586-021-03720-y
Chinowsky, Pinette, Meenderink, Lau, Tyska, Nonmuscle myosin-2 contractility-dependent actin turnover limits the length of epithelial microvilli, Mol. Biol. Cell, doi:10.1091/mbc.E20-09-0582
Crawley, Mooseker, Tyska, Shaping the intestinal brush border, J. Cell Biol, doi:10.1083/jcb.201407015
Debily, Camarca, Ciullo, Mayer, El Marhomy et al., Expression and molecular characterization of alternative transcripts of the ARHGEF5/ TIM oncogene specific for human breast cancer, Hum. Mol. Genet, doi:10.1093/hmg/ddh024
Delacour, Salomon, Robine, Louvard, Plasticity of the brush border -the yin and yang of intestinal homeostasis, Nat. Rev. Gastroenterol. Hepatol, doi:10.1038/nrgastro.2016.5
Dharmawardhane, Sanders, Martin, Daniels, Bokoch, Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells, J. Cell Biol, doi:10.1083/jcb.138.6.1265
Disanza, Bisi, Winterhoff, Milanesi, Ushakov et al., CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP, EMBO J, doi:10.1038/emboj.2013.208
Drake, Graham, Stoyanova, Sedghi, Goldstein et al., Oncogene-specific activation of tyrosine kinase networks during prostate cancer progression, Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.1120985109
Dubacheva, Curk, Frenkel, Richter, Multivalent recognition at fluid surfaces: the interplay of receptor clustering and superselectivity, J. Am. Chem. Soc, doi:10.1021/jacs.8b12553
Fiege, Thiede, Nanda, Matchett, Moore et al., Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and susceptibility to therapies in primary human airway epithelium, PLoS Pathog, doi:10.1371/journal.ppat.1009292
Firestone, Weinger, Maldonado, Barlan, Langston et al., Smallmolecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein, Nature, doi:10.1038/nature10936
Gabel, Delavoie, Demais, Royer, Bailly et al., Annexin A2-dependent actin bundling promotes secretory granule docking to the plasma membrane and exocytosis, J. Cell Biol, doi:10.1083/jcb.201412030
Gallo, Locatello, Mazzoni, Novelli, Annunziato, The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection, Mucosal Immunol, doi:10.1038/s41385-020-00359-2
Garcia-Knight, Anglin, Tassetto, Lu, Zhang et al., Infectious viral shedding of SARS-CoV-2 Delta following vaccination: a longitudinal cohort study, doi:10.1101/2022.05.15.22275051
Goh, Lim, Sudhaharan, Sem, Bu et al., mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation, J. Biol. Chem, doi:10.1074/jbc.M111.305102
Gorshkov, Susumu, Chen, Xu, Pradhan et al., Quantum dot-conjugated SARS-CoV-2 spike pseudo-virions enable tracking of angiotensin converting enzyme 2 binding and endocytosis, ACS Nano, doi:10.1021/acsnano.0c05975
Grieve, Moss, Hayes, Annexin A2 at the interface of actin and membrane dynamics: a focus on its roles in endocytosis and cell polarization, Int. J. Cell Biol, doi:10.1155/2012/852430
Griggs, Bochkov, Basnet, Pasic, Brockman-Schneider et al., Rhinovirus C targets ciliated airway epithelial cells, Respir. Res, doi:10.1186/s12931-017-0567-0
Guay, Lambert, Gingras-Breton, Lavoie, Huot et al., Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27, J. Cell Sci
Gungor-Ordueri, Celik-Ozenci, Cheng, Ezrin: a regulator of actin microfilaments in cell junctions of the rat testis, Asian J. Androl, doi:10.4103/1008-682X.146103
Harms, Kloth, Bley, Denecke, Santer et al., Activating mutations in PAK1, encoding p21-activated kinase 1, cause a neurodevelopmental disorder, Am. J. Hum. Genet, doi:10.1016/j.ajhg.2018.09.005
Hernandez-Armenta, Ochoa, Gonc ¸alves, Saez-Rodriguez, Beltrao, Benchmarking substrate-based kinase activity inference using phosphoproteomic data, Bioinformatics, doi:10.1093/bioinformatics/btx082
Hoffmann, Kleine-Weber, Schroeder, Kru ¨ger, Herrler et al., SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell, doi:10.1016/j.cell.2020.02.052
Hornbeck, Zhang, Murray, Kornhauser, Latham et al., PhosphoSitePlus, 2014: mutations, PTMs and recalibrations, Nucleic Acids Res, doi:10.1093/nar/gku1267
Hou, Okuda, Edwards, Martinez, Asakura et al., SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract, Cell, doi:10.1016/j.cell.2020.05.042
Iverson, Griswold, Song, Gagliardi, Hamidzadeh et al., Membrane-Tethered Mucin 1 is stimulated by interferon in multiple cell types and antagonizes influenza A virus infection in human airway epithelium, doi:10.1101/2021.03.11.434997
Iwano, Satou, Matsumura, Sugiyama, Ishihama et al., PCTK1 regulates integrin-dependent spindle orientation via protein kinase A regulatory subunit KAP0 and myosin X, Mol. Cell Biol, doi:10.1128/MCB.01017-14
Jeong, Piepenhagen, Kishko, Dinapoli, Groppo et al., CX3CR1 is expressed in differentiated human ciliated airway cells and co-localizes with respiratory syncytial virus on cilia in a G proteindependent manner, PLoS One, doi:10.1371/journal.pone.0130517
Jia, Look, Shi, Hickey, Pewe et al., ACE2 receptor expression and severe acute respiratory syndrome coronavirus infection depend on differentiation of human airway epithelia, J. Virol, doi:10.1128/JVI.79.23.14614-14621.2005
Johnson, Mcnally, Ioannidis, Flano, Teng et al., Respiratory syncytial virus uses CX3CR1 as a receptor on primary human airway epithelial cultures, PLoS Pathog, doi:10.1371/journal.ppat.1005318
Kesimer, Ehre, Burns, Davis, Sheehan et al., Molecular organization of the mucins and glycocalyx underlying mucus transport over mucosal surfaces of the airways, Mucosal Immunol, doi:10.1038/mi.2012.81
Khan, Yoo, Clijsters, Backaert, Vanstapel et al., Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb, Cell, doi:10.1016/j.cell.2021.10.027
Knowles, Boucher, Mucus clearance as a primary innate defense mechanism for mammalian airways, J. Clin. Invest, doi:10.1172/JCI15217
Kuehni, Pedersen, Schreck, COVID-19 Infections in People with Primary Ciliary Dyskinesia
Kuek, Lee, First contact: the role of respiratory cilia in host-pathogen interactions in the airways, Am. J. Physiol. Lung Cell Mol. Physiol, doi:10.1152/ajplung.00283.2020
Lee, Nakayama, Wu, Goltsev, Jiang et al., ACE2 localizes to the respiratory cilia and is not increased by ACE inhibitors or ARBs, Nat. Commun, doi:10.1038/s41467-020-19145-6
Lee, Zhang, Berger, Lawrence, Song et al., Characterization of the ERG-regulated Kinome in Prostate Cancer Identifies TNIK as a Potential Therapeutic Target, Neoplasia, doi:10.1016/j.neo.2019.02.005
Linding, Jensen, Pasculescu, Olhovsky, Colwill et al., NetworKIN: a resource for exploring cellular phosphorylation networks, Nucleic Acids Res, doi:10.1093/nar/gkm902
Liu, Zhang, Zhao, Zhao, Min et al., Non-canonical Notch Signaling Regulates Actin Remodeling in Cell Migration by Activating PI3K/AKT/Cdc42 Pathway, Front. Pharmacol, doi:10.3389/fphar.2019.00370
Malaker, Pedram, Ferracane, Bensing, Krishnan et al., The mucin-selective protease StcE enables molecular and functional analysis of human cancer-associated mucins, doi:10.1073/pnas.1813020116
Marbach, Zheng, Holmes-Cerfon, The nanocaterpillar's random walk: diffusion with ligand-receptor contacts, Soft Matter, doi:10.1039/d1sm01544c
Matsumura, Hartshorne, Myosin phosphatase target subunit: Many roles in cell function, Biochem. Biophys. Res. Commun, doi:10.1016/j.bbrc.2007.12.090
Mcauley, Corcilius, Tan, Payne, Mcguckin et al., The cell surface mucin MUC1 limits the severity of influenza A virus infection, Mucosal Immunol, doi:10.1038/mi.2017.16
Mcshane, Davies, Wodehouse, Bush, Geddes, Normal nasal mucociliary clearance in CF children: evidence against a CFTR-related defect, Eur. Respir. J, doi:10.1183/09031936.04.00097503
Mirra, Werner, Santamaria, Primary ciliary dyskinesia: an update on clinical aspects, genetics, diagnosis, and future treatment strategies, Front. Pediatr, doi:10.3389/fped.2017.00135
Montoro, Haber, Biton, Vinarsky, Lin et al., A revised airway epithelial hierarchy includes CFTR-expressing ionocytes, Nature, doi:10.1038/s41586-018-0393-7
Mukhopadhyay, Wen, Chih, Nelson, Lane et al., TULP3 bridges the IFT-A complex and membrane phosphoinositides to promote trafficking of G protein-coupled receptors into primary cilia, Genes Dev, doi:10.1101/gad.1966210
Nakayama, Katoh, Ciliary protein trafficking mediated by IFT and BBSome complexes with the aid of kinesin-2 and dynein-2 motors, J. Biochem, doi:10.1093/jb/mvx087
Nakayama, Lee, Jiang, Matter, Yan et al., Landscape of SARS-CoV-2 infection in diverse human head & neck and proximal airway mucosal tissues, Cell Rep. Med
Nicholls, Bourne, Chen, Guan, Peiris, Sialic acid receptor detection in the human respiratory tract: evidence for widespread distribution of potential binding sites for human and avian influenza viruses, Respir. Res, doi:10.1186/1465-9921-8-73
Ochoa, Jonikas, Lawrence, El Debs, Selkrig et al., An atlas of human kinase regulation, Mol. Syst. Biol, doi:10.15252/msb.20167295
Otterpohl, Hart, Evans, Surendran, Chandrasekar, Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are uniquely distributed in the tubular segments of murine kidney, Physiol. Rep, doi:10.14814/phy2.13513
Ozono, Zhang, Ode, Sano, Tan et al., SARS-CoV-2 D614G spike mutation increases entry efficiency with enhanced ACE2-binding affinity, Nat. Commun, doi:10.1038/s41467-021-21118-2
Pedersen, Goutaki, Harris, Dixon, Manion et al., SARS-CoV-2 infections in people with PCD: neither frequent, nor particularly severe, Eur. Respir. J, doi:10.1183/13993003.04548-2020
Pelaseyed, Bretscher, Regulation of actin-based apical structures on epithelial cells, J. Cell Sci, doi:10.1242/jcs.221853
Playford, Nurminen, Pentika ¨inen, Milgram, Hartwig et al., Cystic fibrosis transmembrane conductance regulator interacts with multiple immunoglobulin domains of filamin A, J. Biol. Chem, doi:10.1074/jbc.M109.080523
Punyadarsaniya, Liang, Winter, Petersen, Rautenschlein et al., Infection of differentiated porcine airway epithelial cells by influenza virus: differential susceptibility to infection by porcine and avian viruses, PLoS One, doi:10.1371/journal.pone.0028429
Ravindra, Alfajaro, Gasque, Huston, Wan et al., Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes, PLoS Biol, doi:10.1371/journal.pbio.3001143
Robens, Yeow-Fong, Ng, Hall, Manser, Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization, Mol. Cell Biol, doi:10.1128/MCB.01574-08
Savarino, Boelaert, Cassone, Majori, Cauda, Effects of chloroquine on viral infections: an old drug against today's diseases?, Lancet Infect. Dis, doi:10.1016/s1473-3099(03)00806-5
Shah, Farmen, Moninger, Businga, Andrews et al., Loss of Bardet-Biedl syndrome proteins alters the morphology and function of motile cilia in airway epithelia, Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.0712327105
Silva, Betleja, John, Spear, Moresco et al., Ccdc11 is a novel centriolar satellite protein essential for ciliogenesis and establishment of leftright asymmetry, Mol. Biol. Cell, doi:10.1091/mbc.E15-07-0474
Solomon, Francis, Chu, Birket, Gabriel et al., Assessment of ciliary phenotype in primary ciliary dyskinesia by micro-optical coherence tomography, JCI Insight, doi:10.1172/jci.insight.91702
Stevens, Vladar, Alanin, Christensen, Von Buchwald et al., Ciliary localization of the intraflagellar transport protein IFT88 is disrupted in cystic fibrosis, Am. J. Respir. Cell Mol. Biol, doi:10.1165/rcmb.2018-0287LE
Subramanian, Tamayo, Mootha, Mukherjee, Ebert et al., Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles, Proc. Natl. Acad. Sci. USA, doi:10.1073/pnas.0506580102
Tan, Ong, Yan, Liu, Li et al., In vitro model of fully differentiated human nasal epithelial cells infected with rhinovirus reveals epithelium-initiated immune responses, J. Infect. Dis, doi:10.1093/infdis/jix640
Thompson, Barclay, Zambon, Pickles, Infection of human airway epithelium by human and avian strains of influenza a virus, J. Virol, doi:10.1128/JVI.00384-06
Vladar, Brody, Analysis of ciliogenesis in primary culture mouse tracheal epithelial cells, Methods Enzymol, doi:10.1016/B978-0-12-397944-5.00014-6
Vladar, Nayak, Milla, Axelrod, Airway epithelial homeostasis and planar cell polarity signaling depend on multiciliated cell differentiation, JCI Insight, doi:10.1172/jci.insight.88027
Wheeler, Nungester, Effect of Mucin on Influenza Virus Infection in Hamsters, Science, doi:10.1126/science.96.2482.92
Whitcutt, Adler, Wu, A biphasic chamber system for maintaining polarity of differentiation of cultured respiratory tract epithelial cells, In Vitro Cell. Dev. Biol, doi:10.1007/BF02628493
Winkler, Bailey, Kafai, Nair, Mccune et al., SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function, Nat. Immunol, doi:10.1038/s41590-020-0778-2
Yin, Xu, Xu, Cao, Wu et al., Structures of the Omicron spike trimer with ACE2 and an anti-Omicron antibody, Science, doi:10.1126/science.abn8863
Yoshida, Fukutomi, Kimura, Sakurai, Hatano et al., Comprehensive proteome analysis of brush border membrane fraction of ileum of ezrin knockdown mice, Biomed. Res, doi:10.2220/biomedres.37.127
Zanivan, Meves, Behrendt, Schoof, Neilson et al., In vivo SILAC-based proteomics reveals phosphoproteome changes during mouse skin carcinogenesis, Cell Rep, doi:10.1016/j.celrep.2013.01.003
Zha, Li, Wang, Lin, Tao et al., Characterization of isoform expression and subcellular distribution of MYPT1 in intestinal epithelial cells, Gene, doi:10.1016/j.gene.2016.04.048
Zhang, Bukreyev, Thompson, Watson, Peeples et al., None
Zhang, Peeples, Boucher, Collins, Pickles, Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology, J. Virol, doi:10.1128/jvi.76.11.5654-5666.2002
Zhang, Wang, Guo, Wang, Zhou et al., LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, suppresses proliferation and invasion in human gastric cancer cells, Cancer Lett, doi:10.1016/j.canlet.2011.11.007
Zhao, Manser, PAK and other Rho-associated kinases-effectors with surprisingly diverse mechanisms of regulation, Biochem. J, doi:10.1042/BJ20041638
Zou, Ruan, Huang, Liang, Huang et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med, doi:10.1056/NEJMc2001737
{ 'indexed': {'date-parts': [[2023, 9, 2]], 'date-time': '2023-09-02T11:09:30Z', 'timestamp': 1693652970725}, 'reference-count': 96, 'publisher': 'Elsevier BV', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2023, 1, 1]], 'date-time': '2023-01-01T00:00:00Z', 'timestamp': 1672531200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'}, { 'start': { 'date-parts': [[2022, 12, 6]], 'date-time': '2022-12-06T00:00:00Z', 'timestamp': 1670284800000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by-nc-nd/4.0/'}], 'funder': [{'DOI': '10.13039/100000002', 'name': 'NIH', 'doi-asserted-by': 'publisher'}], 'content-domain': { 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2023, 1]]}, 'DOI': '10.1016/j.cell.2022.11.030', 'type': 'journal-article', 'created': {'date-parts': [[2022, 12, 2]], 'date-time': '2022-12-02T08:32:16Z', 'timestamp': 1669969936000}, 'page': '112-130.e20', 'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy', 'source': 'Crossref', 'is-referenced-by-count': 39, 'title': 'SARS-CoV-2 replication in airway epithelia requires motile cilia and microvillar reprogramming', 'prefix': '10.1016', 'volume': '186', 'author': [ {'given': 'Chien-Ting', 'family': 'Wu', 'sequence': 'first', 'affiliation': []}, {'given': 'Peter V.', 'family': 'Lidsky', 'sequence': 'additional', 'affiliation': []}, {'given': 'Yinghong', 'family': 'Xiao', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ran', 'family': 'Cheng', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ivan T.', 'family': 'Lee', 'sequence': 'additional', 'affiliation': []}, {'given': 'Tsuguhisa', 'family': 'Nakayama', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sizun', 'family': 'Jiang', 'sequence': 'additional', 'affiliation': []}, {'given': 'Wei', 'family': 'He', 'sequence': 'additional', 'affiliation': []}, {'given': 'Janos', 'family': 'Demeter', 'sequence': 'additional', 'affiliation': []}, {'given': 'Miguel G.', 'family': 'Knight', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rachel E.', 'family': 'Turn', 'sequence': 'additional', 'affiliation': []}, {'given': 'Laura S.', 'family': 'Rojas-Hernandez', 'sequence': 'additional', 'affiliation': []}, {'given': 'Chengjin', 'family': 'Ye', 'sequence': 'additional', 'affiliation': []}, {'given': 'Kevin', 'family': 'Chiem', 'sequence': 'additional', 'affiliation': []}, {'given': 'Judy', 'family': 'Shon', 'sequence': 'additional', 'affiliation': []}, {'given': 'Luis', 'family': 'Martinez-Sobrido', 'sequence': 'additional', 'affiliation': []}, {'given': 'Carolyn R.', 'family': 'Bertozzi', 'sequence': 'additional', 'affiliation': []}, {'given': 'Garry P.', 'family': 'Nolan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Jayakar V.', 'family': 'Nayak', 'sequence': 'additional', 'affiliation': []}, {'given': 'Carlos', 'family': 'Milla', 'sequence': 'additional', 'affiliation': []}, {'given': 'Raul', 'family': 'Andino', 'sequence': 'additional', 'affiliation': []}, {'given': 'Peter K.', 'family': 'Jackson', 'sequence': 'additional', 'affiliation': []}], 'member': '78', 'reference': [ { 'key': '10.1016/j.cell.2022.11.030_bib1', 'doi-asserted-by': 'crossref', 'first-page': '271', 'DOI': '10.1016/j.cell.2020.02.052', 'article-title': 'SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a ' 'clinically proven protease inhibitor', 'volume': '181', 'author': 'Hoffmann', 'year': '2020', 'journal-title': 'Cell'}, { 'key': '10.1016/j.cell.2022.11.030_bib2', 'doi-asserted-by': 'crossref', 'first-page': '429', 'DOI': '10.1016/j.cell.2020.05.042', 'article-title': 'SARS-CoV-2 reverse genetics reveals a variable infection gradient in ' 'the respiratory tract', 'volume': '182', 'author': 'Hou', 'year': '2020', 'journal-title': 'Cell'}, { 'key': '10.1016/j.cell.2022.11.030_bib3', 'doi-asserted-by': 'crossref', 'first-page': '305', 'DOI': '10.1038/s41385-020-00359-2', 'article-title': 'The central role of the nasal microenvironment in the transmission, ' 'modulation, and clinical progression of SARS-CoV-2 infection', 'volume': '14', 'author': 'Gallo', 'year': '2021', 'journal-title': 'Mucosal Immunol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib4', 'doi-asserted-by': 'crossref', 'first-page': 'L603', 'DOI': '10.1152/ajplung.00283.2020', 'article-title': 'First contact: the role of respiratory cilia in host-pathogen ' 'interactions in the airways', 'volume': '319', 'author': 'Kuek', 'year': '2020', 'journal-title': 'Am. J. Physiol. Lung Cell Mol. Physiol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib5', 'doi-asserted-by': 'crossref', 'first-page': '571', 'DOI': '10.1172/JCI0215217', 'article-title': 'Mucus clearance as a primary innate defense mechanism for mammalian ' 'airways', 'volume': '109', 'author': 'Knowles', 'year': '2002', 'journal-title': 'J.\xa0Clin. Invest.'}, { 'key': '10.1016/j.cell.2022.11.030_bib6', 'doi-asserted-by': 'crossref', 'first-page': '937', 'DOI': '10.1126/science.1223012', 'article-title': 'A periciliary brush promotes the lung health by separating the mucus ' 'layer from airway epithelia', 'volume': '337', 'author': 'Button', 'year': '2012', 'journal-title': 'Science'}, { 'key': '10.1016/j.cell.2022.11.030_bib7', 'doi-asserted-by': 'crossref', 'first-page': '379', 'DOI': '10.1038/mi.2012.81', 'article-title': 'Molecular organization of the mucins and glycocalyx underlying mucus ' 'transport over mucosal surfaces of the airways', 'volume': '6', 'author': 'Kesimer', 'year': '2013', 'journal-title': 'Mucosal Immunol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib8', 'article-title': 'Membrane-Tethered Mucin 1 is stimulated by interferon in multiple cell ' 'types and antagonizes influenza A virus infection in human airway ' 'epithelium', 'author': 'Iverson', 'year': '2021', 'journal-title': 'bioRxiv'}, { 'key': '10.1016/j.cell.2022.11.030_bib9', 'doi-asserted-by': 'crossref', 'first-page': '1581', 'DOI': '10.1038/mi.2017.16', 'article-title': 'The cell surface mucin MUC1 limits the severity of influenza A virus ' 'infection', 'volume': '10', 'author': 'McAuley', 'year': '2017', 'journal-title': 'Mucosal Immunol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib10', 'doi-asserted-by': 'crossref', 'first-page': '1177', 'DOI': '10.1056/NEJMc2001737', 'article-title': 'SARS-CoV-2 viral load in upper respiratory specimens of infected ' 'patients', 'volume': '382', 'author': 'Zou', 'year': '2020', 'journal-title': 'N.\xa0Engl. J. Med.'}, { 'key': '10.1016/j.cell.2022.11.030_bib11', 'doi-asserted-by': 'crossref', 'first-page': 'e148517', 'DOI': '10.1172/JCI148517', 'article-title': 'Nasal ciliated cells are primary targets for SARS-CoV-2 replication in ' 'early stage of COVID-19', 'volume': '131', 'author': 'Ahn', 'year': '2021', 'journal-title': 'J.\xa0Clin. Invest.'}, { 'key': '10.1016/j.cell.2022.11.030_bib12', 'doi-asserted-by': 'crossref', 'first-page': 'e3001143', 'DOI': '10.1371/journal.pbio.3001143', 'article-title': 'Single-cell longitudinal analysis of SARS-CoV-2 infection in human ' 'airway epithelium identifies target cells, alterations in gene ' 'expression, and cell state changes', 'volume': '19', 'author': 'Ravindra', 'year': '2021', 'journal-title': 'PLoS Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib13', 'doi-asserted-by': 'crossref', 'first-page': 'e1009292', 'DOI': '10.1371/journal.ppat.1009292', 'article-title': 'Single cell resolution of SARS-CoV-2 tropism, antiviral responses, and ' 'susceptibility to therapies in primary human airway epithelium', 'volume': '17', 'author': 'Fiege', 'year': '2021', 'journal-title': 'PLoS Pathog.'}, { 'key': '10.1016/j.cell.2022.11.030_bib14', 'doi-asserted-by': 'crossref', 'first-page': '14614', 'DOI': '10.1128/JVI.79.23.14614-14621.2005', 'article-title': 'ACE2 receptor expression and severe acute respiratory syndrome ' 'coronavirus infection depend on differentiation of human airway ' 'epithelia', 'volume': '79', 'author': 'Jia', 'year': '2005', 'journal-title': 'J.\xa0Virol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib15', 'doi-asserted-by': 'crossref', 'first-page': '8060', 'DOI': '10.1128/JVI.00384-06', 'article-title': 'Infection of human airway epithelium by human and avian strains of ' 'influenza a virus', 'volume': '80', 'author': 'Thompson', 'year': '2006', 'journal-title': 'J.\xa0Virol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib16', 'doi-asserted-by': 'crossref', 'first-page': '1113', 'DOI': '10.1128/JVI.79.2.1113-1124.2005', 'article-title': 'Infection of ciliated cells by human parainfluenza virus type 3 in an ' 'in\xa0vitro model of human airway epithelium', 'volume': '79', 'author': 'Zhang', 'year': '2005', 'journal-title': 'J.\xa0Virol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib17', 'doi-asserted-by': 'crossref', 'first-page': '906', 'DOI': '10.1093/infdis/jix640', 'article-title': 'In\xa0vitro model of fully differentiated human nasal epithelial cells ' 'infected with rhinovirus reveals epithelium-initiated immune responses', 'volume': '217', 'author': 'Tan', 'year': '2018', 'journal-title': 'J.\xa0Infect. Dis.'}, { 'key': '10.1016/j.cell.2022.11.030_bib18', 'doi-asserted-by': 'crossref', 'first-page': '84', 'DOI': '10.1186/s12931-017-0567-0', 'article-title': 'Rhinovirus C targets ciliated airway epithelial cells', 'volume': '18', 'author': 'Griggs', 'year': '2017', 'journal-title': 'Respir. Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib19', 'doi-asserted-by': 'crossref', 'first-page': '5654', 'DOI': '10.1128/JVI.76.11.5654-5666.2002', 'article-title': 'Respiratory syncytial virus infection of human airway epithelial cells ' 'is polarized, specific to ciliated cells, and without obvious ' 'cytopathology', 'volume': '76', 'author': 'Zhang', 'year': '2002', 'journal-title': 'J.\xa0Virol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib20', 'doi-asserted-by': 'crossref', 'first-page': '5453', 'DOI': '10.1038/s41467-020-19145-6', 'article-title': 'ACE2 localizes to the respiratory cilia and is not increased by ACE ' 'inhibitors or ARBs', 'volume': '11', 'author': 'Lee', 'year': '2020', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.cell.2022.11.030_bib21', 'doi-asserted-by': 'crossref', 'first-page': '100421', 'DOI': '10.1016/j.xcrm.2021.100421', 'article-title': 'Landscape of SARS-CoV-2 infection in diverse human head\xa0& neck and ' 'proximal airway mucosal tissues', 'volume': '2', 'author': 'Nakayama', 'year': '2021', 'journal-title': 'Cell Rep. Med.'}, { 'key': '10.1016/j.cell.2022.11.030_bib22', 'doi-asserted-by': 'crossref', 'first-page': '319', 'DOI': '10.1038/s41586-018-0393-7', 'article-title': 'A revised airway epithelial hierarchy includes CFTR-expressing ' 'ionocytes', 'volume': '560', 'author': 'Montoro', 'year': '2018', 'journal-title': 'Nature'}, { 'key': '10.1016/j.cell.2022.11.030_bib23', 'doi-asserted-by': 'crossref', 'first-page': '420', 'DOI': '10.1007/BF02628493', 'article-title': 'A biphasic chamber system for maintaining polarity of differentiation ' 'of cultured respiratory tract epithelial cells', 'volume': '24', 'author': 'Whitcutt', 'year': '1988', 'journal-title': 'In\xa0Vitro Cell. Dev. Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib24', 'doi-asserted-by': 'crossref', 'first-page': '92', 'DOI': '10.1126/science.96.2482.92', 'article-title': 'Effect of Mucin on Influenza Virus Infection in Hamsters', 'volume': '96', 'author': 'Wheeler', 'year': '1942', 'journal-title': 'Science'}, { 'key': '10.1016/j.cell.2022.11.030_bib25', 'doi-asserted-by': 'crossref', 'first-page': '7278', 'DOI': '10.1073/pnas.1813020116', 'article-title': 'The mucin-selective protease StcE enables molecular and functional ' 'analysis of human cancer-associated mucins', 'volume': '116', 'author': 'Malaker', 'year': '2019', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': '10.1016/j.cell.2022.11.030_bib26', 'doi-asserted-by': 'crossref', 'first-page': '103', 'DOI': '10.1038/s41586-021-03720-y', 'article-title': 'In\xa0vivo monoclonal antibody efficacy against SARS-CoV-2 variant ' 'strains', 'volume': '596', 'author': 'Chen', 'year': '2021', 'journal-title': 'Nature'}, { 'key': '10.1016/j.cell.2022.11.030_bib27', 'doi-asserted-by': 'crossref', 'first-page': '12234', 'DOI': '10.1021/acsnano.0c05975', 'article-title': 'Quantum dot-conjugated SARS-CoV-2 spike pseudo-virions enable tracking ' 'of angiotensin converting enzyme 2 binding and endocytosis', 'volume': '14', 'author': 'Gorshkov', 'year': '2020', 'journal-title': 'ACS Nano'}, { 'key': '10.1016/j.cell.2022.11.030_bib28', 'doi-asserted-by': 'crossref', 'first-page': 'e88027', 'DOI': '10.1172/jci.insight.88027', 'article-title': 'Airway epithelial homeostasis and planar cell polarity signaling depend ' 'on multiciliated cell differentiation', 'volume': '1', 'author': 'Vladar', 'year': '2016', 'journal-title': 'JCI Insight'}, { 'key': '10.1016/j.cell.2022.11.030_bib29', 'doi-asserted-by': 'crossref', 'first-page': '862', 'DOI': '10.1038/s41390-019-0677-0', 'article-title': 'CX3CR1 as a respiratory syncytial virus receptor in pediatric human ' 'lung', 'volume': '87', 'author': 'Anderson', 'year': '2020', 'journal-title': 'Pediatr. Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib30', 'doi-asserted-by': 'crossref', 'first-page': 'e28429', 'DOI': '10.1371/journal.pone.0028429', 'article-title': 'Infection of differentiated porcine airway epithelial cells by ' 'influenza virus: differential susceptibility to infection by porcine ' 'and avian viruses', 'volume': '6', 'author': 'Punyadarsaniya', 'year': '2011', 'journal-title': 'PLoS One'}, { 'key': '10.1016/j.cell.2022.11.030_bib31', 'doi-asserted-by': 'crossref', 'first-page': '73', 'DOI': '10.1186/1465-9921-8-73', 'article-title': 'Sialic acid receptor detection in the human respiratory tract: evidence ' 'for widespread distribution of potential binding sites for human and ' 'avian influenza viruses', 'volume': '8', 'author': 'Nicholls', 'year': '2007', 'journal-title': 'Respir. Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib32', 'doi-asserted-by': 'crossref', 'first-page': 'e0130517', 'DOI': '10.1371/journal.pone.0130517', 'article-title': 'CX3CR1 is expressed in differentiated human ciliated airway cells and ' 'co-localizes with respiratory syncytial virus on cilia in a G ' 'protein-dependent manner', 'volume': '10', 'author': 'Jeong', 'year': '2015', 'journal-title': 'PLoS One'}, { 'key': '10.1016/j.cell.2022.11.030_bib33', 'doi-asserted-by': 'crossref', 'first-page': 'e1005318', 'DOI': '10.1371/journal.ppat.1005318', 'article-title': 'Respiratory syncytial virus uses CX3CR1 as a receptor on primary human ' 'airway epithelial cultures', 'volume': '11', 'author': 'Johnson', 'year': '2015', 'journal-title': 'PLoS Pathog.'}, { 'key': '10.1016/j.cell.2022.11.030_bib34', 'doi-asserted-by': 'crossref', 'first-page': '155', 'DOI': '10.1093/jb/mvx087', 'article-title': 'Ciliary protein trafficking mediated by IFT and BBSome complexes with ' 'the aid of kinesin-2 and dynein-2 motors', 'volume': '163', 'author': 'Nakayama', 'year': '2018', 'journal-title': 'J.\xa0Biochem.'}, { 'key': '10.1016/j.cell.2022.11.030_bib35', 'doi-asserted-by': 'crossref', 'first-page': '125', 'DOI': '10.1038/nature10936', 'article-title': 'Small-molecule inhibitors of the AAA+ ATPase motor cytoplasmic dynein', 'volume': '484', 'author': 'Firestone', 'year': '2012', 'journal-title': 'Nature'}, { 'key': '10.1016/j.cell.2022.11.030_bib36', 'doi-asserted-by': 'crossref', 'first-page': '722', 'DOI': '10.1016/S1473-3099(03)00806-5', 'article-title': "Effects of chloroquine on viral infections: an old drug against today's " 'diseases?', 'volume': '3', 'author': 'Savarino', 'year': '2003', 'journal-title': 'Lancet Infect. Dis.'}, { 'key': '10.1016/j.cell.2022.11.030_bib37', 'doi-asserted-by': 'crossref', 'first-page': '685', 'DOI': '10.1016/j.cell.2020.06.034', 'article-title': 'The global phosphorylation landscape of SARS-CoV-2 infection', 'volume': '182', 'author': 'Bouhaddou', 'year': '2020', 'journal-title': 'Cell'}, { 'key': '10.1016/j.cell.2022.11.030_bib38', 'doi-asserted-by': 'crossref', 'first-page': '16099', 'DOI': '10.1038/s41598-020-73162-5', 'article-title': 'Ultrastructural analysis of SARS-CoV-2 interactions with the host cell ' 'via high resolution scanning electron microscopy', 'volume': '10', 'author': 'Caldas', 'year': '2020', 'journal-title': 'Sci. Rep.'}, { 'key': '10.1016/j.cell.2022.11.030_bib39', 'doi-asserted-by': 'crossref', 'first-page': 'jcs221853', 'DOI': '10.1242/jcs.221853', 'article-title': 'Regulation of actin-based apical structures on epithelial cells', 'volume': '131', 'author': 'Pelaseyed', 'year': '2018', 'journal-title': 'J.\xa0Cell Sci.'}, { 'key': '10.1016/j.cell.2022.11.030_bib40', 'doi-asserted-by': 'crossref', 'first-page': '441', 'DOI': '10.1083/jcb.201407015', 'article-title': 'Shaping the intestinal brush border', 'volume': '207', 'author': 'Crawley', 'year': '2014', 'journal-title': 'J.\xa0Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib41', 'doi-asserted-by': 'crossref', 'first-page': '161', 'DOI': '10.1038/nrgastro.2016.5', 'article-title': 'Plasticity of the brush border - the yin and yang of intestinal ' 'homeostasis', 'volume': '13', 'author': 'Delacour', 'year': '2016', 'journal-title': 'Nat. Rev. Gastroenterol. Hepatol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib42', 'doi-asserted-by': 'crossref', 'first-page': '653', 'DOI': '10.4103/1008-682X.146103', 'article-title': 'Ezrin: a regulator of actin microfilaments in cell junctions of the rat ' 'testis', 'volume': '17', 'author': 'Gungor-Ordueri', 'year': '2015', 'journal-title': 'Asian J. Androl.'}, { 'key': '10.1016/j.cell.2022.11.030_bib43', 'doi-asserted-by': 'crossref', 'first-page': 'e91702', 'DOI': '10.1172/jci.insight.91702', 'article-title': 'Assessment of ciliary phenotype in primary ciliary dyskinesia by ' 'micro-optical coherence tomography', 'volume': '2', 'author': 'Solomon', 'year': '2017', 'journal-title': 'JCI Insight'}, { 'key': '10.1016/j.cell.2022.11.030_bib44', 'doi-asserted-by': 'crossref', 'first-page': '95', 'DOI': '10.1183/09031936.04.00097503', 'article-title': 'Normal nasal mucociliary clearance in CF children: evidence against a ' 'CFTR-related defect', 'volume': '24', 'author': 'McShane', 'year': '2004', 'journal-title': 'Eur. Respir. J.'}, { 'key': '10.1016/j.cell.2022.11.030_bib45', 'doi-asserted-by': 'crossref', 'first-page': 'a028241', 'DOI': '10.1101/cshperspect.a028241', 'article-title': 'Cilia and mucociliary clearance', 'volume': '9', 'author': 'Bustamante-Marin', 'year': '2017', 'journal-title': 'Cold Spring Harb. Perspect. Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib46', 'doi-asserted-by': 'crossref', 'first-page': '120', 'DOI': '10.1165/rcmb.2018-0287LE', 'article-title': 'Ciliary localization of the intraflagellar transport protein IFT88 is ' 'disrupted in cystic fibrosis', 'volume': '62', 'author': 'Stevens', 'year': '2020', 'journal-title': 'Am. J. Respir. Cell Mol. Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib47', 'doi-asserted-by': 'crossref', 'first-page': '2004548', 'DOI': '10.1183/13993003.04548-2020', 'article-title': 'SARS-CoV-2 infections in people with PCD: neither frequent, nor ' 'particularly severe', 'volume': '58', 'author': 'Pedersen', 'year': '2021', 'journal-title': 'Eur. Respir. J.'}, { 'key': '10.1016/j.cell.2022.11.030_bib48', 'series-title': 'COVID-19 Infections in People with Primary Ciliary Dyskinesia', 'author': 'Kuehni', 'year': '2022'}, { 'key': '10.1016/j.cell.2022.11.030_bib49', 'doi-asserted-by': 'crossref', 'first-page': '201', 'DOI': '10.1042/BJ20041638', 'article-title': 'PAK and other Rho-associated kinases--effectors with surprisingly ' 'diverse mechanisms of regulation', 'volume': '386', 'author': 'Zhao', 'year': '2005', 'journal-title': 'Biochem. J.'}, { 'key': '10.1016/j.cell.2022.11.030_bib50', 'doi-asserted-by': 'crossref', 'first-page': '1845', 'DOI': '10.1093/bioinformatics/btx082', 'article-title': 'Benchmarking substrate-based kinase activity inference using ' 'phosphoproteomic data', 'volume': '33', 'author': 'Hernandez-Armenta', 'year': '2017', 'journal-title': 'Bioinformatics'}, { 'key': '10.1016/j.cell.2022.11.030_bib51', 'doi-asserted-by': 'crossref', 'first-page': '1643', 'DOI': '10.1073/pnas.1120985109', 'article-title': 'Oncogene-specific activation of tyrosine kinase networks during ' 'prostate cancer progression', 'volume': '109', 'author': 'Drake', 'year': '2012', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': '10.1016/j.cell.2022.11.030_bib52', 'doi-asserted-by': 'crossref', 'first-page': '888', 'DOI': '10.15252/msb.20167295', 'article-title': 'An atlas of human kinase regulation', 'volume': '12', 'author': 'Ochoa', 'year': '2016', 'journal-title': 'Mol. Syst. Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib53', 'doi-asserted-by': 'crossref', 'first-page': '15545', 'DOI': '10.1073/pnas.0506580102', 'article-title': 'Gene set enrichment analysis: a knowledge-based approach for ' 'interpreting genome-wide expression profiles', 'volume': '102', 'author': 'Subramanian', 'year': '2005', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': '10.1016/j.cell.2022.11.030_bib54', 'doi-asserted-by': 'crossref', 'first-page': 'D512', 'DOI': '10.1093/nar/gku1267', 'article-title': 'PhosphoSitePlus, 2014: mutations, PTMs and recalibrations', 'volume': '43', 'author': 'Hornbeck', 'year': '2015', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib55', 'doi-asserted-by': 'crossref', 'first-page': 'D695', 'DOI': '10.1093/nar/gkm902', 'article-title': 'NetworKIN: a resource for exploring cellular phosphorylation networks', 'volume': '36', 'author': 'Linding', 'year': '2008', 'journal-title': 'Nucleic Acids Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib56', 'doi-asserted-by': 'crossref', 'first-page': '743', 'DOI': '10.1146/annurev.biochem.72.121801.161742', 'article-title': 'Biology of the p21-activated kinases', 'volume': '72', 'author': 'Bokoch', 'year': '2003', 'journal-title': 'Annu. Rev. Biochem.'}, { 'key': '10.1016/j.cell.2022.11.030_bib57', 'doi-asserted-by': 'crossref', 'first-page': '2710', 'DOI': '10.1007/s00018-003-3349-4', 'article-title': 'Targeting of the Akt/PKB kinase to the actin skeleton', 'volume': '60', 'author': 'Cenni', 'year': '2003', 'journal-title': 'Cell. Mol. Life Sci.'}, { 'key': '10.1016/j.cell.2022.11.030_bib58', 'doi-asserted-by': 'crossref', 'first-page': '370', 'DOI': '10.3389/fphar.2019.00370', 'article-title': 'Non-canonical Notch Signaling Regulates Actin Remodeling in Cell ' 'Migration by Activating PI3K/AKT/Cdc42 Pathway', 'volume': '10', 'author': 'Liu', 'year': '2019', 'journal-title': 'Front. Pharmacol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib59', 'doi-asserted-by': 'crossref', 'first-page': '357', 'DOI': '10.1242/jcs.110.3.357', 'article-title': 'Regulation of actin filament dynamics by p38 map kinase-mediated ' 'phosphorylation of heat shock protein 27', 'volume': '110', 'author': 'Guay', 'year': '1997', 'journal-title': 'J.\xa0Cell Sci.'}, { 'key': '10.1016/j.cell.2022.11.030_bib60', 'doi-asserted-by': 'crossref', 'first-page': '545', 'DOI': '10.1002/cm.20472', 'article-title': 'Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell polarity', 'volume': '67', 'author': 'Amano', 'year': '2010', 'journal-title': 'Cytoskeleton (Hoboken)'}, { 'key': '10.1016/j.cell.2022.11.030_bib61', 'doi-asserted-by': 'crossref', 'first-page': '6527', 'DOI': '10.1093/emboj/17.22.6527', 'article-title': 'PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization ' 'of the actin cytoskeleton and in the formation of filopodia', 'volume': '17', 'author': 'Abo', 'year': '1998', 'journal-title': 'EMBO J.'}, { 'key': '10.1016/j.cell.2022.11.030_bib62', 'doi-asserted-by': 'crossref', 'first-page': '1265', 'DOI': '10.1083/jcb.138.6.1265', 'article-title': 'Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and ' 'cortical actin structures in stimulated cells', 'volume': '138', 'author': 'Dharmawardhane', 'year': '1997', 'journal-title': 'J.\xa0Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib63', 'doi-asserted-by': 'crossref', 'first-page': '579', 'DOI': '10.1016/j.ajhg.2018.09.005', 'article-title': 'Activating mutations in PAK1, encoding p21-activated kinase 1, cause a ' 'neurodevelopmental disorder', 'volume': '103', 'author': 'Harms', 'year': '2018', 'journal-title': 'Am. J. Hum. Genet.'}, { 'key': '10.1016/j.cell.2022.11.030_bib64', 'doi-asserted-by': 'crossref', 'first-page': '24', 'DOI': '10.1016/j.canlet.2011.11.007', 'article-title': 'LCH-7749944, a novel and potent p21-activated kinase 4 inhibitor, ' 'suppresses proliferation and invasion in human gastric cancer cells', 'volume': '317', 'author': 'Zhang', 'year': '2012', 'journal-title': 'Cancer Lett.'}, { 'key': '10.1016/j.cell.2022.11.030_bib65', 'doi-asserted-by': 'crossref', 'first-page': '1861', 'DOI': '10.1242/jcs.02313', 'article-title': 'PAK4 mediates morphological changes through the regulation of GEF-H1', 'volume': '118', 'author': 'Callow', 'year': '2005', 'journal-title': 'J.\xa0Cell Sci.'}, { 'key': '10.1016/j.cell.2022.11.030_bib66', 'doi-asserted-by': 'crossref', 'first-page': '829', 'DOI': '10.1128/MCB.01574-08', 'article-title': 'Regulation of IRSp53-dependent filopodial dynamics by antagonism ' 'between 14-3-3 binding and SH3-mediated localization', 'volume': '30', 'author': 'Robens', 'year': '2010', 'journal-title': 'Mol. Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib67', 'doi-asserted-by': 'crossref', 'first-page': '17156', 'DOI': '10.1074/jbc.M109.080523', 'article-title': 'Cystic fibrosis transmembrane conductance regulator interacts with ' 'multiple immunoglobulin domains of filamin A', 'volume': '285', 'author': 'Playford', 'year': '2010', 'journal-title': 'J.\xa0Biol. Chem.'}, { 'key': '10.1016/j.cell.2022.11.030_bib68', 'doi-asserted-by': 'crossref', 'first-page': '552', 'DOI': '10.1016/j.celrep.2013.01.003', 'article-title': 'In\xa0vivo SILAC-based proteomics reveals phosphoproteome changes ' 'during mouse skin carcinogenesis', 'volume': '3', 'author': 'Zanivan', 'year': '2013', 'journal-title': 'Cell Rep.'}, { 'key': '10.1016/j.cell.2022.11.030_bib69', 'doi-asserted-by': 'crossref', 'first-page': '389', 'DOI': '10.1016/j.neo.2019.02.005', 'article-title': 'Characterization of the ERG-regulated Kinome in Prostate Cancer ' 'Identifies TNIK as a Potential Therapeutic Target', 'volume': '21', 'author': 'Lee', 'year': '2019', 'journal-title': 'Neoplasia'}, { 'key': '10.1016/j.cell.2022.11.030_bib70', 'doi-asserted-by': 'crossref', 'first-page': 'e13513', 'DOI': '10.14814/phy2.13513', 'article-title': 'Nonmuscle myosin 2 proteins encoded by Myh9, Myh10, and Myh14 are ' 'uniquely distributed in the tubular segments of murine kidney', 'volume': '5', 'author': 'Otterpohl', 'year': '2017', 'journal-title': 'Physiol. Rep.'}, { 'key': '10.1016/j.cell.2022.11.030_bib71', 'doi-asserted-by': 'crossref', 'first-page': '2803', 'DOI': '10.1091/mbc.E20-09-0582', 'article-title': 'Nonmuscle myosin-2 contractility-dependent actin turnover limits the ' 'length of epithelial microvilli', 'volume': '31', 'author': 'Chinowsky', 'year': '2020', 'journal-title': 'Mol. Biol. Cell'}, { 'key': '10.1016/j.cell.2022.11.030_bib72', 'doi-asserted-by': 'crossref', 'first-page': 'ra18', 'DOI': '10.1126/scisignal.2005547', 'article-title': 'The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering ' 'protein trafficking', 'volume': '8', 'author': 'Belle', 'year': '2015', 'journal-title': 'Sci. Signal.'}, { 'key': '10.1016/j.cell.2022.11.030_bib73', 'doi-asserted-by': 'crossref', 'first-page': '1', 'DOI': '10.1016/j.gene.2016.04.048', 'article-title': 'Characterization of isoform expression and subcellular distribution of ' 'MYPT1 in intestinal epithelial cells', 'volume': '588', 'author': 'Zha', 'year': '2016', 'journal-title': 'Gene'}, { 'key': '10.1016/j.cell.2022.11.030_bib74', 'doi-asserted-by': 'crossref', 'first-page': '1197', 'DOI': '10.1128/MCB.01017-14', 'article-title': 'PCTK1 regulates integrin-dependent spindle orientation via protein ' 'kinase A regulatory subunit KAP0 and myosin X', 'volume': '35', 'author': 'Iwano', 'year': '2015', 'journal-title': 'Mol. Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib75', 'doi-asserted-by': 'crossref', 'first-page': '785', 'DOI': '10.1083/jcb.201412030', 'article-title': 'Annexin A2-dependent actin bundling promotes secretory granule docking ' 'to the plasma membrane and exocytosis', 'volume': '210', 'author': 'Gabel', 'year': '2015', 'journal-title': 'J.\xa0Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib76', 'doi-asserted-by': 'crossref', 'first-page': '852430', 'DOI': '10.1155/2012/852430', 'article-title': 'Annexin A2 at the interface of actin and membrane dynamics: a focus on ' 'its roles in endocytosis and cell polarization', 'volume': '2012', 'author': 'Grieve', 'year': '2012', 'journal-title': 'Int. J. Cell Biol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib77', 'doi-asserted-by': 'crossref', 'first-page': '323', 'DOI': '10.1093/hmg/ddh024', 'article-title': 'Expression and molecular characterization of alternative transcripts of ' 'the ARHGEF5/TIM oncogene specific for human breast cancer', 'volume': '13', 'author': 'Debily', 'year': '2004', 'journal-title': 'Hum. Mol. Genet.'}, { 'key': '10.1016/j.cell.2022.11.030_bib78', 'doi-asserted-by': 'crossref', 'first-page': '127', 'DOI': '10.2220/biomedres.37.127', 'article-title': 'Comprehensive proteome analysis of brush border membrane fraction of ' 'ileum of ezrin knockdown mice', 'volume': '37', 'author': 'Yoshida', 'year': '2016', 'journal-title': 'Biomed. Res.'}, { 'key': '10.1016/j.cell.2022.11.030_bib79', 'doi-asserted-by': 'crossref', 'first-page': '5932', 'DOI': '10.1016/j.cell.2021.10.027', 'article-title': 'Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the ' 'respiratory and olfactory mucosae but spares the olfactory bulb', 'volume': '184', 'author': 'Khan', 'year': '2021', 'journal-title': 'Cell'}, { 'key': '10.1016/j.cell.2022.11.030_bib80', 'doi-asserted-by': 'crossref', 'first-page': '848', 'DOI': '10.1038/s41467-021-21118-2', 'article-title': 'SARS-CoV-2 D614G spike mutation increases entry efficiency with ' 'enhanced ACE2-binding affinity', 'volume': '12', 'author': 'Ozono', 'year': '2021', 'journal-title': 'Nat. Commun.'}, { 'key': '10.1016/j.cell.2022.11.030_bib81', 'doi-asserted-by': 'crossref', 'first-page': '111', 'DOI': '10.1111/all.15065', 'article-title': 'In\xa0vitro data suggest that Indian delta variant B.1.617 of ' 'SARS-CoV-2 escapes neutralization by both receptor affinity and immune ' 'evasion', 'volume': '77', 'author': 'Augusto', 'year': '2022', 'journal-title': 'Allergy'}, { 'key': '10.1016/j.cell.2022.11.030_bib82', 'article-title': 'Infectious viral shedding of SARS-CoV-2 Delta following vaccination: a ' 'longitudinal cohort study', 'author': 'Garcia-Knight', 'year': '2022', 'journal-title': 'medRxiv'}, { 'key': '10.1016/j.cell.2022.11.030_bib83', 'doi-asserted-by': 'crossref', 'first-page': '1048', 'DOI': '10.1126/science.abn8863', 'article-title': 'Structures of the Omicron spike trimer with ACE2 and an anti-Omicron ' 'antibody', 'volume': '375', 'author': 'Yin', 'year': '2022', 'journal-title': 'Science'}, { 'key': '10.1016/j.cell.2022.11.030_bib84', 'doi-asserted-by': 'crossref', 'first-page': '2577', 'DOI': '10.1021/jacs.8b12553', 'article-title': 'Multivalent recognition at fluid surfaces: the interplay of receptor ' 'clustering and superselectivity', 'volume': '141', 'author': 'Dubacheva', 'year': '2019', 'journal-title': 'J.\xa0Am. Chem. Soc.'}, { 'key': '10.1016/j.cell.2022.11.030_bib85', 'doi-asserted-by': 'crossref', 'first-page': '3130', 'DOI': '10.1039/D1SM01544C', 'article-title': "The nanocaterpillar's random walk: diffusion with ligand-receptor " 'contacts', 'volume': '18', 'author': 'Marbach', 'year': '2022', 'journal-title': 'Soft Matter'}, { 'key': '10.1016/j.cell.2022.11.030_bib86', 'doi-asserted-by': 'crossref', 'first-page': '100306', 'DOI': '10.1016/j.jbc.2021.100306', 'article-title': 'SARS-CoV-2 infects cells after viral entry via clathrin-mediated ' 'endocytosis', 'volume': '296', 'author': 'Bayati', 'year': '2021', 'journal-title': 'J.\xa0Biol. Chem.'}, { 'key': '10.1016/j.cell.2022.11.030_bib87', 'doi-asserted-by': 'crossref', 'first-page': '4702', 'DOI': '10.1074/jbc.M111.305102', 'article-title': 'mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and ' 'are involved in filopodium formation', 'volume': '287', 'author': 'Goh', 'year': '2012', 'journal-title': 'J.\xa0Biol. Chem.'}, { 'key': '10.1016/j.cell.2022.11.030_bib88', 'doi-asserted-by': 'crossref', 'first-page': '2735', 'DOI': '10.1038/emboj.2013.208', 'article-title': 'CDC42 switches IRSp53 from inhibition of actin growth to elongation by ' 'clustering of VASP', 'volume': '32', 'author': 'Disanza', 'year': '2013', 'journal-title': 'EMBO J.'}, { 'key': '10.1016/j.cell.2022.11.030_bib89', 'first-page': '550', 'article-title': 'Phosphorylation of cortactin by cyclin-dependent kinase 5 modulates ' 'actin bundling by the dynamin 1-cortactin ring-like complex and ' 'formation of filopodia and lamellipodia in NG108-15 glioma-derived ' 'cells', 'volume': '54', 'author': 'Abe', 'year': '2019', 'journal-title': 'Int. J. Oncol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib90', 'doi-asserted-by': 'crossref', 'first-page': '149', 'DOI': '10.1016/j.bbrc.2007.12.090', 'article-title': 'Myosin phosphatase target subunit: Many roles in cell function', 'volume': '369', 'author': 'Matsumura', 'year': '2008', 'journal-title': 'Biochem. Biophys. Res. Commun.'}, { 'key': '10.1016/j.cell.2022.11.030_bib91', 'doi-asserted-by': 'crossref', 'first-page': '2180', 'DOI': '10.1101/gad.1966210', 'article-title': 'TULP3 bridges the IFT-A complex and membrane phosphoinositides to ' 'promote trafficking of G protein-coupled receptors into primary cilia', 'volume': '24', 'author': 'Mukhopadhyay', 'year': '2010', 'journal-title': 'Genes Dev.'}, { 'key': '10.1016/j.cell.2022.11.030_bib92', 'doi-asserted-by': 'crossref', 'first-page': '3380', 'DOI': '10.1073/pnas.0712327105', 'article-title': 'Loss of Bardet-Biedl syndrome proteins alters the morphology and ' 'function of motile cilia in airway epithelia', 'volume': '105', 'author': 'Shah', 'year': '2008', 'journal-title': 'Proc. Natl. Acad. Sci. USA'}, { 'key': '10.1016/j.cell.2022.11.030_bib93', 'doi-asserted-by': 'crossref', 'first-page': '135', 'DOI': '10.3389/fped.2017.00135', 'article-title': 'Primary ciliary dyskinesia: an update on clinical aspects, genetics, ' 'diagnosis, and future treatment strategies', 'volume': '5', 'author': 'Mirra', 'year': '2017', 'journal-title': 'Front. Pediatr.'}, { 'key': '10.1016/j.cell.2022.11.030_bib94', 'doi-asserted-by': 'crossref', 'first-page': '1327', 'DOI': '10.1038/s41590-020-0778-2', 'article-title': 'SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung ' 'inflammation and impaired function', 'volume': '21', 'author': 'Winkler', 'year': '2020', 'journal-title': 'Nat. Immunol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib95', 'doi-asserted-by': 'crossref', 'first-page': '285', 'DOI': '10.1016/B978-0-12-397944-5.00014-6', 'article-title': 'Analysis of ciliogenesis in primary culture mouse tracheal epithelial ' 'cells', 'volume': '525', 'author': 'Vladar', 'year': '2013', 'journal-title': 'Methods Enzymol.'}, { 'key': '10.1016/j.cell.2022.11.030_bib96', 'doi-asserted-by': 'crossref', 'first-page': '48', 'DOI': '10.1091/mbc.E15-07-0474', 'article-title': 'Ccdc11 is a novel centriolar satellite protein essential for ' 'ciliogenesis and establishment of left-right asymmetry', 'volume': '27', 'author': 'Silva', 'year': '2016', 'journal-title': 'Mol. Biol. Cell'}], 'container-title': 'Cell', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S0092867422015057?httpAccept=text/xml', 'content-type': 'text/xml', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://api.elsevier.com/content/article/PII:S0092867422015057?httpAccept=text/plain', 'content-type': 'text/plain', 'content-version': 'vor', 'intended-application': 'text-mining'}], 'deposited': { 'date-parts': [[2023, 1, 6]], 'date-time': '2023-01-06T19:58:43Z', 'timestamp': 1673035123000}, 'score': 1, 'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S0092867422015057'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2023, 1]]}, 'references-count': 96, 'journal-issue': {'issue': '1', 'published-print': {'date-parts': [[2023, 1]]}}, 'alternative-id': ['S0092867422015057'], 'URL': 'http://dx.doi.org/10.1016/j.cell.2022.11.030', 'relation': {}, 'ISSN': ['0092-8674'], 'subject': ['General Biochemistry, Genetics and Molecular Biology'], 'container-title-short': 'Cell', 'published': {'date-parts': [[2023, 1]]}, 'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'}, { 'value': 'SARS-CoV-2 replication in airway epithelia requires motile cilia and ' 'microvillar reprogramming', 'name': 'articletitle', 'label': 'Article Title'}, {'value': 'Cell', 'name': 'journaltitle', 'label': 'Journal Title'}, { 'value': 'https://doi.org/10.1016/j.cell.2022.11.030', 'name': 'articlelink', 'label': 'CrossRef DOI link to publisher maintained version'}, {'value': 'article', 'name': 'content_type', 'label': 'Content Type'}, { 'value': '© 2022 The Authors. Published by Elsevier Inc.', 'name': 'copyright', 'label': 'Copyright'}]}
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit