Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

 

Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition

Wu et al., RNA Biology, doi:10.1080/15476286.2024.2433830
Dec 2024  
  Post
  Facebook
Share
  Source   PDF  
Review of the mechanism of SARS-CoV-2 protein translation and potential therapeutic strategies targeting viral RNA for inhibition. Protein translation is crucial for the entire intracellular life cycle of SARS-CoV-2, with genomic RNA immediately translated upon release into the cytoplasm to produce early non-structural proteins, followed by translation of subgenomic mRNAs to obtain structural proteins for virion assembly in the later stage. Authors discuss the current understanding of SARS-CoV-2 translation initiation, noting the roles of conserved RNA elements and untranslated regions in regulating translation. Strategies for blocking translation through targeted viral RNA cleavage (using antisense oligonucleotides, siRNA, CRISPR-Cas13) or inhibiting viral RNA element functions (using small molecule inhibitors) are highlighted.
Wu et al., 4 Dec 2024, peer-reviewed, 4 authors. Contact: t-lxh@163.com.
This PaperMiscellaneousAll
Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition
Shan-Na Wu, Ting Xiao, Hui Chen, Xiao-Hong Li
RNA Biology, doi:10.1080/15476286.2024.2433830
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the coronavirus disease 2019 (COVID-19) pandemic and is continuously spreading globally. The continuous emergence of new SARS-CoV-2 variants keeps posing threats, highlighting the need for fast-acting, mutation-resistant broadspectrum therapeutics. Protein translation is vital for SARS-CoV-2 replication, producing early nonstructural proteins for RNA replication and transcription, and late structural proteins for virion assembly. Targeted blocking of viral protein translation is thus a potential approach to developing effective anti-SARS-CoV-2 drugs. SARS-CoV-2, as an obligate parasite, utilizes the host's translation machinery. Translation-blocking strategies that target the SARS-CoV-2 mRNA, especially those that target its conserved elements are generally preferred. In this review, we discuss the current understanding of SARS-CoV-2 translation, highlighting the important conserved motifs and structures involved in its regulation. We also discuss the current strategies for blocking SARS-CoV-2 translation through viral RNA degradation or RNA element dysfunction.
References
Abbott, Dhamdhere, Liu, Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza, Cell, doi:10.1016/j.cell.2020.04.020
Aldhumani, Hossain, Fairchild, RNA sequence and ligand binding alter conformational profile of SARS-CoV-2 stem loop II motif, Biochem Biophys Res Commun, doi:10.1016/j.bbrc.2021.01.013
Anokhina, Miller, Targeting ribosomal frameshifting as an antiviral strategy: from HIV-1 to SARS-CoV-2, Acc Chem Res, doi:10.1021/acs.accounts.1c00316
Babendure, Babendure, Ding, Control of mammalian translation by mRNA structure near caps, RNA, doi:10.1261/rna.2309906
Baldassarre, Paolini, Bruno, Potential use of noncoding RNAs and innovative therapeutic strategies to target the 5'UTR of SARS-CoV-2, Epigenomics, doi:10.2217/epi-2020-0162
Banerjee, Blanco, Bruce, SARS-CoV-2 disrupts splicing, translation, and protein trafficking to suppress host defenses, Cell, doi:10.1016/j.cell.2020.10.004
Baranov, Henderson, Anderson, Programmed ribosomal frameshifting in decoding the SARS-CoV genome, Virology, doi:10.1016/j.virol.2004.11.038
Berry, Waghray, Mortimer, Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning, Structure, doi:10.1016/j.str.2011.08.002
Bhatt, Scaiola, Loughran, Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome, Science, doi:10.1126/science.abf3546
Brant, Tian, Majerciak, SARS-CoV-2: from its discovery to genome structure, transcription, and replication, Cell Biosci, doi:10.1186/s13578-021-00643-z
Chamond, Deforges, Ulryck, 40S recruitment in the absence of eIF4G/4A by EMCV IRES refines the model for translation initiation on the archetype of type II IRESs, Nucleic Acids Res, doi:10.1093/nar/gku720
Chen, Tarn, uORF-mediated translational control: recently elucidated mechanisms and implications in cancer, RNA Biol, doi:10.1080/15476286.2019.1632634
Condé, Allatif, Ohlmann, Translation of SARS-CoV-2 gRNA is extremely efficient and competitive despite a High degree of secondary structures and the presence of an uORF, Viruses, doi:10.3390/v14071505
Cortese, Lee, Cerikan, Integrative imaging reveals SARS-CoV-2-induced reshaping of subcellular morphologies, Cell Host Microbe, doi:10.1016/j.chom.2020.11.003
Coutard, Valle, De Lamballerie, The spike glycoprotein of the new coronavirus 2019-nCoV contains a furin-like cleavage site absent in CoV of the same clade, Antiviral Res, doi:10.1016/j.antiviral.2020.104742
Crooke, Baker, Crooke, Antisense technology: an overview and prospectus, Nat Rev Drug Discov, doi:10.1038/s41573-021-00162-z
Crooke, Liang, Baker, Antisense technology: a review, J Biol Chem, doi:10.1016/j.jbc.2021.100416
De Breyne, Yu, Unbehaun, Direct functional interaction of initiation factor eIF4G with type 1 internal ribosomal entry sites, Proc Natl Acad Sci, doi:10.1073/pnas.0900153106
Dey, Yan, Schlick, Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses, RNA, doi:10.1261/rna.080035.124
Dhorne-Pollet, Fitzpatrick, Costa, Antisense oligonucleotides targeting ORF1b block replication of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), Front Microbiol, doi:10.3389/fmicb.2022.915202
Dinman, Mechanisms and implications of programmed translational frameshifting, Wiley Interdiscip Rev RNA, doi:10.1002/wrna.1126
Embarc-Buh, Francisco-Velilla, Martinez-Salas, RNA-Binding proteins at the host-pathogen interface targeting viral regulatory elements, Viruses, doi:10.3390/v13060952
Fareh, Zhao, Hu, Reprogrammed CRISPR-Cas13b suppresses SARS-CoV-2 replication and circumvents its mutational escape through mismatch tolerance, Nat Commun, doi:10.1038/s41467-021-24577-9
Fernández-Miragall, Salas, Structural organization of a viral IRES depends on the integrity of the GNRA motif, RNA, doi:10.1261/rna.5950603
Fields, Howley, De, Coronaviruses
Finkel, Gluck, Nachshon, SARS-CoV-2 uses a multipronged strategy to impede host protein synthesis, Nature, doi:10.1038/s41586-021-03610-3
Finkel, Mizrahi, Nachshon, The coding capacity of SARS-CoV-2, Nature, doi:10.1038/s41586-020-2739-1
Firth, Brierley, Non-canonical translation in RNA viruses, J Gen Virol, doi:10.1099/vir.0.042499-0
Franch, Gerdes, U-turns and regulatory RNAs, Curr Opin Microbiol, doi:10.1016/S1369-5274(00)00069-2
Frye, Cunningham, Mihailescu, Characterization of the SARS-CoV-2 genome 3 0 -untranslated region interactions with Host MicroRNAs, ACS Omega, doi:10.1021/acsomega.4c01050
Ganser, Kelly, Herschlag, The roles of structural dynamics in the cellular functions of RNAs, Nat Rev Mol Cell Biol, doi:10.1038/s41580-019-0136-0
Gerber, Donde, Matheson, Xnazymes targeting the SARS-CoV-2 genome inhibit viral infection, Nat Commun, doi:10.1038/s41467-022-34339-w
Gerresheim, Dünnes, Nieder-Röhrmann, microRNA-122 target sites in the hepatitis C virus RNA NS5B coding region and 3 0 untranslated region: function in replication and influence of RNA secondary structure, Cell Mol Life Sci, doi:10.1007/s00018-016-2377-9
Goebel, Miller, Bennett, A hypervariable region within the 3 0 cis -acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis, J Virol, doi:10.1128/JVI.00803-06
Gorbalenya, Baker, Baric, The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2, Nat Microbiol, doi:10.1038/s41564-020-0695-z
Gross, Vicens, Einhorn, The IRES5 0 UTR of the dicistrovirus cricket paralysis virus is a type III IRES containing an essential pseudoknot structure, Nucleic Acids Res, doi:10.1093/nar/gkx622
Gutell, Cannone, Konings, Predicting U-turns in ribosomal RNA with comparative sequence analysis, J Mol Biol, doi:10.1006/jmbi.2000.3900
Hahn, Hahn, Rice, Conserved elements in the 3 0 untranslated region of flavivirus RNAs and potential cyclization sequences, J Mol Biol, doi:10.1016/0022-2836(87)90455-4
Haniff, Tong, Liu, Targeting the SARS-CoV-2 RNA genome with small molecule binders and ribonuclease targeting chimera (RIBOTAC) degraders, ACS Cent Sci, doi:10.1021/acscentsci.0c00984
Hartenian, Nandakumar, The molecular virology of coronaviruses, J Biol Chem, doi:10.1074/jbc.REV120.013930
Hashem, Des Georges, Dhote, Hepatitis-C-virus-like internal ribosome entry sites displace eIF3 to gain access to the 40S subunit, Nature, doi:10.1038/nature12658
Hegde, Tang, Zhao, Inhibition of SARS-CoV-2 by targeting conserved viral RNA structures and sequences, Front Chem, doi:10.3389/fchem.2021.802766
Hilgenfeld, Peiris, From SARS to MERS: 10 years of research on highly pathogenic human coronaviruses, Antiviral Res, doi:10.1016/j.antiviral.2013.08.015
Hinnebusch, Ivanov, Sonenberg, Translational control by 5 0 -untranslated regions of eukaryotic mRNAs, Science, doi:10.1126/science.aad9868
Hoang, Luong, Ayun, A novel approach of antiviral drugs targeting viral genomes, Microorganisms, doi:10.3390/microorganisms10081552
Huang, Lokugamage, Rozovics, SARS coronavirus nsp1 protein induces template-dependent endonucleolytic cleavage of mRnas: viral mRNAs are resistant to nsp1-induced RNA cleavage, PloS Pathog, doi:10.1371/journal.ppat.1002433
Huston, Wan, Strine, Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms, Mol Cell, doi:10.1016/j.molcel.2020.12.041
Idris, Davis, Supramaniam, A SARS-CoV-2 targeted siRNA-nanoparticle therapy for COVID-19, Mol Ther, doi:10.1016/j.ymthe.2021.05.004
Imperatore, Cunningham, Pellegrene, Highly conserved s2m element of SARS-CoV-2 dimerizes via a kissing complex and interacts with host miRNA-1307-3p, Nucleic Acids Res, doi:10.1093/nar/gkab1226
Jaafar, Kieft, Viral RNA structure-based strategies to manipulate translation, Nat Rev Microbiol, doi:10.1038/s41579-018-0117-x
Jiang, Joshi, Gan, The highly conserved stem-loop II motif is dispensable for SARS-CoV-2, J Virol, doi:10.1128/jvi.00635-23
Johnstone, Bazzini, Giraldez, Upstream ORFs are prevalent translational repressors in vertebrates, Embo J, doi:10.15252/embj.201592759
Kean, The role of mRNA 5 0 -noncoding and 3 0 -end sequences on 40S ribosomal subunit recruitment, and how RNA viruses successfully compete with cellular mRNAs to ensure their own protein synthesis, Biol Cell, doi:10.1016/S0248-4900(03)00030-3
Kelly, Olson, Neupane, Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2), J Biol Chem, doi:10.1074/jbc.AC120.013449
Khaitov, Nikonova, Shilovskiy, Silencing of SARS-CoV-2 with modified siRNA-peptide dendrimer formulation, Allergy, doi:10.1111/all.14850
Khan, Terenzi, Liu, A viral pan-end RNA element and host complex define a SARS-CoV-2 regulon, Nat Commun, doi:10.1038/s41467-023-39091-3
Kim, Kim, Park, A high-resolution temporal atlas of the SARS-CoV-2 translatome and transcriptome, Nat Commun, doi:10.1038/s41467-021-25361-5
Kim, Lee, Yang, The architecture of SARS-CoV-2 transcriptome, Cell, doi:10.1016/j.cell.2020.04.011
Kozak, Initiation of translation in prokaryotes and eukaryotes, Gene, doi:10.1016/S0378-1119(99)00210-3
Kozak, Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes, Cell, doi:10.1016/0092-8674(86)90762-2
Kozak, Pushing the limits of the scanning mechanism for initiation of translation, Gene, doi:10.1016/S0378-1119(02)01056-9
Kung, Lee, Chiang, Molecular virology of SARS-CoV-2 and related coronaviruses, Microbiol Mol Biol Rev, doi:10.1128/mmbr.00026-21
Kwan, Thompson, Noncanonical translation initiation in eukaryotes, Cold Spring Harb Perspect Biol, doi:10.1101/cshperspect.a032672
Lan, Allan, Malsick, Secondary structural ensembles of the SARS-CoV-2 RNA genome in infected cells, Nat Commun, doi:10.1038/s41467-022-28603-2
Lapointe, Grosely, Johnson, Dynamic competition between SARS-CoV-2 NSP1 and mRNA on the human ribosome inhibits translation initiation, Proc Natl Acad Sci, doi:10.1073/pnas.2017715118
Lee, Budhathoki, Lee, Broad-spectrum antiviral activity of 3D8, a nucleic acid-hydrolyzing single-chain variable fragment (scFv), targeting SARS-CoV-2 and multiple coronaviruses in vitro, Viruses, doi:10.3390/v13040650
Lei, Cheng, Wang, The influence of host miRNA binding to RNA within RNA viruses on virus multiplication, Front Cell Infect Microbiol, doi:10.3389/fcimb.2022.802149
Leppek, Das, Barna, Functional 5 0 UTR mRNA structures in eukaryotic translation regulation and how to find them, Nat Rev Mol Cell Biol, doi:10.1038/nrm.2017.103
Li, Callahan, Phadke, Automated flow synthesis of peptide-pna conjugates, ACS Cent Sci, doi:10.1021/acscentsci.1c01019
Li, Hilgenfeld, Whitley, Therapeutic strategies for COVID-19: progress and lessons learned, Nat Rev Drug Discov, doi:10.1038/s41573-023-00672-y
Li, Kang, Liu, Structural lability in stem-loop 1 drives a 5 0 UTR-3 0 UTR interaction in coronavirus replication, J Mol Biol, doi:10.1016/j.jmb.2008.01.068
Li, Sczepanski, Targeting a conserved structural element from the SARS-CoV-2 genome using l-DNA aptamers, RSC Chem Biol, doi:10.1039/D1CB00172H
Li, Structure-based design of antisense oligonucleotides that inhibit SARS-CoV-2 replication, bioRxiv
Li, Tang, Atlas of interactions between SARS-CoV-2 macromolecules and host proteins, Cell Insight, doi:10.1016/j.cellin.2022.100068
Li, Zhang, Zhang, LinearTurboFold: linear-time global prediction of conserved structures for RNA homologs with applications to SARS-CoV-2, Proc Natl Acad Sci U S A, doi:10.1073/pnas.2116269118
Lukavsky, Structure and function of HCV IRES domains, Virus Res, doi:10.1016/j.virusres.2008.06.004
Lulla, Wandel, Bandyra, Targeting the conserved stem loop 2 motif in the SARS-CoV-2 genome, J Virol, doi:10.1128/JVI.00663-21
Malone, Urakova, Snijder, Structures and functions of coronavirus replication-transcription complexes and their relevance for SARS-CoV-2 drug design, Nat Rev Mol Cell Biol, doi:10.1038/s41580-021-00432-z
Manfredonia, Nithin, Ponce-Salvatierra, Genome-wide mapping of SARS-CoV-2 RNA structures identifies therapeutically-relevant elements, Nucleic Acids Res, doi:10.1093/nar/gkaa1053
Martinez-Salas, Velilla, Fernandez-Chamorro, Insights into structural and mechanistic features of viral IRES elements, Front Microbiol, doi:10.3389/fmicb.2017.02629
Mathez, Cagno, Small molecules targeting viral RNA, Int J Mol Sci, doi:10.3390/ijms241713500
Mayr, What are 3 0 UTRs doing? Cold Spring, Harb Perspect Biol, doi:10.1101/cshperspect.a034728
Miao, Tidu, Eriani, Secondary structure of the SARS-CoV-2 5'-UTR, RNA Biology, doi:10.1080/15476286.2020.1814556
Morandi, Manfredonia, Simon, Genome-scale deconvolution of RNA structure ensembles, Nat Methods, doi:10.1038/s41592-021-01075-w
Nabiabad, Amini, Demirdas, Specific delivering of RNAi using spike's aptamer-functionalized lipid nanoparticles for targeting SARS-CoV-2: a strong anti-covid drug in a clinical case study, Chem Biol Drug Des, doi:10.1111/cbdd.13978
Niktab, Haghparast, Beigi, Design of advanced siRNA therapeutics for the treatment of COVID-19, Meta Gene, doi:10.1016/j.mgene.2021.100910
Ou, Liu, Lei, Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV, Nat Commun, doi:10.1038/s41467-020-15562-9
Pfafenrot, Schneider, Müller, Inhibition of SARS-CoV-2 coronavirus proliferation by designer antisense-circRNAs, Nucleic Acids Res, doi:10.1093/nar/gkab1096
Plant, Pérez-Alvarado, Jacobs, A three-stemmed mRNA pseudoknot in the SARS coronavirus frameshift signal, PLOS Biol, doi:10.1371/journal.pbio.0030172
Preiss, Hentze, From factors to mechanisms: translation and translational control in eukaryotes, Curr Opin Genet Dev, doi:10.1016/S0959-437X(99)00005-2
Qiao, Wotring, Zhang, Antisense oligonucleotides to therapeutically target SARS-CoV-2 infection, PLOS ONE, doi:10.1371/journal.pone.0281281
Ramos-Lorente, Berzal-Herranz, Romero-López, Recruitment of the 40S ribosomal subunit by the West Nile virus 3 0 UTR promotes the cross-talk between the viral genomic ends for translation regulation, Virus Res, doi:10.1016/j.virusres.2024.199340
Rasekhian, Roohvand, Habtemariam, The role of 3'UTR of RNA viruses on mRNA stability and translation enhancement, MRMC, doi:10.2174/1389557521666210217092305
Roberts, Langer, Wood, Advances in oligonucleotide drug delivery, Nat Rev Drug Discov, doi:10.1038/s41573-020-0075-7
Robertson, Igel, Baertsch, The structure of a rigorously conserved RNA element within the SARS virus genome, PLOS Biol, doi:10.1371/journal.pbio.0030005
Roman, Lewicka, Koirala, The SARS-CoV-2 programmed -1 ribosomal frameshifting element crystal structure solved to 2.09 Å using chaperone-assisted RNA crystallography, ACS Chem Biol, doi:10.1021/acschembio.1c00324
Rosenke, Leventhal, Moulton, Inhibition of SARS-CoV-2 in Vero cell cultures by peptide-conjugated morpholino oligomers, J Antimicrob Chemother, doi:10.1093/jac/dkaa460
Sajjanar, Raina, Untranslated regions (UTRs) orchestrate translation reprogramming in cellular stress responses, J Therm Biol, doi:10.1016/j.jtherbio.2017.02.006
Schlick, Zhu, Dey, To knot or not to knot: multiple conformations of the SARS-CoV-2 frameshifting RNA element, J Am Chem Soc, doi:10.1021/jacs.1c03003
Schoggins, Wilson, Panis, A diverse range of gene products are effectors of the type I interferon antiviral response, Nature, doi:10.1038/nature09907
Schubert, Karousis, Jomaa, SARS-CoV-2 Nsp1 binds the ribosomal mRNA channel to inhibit translation, Nat Struct Mol Biol, doi:10.1038/s41594-020-0511-8
Shang, Wan, Luo, Cell entry mechanisms of SARS-CoV-2, Proc Natl Acad Sci, doi:10.1073/pnas.2003138117
Slobodin, Sehrawat, Cap-independent translation and a precisely located RNA sequence enable SARS-CoV-2 to control host translation and escape anti-viral response, Nucleic Acids Res, doi:10.1093/nar/gkac615
Snijder, Bredenbeek, Dobbe, Unique and conserved features of genome and proteome of sars-coronavirus, an early split-off from the coronavirus group 2 lineage, J Mol Biol, doi:10.1016/S0022-2836(03)00865-9
Snijder, Limpens, De Wilde, A unifying structural and functional model of the coronavirus replication organelle: tracking down RNA synthesis, PLoS Biol, doi:10.1371/journal.pbio.3000715
Sola, Almazán, Zúñiga, Continuous and discontinuous RNA synthesis in coronaviruses, Annu Rev Virol, doi:10.1146/annurev-virology-100114-055218
Sorokin, Vassilenko, Terenin, Non-canonical translation initiation mechanisms employed by Eukaryotic viral mRNAs, Biochemistry (Mosc), doi:10.1134/S0006297921090042
Spahn, Mulder, Cryo-em visualization of a viral internal ribosome entry site bound to human ribosomes: the IRES functions as an RNA-based translation factor, Cell, doi:10.1016/j.cell.2004.08.001
Stern-Ginossar, Thompson, Mathews, Translational control in virus-infected cells, Cold Spring Harb Perspect Biol, doi:10.1101/cshperspect.a033001
Su, Ma, Feng, Efficient inhibition of SARS-CoV-2 using chimeric antisense oligonucleotides through RNase L activation*, Angew Chem Int Ed Engl, doi:10.1002/anie.202105942
Sun, Abriola, Niederer, Restriction of SARS-CoV-2 replication by targeting programmed -1 ribosomal frameshifting, Proc Natl Acad Sci, doi:10.1073/pnas.2023051118
Sun, Li, Ju, In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs, Cell, doi:10.1016/j.cell.2021.02.008
Szczesniak, Baliga-Gil, Jarmolowicz, Structural and functional RNA motifs of SARS-CoV-2 and influenza a virus as a target of viral inhibitors, Int J Mol Sci, doi:10.3390/ijms24021232
Tan, Yin, RNAi, a new therapeutic strategy against viral infection, Cell Res, doi:10.1038/sj.cr.7290248
Tengs, Kristoffersen, Bachvaroff, A mobile genetic element with unknown function found in distantly related viruses, Virol J, doi:10.1186/1743-422X-10-132
Thoms, Buschauer, Ameismeier, Structural basis for translational shutdown and immune evasion by the Nsp1 protein of SARS-CoV-2, Science, doi:10.1126/science.abc8665
Tidu, Janvier, Schaeffer, The viral protein NSP1 acts as a ribosome gatekeeper for shutting down host translation and fostering SARS-CoV-2 translation, RNA, doi:10.1261/rna.078121.120
Tolksdorf, Nie, Niemeyer, Inhibition of SARS-CoV-2 replication by a small interfering RNA targeting the leader sequence, Viruses, doi:10.3390/v13102030
Varricchio, Mathez, Pillonel, Geneticin shows selective antiviral activity against SARS-CoV-2 by interfering with programmed -1 ribosomal frameshifting, Antiviral Res, doi:10.1016/j.antiviral.2022.105452
Vora, Fontana, Mao, Targeting stem-loop 1 of the SARS-CoV-2 5 0 UTR to suppress viral translation and Nsp1 evasion, Proc Natl Acad Sci, doi:10.1073/pnas.2117198119
Wacker, Weigand, Akabayov, Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy, Nucleic Acids Res, doi:10.1093/nar/gkaa1013
Wang, Zhou, Wang, Rapid design and development of CRISPR-Cas13a targeting SARS-CoV-2 spike protein, Theranostics, doi:10.7150/thno.51479
Weinlich, Hüttelmaier, Schierhorn, IGF2BP1 enhances HCV ires-mediated translation initiation via the 3 0 UTR, RNA, doi:10.1261/rna.1578409
Wethmar, The regulatory potential of upstream open reading frames in eukaryotic gene expression, Wiley Interdiscip Rev RNA, doi:10.1002/wrna.1245
Wu, Luo, Developing effective siRNAs to reduce the expression of key viral genes of COVID-19, Int J Biol Sci, doi:10.7150/ijbs.59151
Yang, Olatunji, Rhodes, Discovery of small molecules targeting the frameshifting element RNA in SARS-CoV-2 viral genome, ACS Med Chem Lett, doi:10.1021/acsmedchemlett.3c00051
Yao, Sun, Chen, RBM24 inhibits the translation of SARS-CoV-2 polyproteins by targeting the 5 0 -untranslated region, Antiviral Res, doi:10.1016/j.antiviral.2022.105478
Yokoyama, Machida, Iwasaki, HCV IRES captures an actively translating 80S ribosome, Mol Cell, doi:10.1016/j.molcel.2019.04.022
Zafferani, Haddad, Luo, Amilorides inhibit SARS-CoV-2 replication in vitro by targeting RNA structures, Sci Adv, doi:10.1126/sciadv.abl6096
Zamore, Haley, Ribo-gnome: the big world of small RNAs, Science, doi:10.1126/science.1111444
Zeng, Liu, Nguyenla, Broad-spectrum crispr-mediated inhibition of SARS-CoV-2 variants and endemic coronaviruses in vitro, Nat Commun, doi:10.1038/s41467-022-30546-7
Zhang, Almazi, Ong, Nanoparticle delivery platforms for RNAi therapeutics targeting COVID-19 disease in the respiratory tract, Int J Mol Sci, doi:10.3390/ijms23052408
Zhang, Huang, Ren, Comparison of viral RNA-host protein interactomes across pathogenic RNA viruses informs rapid antiviral drug discovery for SARS-CoV-2, Cell Res, doi:10.1038/s41422-021-00581-y
Zhang, Huang, Xie, In vivo structure and dynamics of the SARS-CoV-2 RNA genome, Nat Commun, doi:10.1038/s41467-021-25999-1
Zhang, Zheludev, Hagey, Cryo-em and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome, Nat Struct Mol Biol, doi:10.1038/s41594-021-00653-y
Zhou, Chen, Wang, Advances of CRISPR-Cas13 system in COVID-19 diagnosis and treatment, Genes Dis, doi:10.1016/j.gendis.2022.11.016
Zhu, Lee, Woo, An intranasal ASO therapeutic targeting SARS-CoV-2, Nat Commun, doi:10.1038/s41467-022-32216-0
Ziebuhr, Snijder, Gorbalenya, Virus-encoded proteinases and proteolytic processing in the Nidovirales, J Gen Virol, doi:10.1099/0022-1317-81-4-853
Ziv, Gabryelska, Lun, COMRADES determines in vivo RNA structures and interactions, Nat Methods, doi:10.1038/s41592-018-0121-0
Ziv, Price, Shalamova, The short-and long-range RNA-RNA interactome of SARS-CoV-2, Mol Cell, doi:10.1016/j.molcel.2020.11.004
{ 'indexed': { 'date-parts': [[2024, 12, 12]], 'date-time': '2024-12-12T15:10:22Z', 'timestamp': 1734016222442, 'version': '3.30.2'}, 'reference-count': 142, 'publisher': 'Informa UK Limited', 'issue': '1', 'license': [ { 'start': { 'date-parts': [[2024, 12, 4]], 'date-time': '2024-12-04T00:00:00Z', 'timestamp': 1733270400000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'http://creativecommons.org/licenses/by-nc/4.0/'}], 'funder': [ { 'DOI': '10.13039/501100018542', 'name': 'Natural Science Foundation of Sichuan Province', 'doi-asserted-by': 'crossref', 'award': ['2022NSFSC0722'], 'id': [{'id': '10.13039/501100018542', 'id-type': 'DOI', 'asserted-by': 'crossref'}]}], 'content-domain': {'domain': ['www.tandfonline.com'], 'crossmark-restriction': True}, 'published-print': {'date-parts': [[2024, 12, 31]]}, 'DOI': '10.1080/15476286.2024.2433830', 'type': 'journal-article', 'created': {'date-parts': [[2024, 12, 4]], 'date-time': '2024-12-04T15:38:17Z', 'timestamp': 1733326697000}, 'page': '1290-1307', 'update-policy': 'https://doi.org/10.1080/tandf_crossmark_01', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Decoding the genome of SARS-CoV-2: a pathway to drug development through translation inhibition', 'prefix': '10.1080', 'volume': '21', 'author': [ { 'given': 'Shan-Na', 'family': 'Wu', 'sequence': 'first', 'affiliation': [ { 'name': 'Department of Pharmaceutics, Key Laboratory of Drug-Targeting ' 'and Drug Delivery System of the Education Ministry and Sichuan ' 'Province, Sichuan Engineering Laboratory for Plant-Sourced Drug ' 'and Sichuan Research Center for Drug Precision Industrial ' 'Technology, West China School of Pharmacy, Sichuan University, ' 'Chengdu, China'}]}, { 'given': 'Ting', 'family': 'Xiao', 'sequence': 'additional', 'affiliation': [ { 'name': 'Key Laboratory of Birth Defects and Related Diseases of Women ' 'and Children, Children’s Medicine Key Laboratory of Sichuan ' 'Province, Department of Pharmacy/Evidence-Based Pharmacy Center, ' 'West China Second University Hospital, Sichuan University, ' 'Chengdu, China'}]}, { 'given': 'Hui', 'family': 'Chen', 'sequence': 'additional', 'affiliation': [ { 'name': 'Key Laboratory of Birth Defects and Related Diseases of Women ' 'and Children, Children’s Medicine Key Laboratory of Sichuan ' 'Province, Department of Pharmacy/Evidence-Based Pharmacy Center, ' 'West China Second University Hospital, Sichuan University, ' 'Chengdu, China'}]}, { 'given': 'Xiao-Hong', 'family': 'Li', 'sequence': 'additional', 'affiliation': [ { 'name': 'Department of Pharmaceutics, Key Laboratory of Drug-Targeting ' 'and Drug Delivery System of the Education Ministry and Sichuan ' 'Province, Sichuan Engineering Laboratory for Plant-Sourced Drug ' 'and Sichuan Research Center for Drug Precision Industrial ' 'Technology, West China School of Pharmacy, Sichuan University, ' 'Chengdu, China'}]}], 'member': '301', 'published-online': {'date-parts': [[2024, 12, 4]]}, 'reference': [ {'key': 'e_1_3_4_2_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41564-020-0695-z'}, { 'key': 'e_1_3_4_3_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2013.08.015'}, {'key': 'e_1_3_4_4_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-023-00672-y'}, {'key': 'e_1_3_4_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/mmbr.00026-21'}, {'key': 'e_1_3_4_6_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/978-3-030-85109-5_2'}, {'key': 'e_1_3_4_7_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13060952'}, {'key': 'e_1_3_4_8_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41580-019-0136-0'}, {'key': 'e_1_3_4_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.011'}, {'key': 'e_1_3_4_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2003138117'}, {'key': 'e_1_3_4_11_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-020-15562-9'}, { 'key': 'e_1_3_4_12_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2020.104742'}, {'key': 'e_1_3_4_13_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/0022-1317-81-4-853'}, { 'key': 'e_1_3_4_14_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0022-2836(03)00865-9'}, {'key': 'e_1_3_4_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abc8665'}, {'key': 'e_1_3_4_16_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41594-020-0511-8'}, {'key': 'e_1_3_4_17_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41580-021-00432-z'}, { 'key': 'e_1_3_4_18_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pbio.3000715'}, {'key': 'e_1_3_4_19_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.chom.2020.11.003'}, {'key': 'e_1_3_4_20_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.REV120.013930'}, { 'key': 'e_1_3_4_21_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1146/annurev-virology-100114-055218'}, { 'volume-title': 'Coronaviruses, in fields virology', 'year': '2001', 'author': 'Fields BN', 'key': 'e_1_3_4_22_1', 'unstructured': 'Fields BN, Howley PM, Griffin DE. Coronaviruses, in fields virology, H. ' 'KV, Editor. PA (USA): Lippincott Williams & Wilkins; 2001.'}, {'key': 'e_1_3_4_23_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13578-021-00643-z'}, { 'key': 'e_1_3_4_24_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pbio.0030172'}, {'key': 'e_1_3_4_25_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abf3546'}, { 'key': 'e_1_3_4_26_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acs.accounts.1c00316'}, {'key': 'e_1_3_4_27_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.10.004'}, {'key': 'e_1_3_4_28_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2017715118'}, {'key': 'e_1_3_4_29_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-021-03610-3'}, {'key': 'e_1_3_4_30_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.078121.120'}, { 'key': 'e_1_3_4_31_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.ppat.1002433'}, {'key': 'e_1_3_4_32_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2117198119'}, { 'key': 'e_1_3_4_33_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0378-1119(99)00210-3'}, {'key': 'e_1_3_4_34_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v14071505'}, {'key': 'e_1_3_4_35_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature09907'}, {'key': 'e_1_3_4_36_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.aad9868'}, {'key': 'e_1_3_4_37_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.2309906'}, { 'key': 'e_1_3_4_38_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/15476286.2019.1632634'}, {'key': 'e_1_3_4_39_1', 'doi-asserted-by': 'publisher', 'DOI': '10.15252/embj.201592759'}, {'key': 'e_1_3_4_40_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/wrna.1245'}, { 'key': 'e_1_3_4_41_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1080/15476286.2020.1814556'}, {'key': 'e_1_3_4_42_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2021.02.008'}, {'key': 'e_1_3_4_43_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa1053'}, { 'key': 'e_1_3_4_44_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molcel.2020.12.041'}, {'key': 'e_1_3_4_45_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-25361-5'}, {'key': 'e_1_3_4_46_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41586-020-2739-1'}, {'key': 'e_1_3_4_47_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkac615'}, { 'key': 'e_1_3_4_48_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2174/1389557521666210217092305'}, { 'key': 'e_1_3_4_49_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2024.199340'}, { 'key': 'e_1_3_4_50_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0378-1119(02)01056-9'}, { 'key': 'e_1_3_4_51_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0092-8674(86)90762-2'}, {'key': 'e_1_3_4_52_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1134/S0006297921090042'}, {'key': 'e_1_3_4_53_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1099/vir.0.042499-0'}, { 'key': 'e_1_3_4_54_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/cshperspect.a032672'}, {'key': 'e_1_3_4_55_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.0900153106'}, {'key': 'e_1_3_4_56_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2004.08.001'}, {'key': 'e_1_3_4_57_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nature12658'}, {'key': 'e_1_3_4_58_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gku720'}, {'key': 'e_1_3_4_59_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2017.02629'}, { 'key': 'e_1_3_4_60_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virusres.2008.06.004'}, {'key': 'e_1_3_4_61_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkx622'}, {'key': 'e_1_3_4_62_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.5950603'}, {'key': 'e_1_3_4_63_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.str.2011.08.002'}, { 'key': 'e_1_3_4_64_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S1369-5274(00)00069-2'}, {'key': 'e_1_3_4_65_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1006/jmbi.2000.3900'}, { 'key': 'e_1_3_4_66_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molcel.2019.04.022'}, { 'key': 'e_1_3_4_67_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jtherbio.2017.02.006'}, { 'key': 'e_1_3_4_68_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/cshperspect.a033001'}, {'key': 'e_1_3_4_69_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41579-018-0117-x'}, {'key': 'e_1_3_4_70_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-25999-1'}, {'key': 'e_1_3_4_71_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkaa1013'}, {'key': 'e_1_3_4_72_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00803-06'}, { 'key': 'e_1_3_4_73_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.molcel.2020.11.004'}, {'key': 'e_1_3_4_74_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41592-021-01075-w'}, {'key': 'e_1_3_4_75_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkab1226'}, { 'key': 'e_1_3_4_76_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1101/cshperspect.a034728'}, {'key': 'e_1_3_4_77_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsomega.4c01050'}, { 'key': 'e_1_3_4_78_1', 'unstructured': 'Predicted targets of hsa-miR-1307-3p mature miRNA. Available from: ' 'https://www.mirbase.org/mature/MIMAT0005951'}, {'key': 'e_1_3_4_79_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fcimb.2022.802149'}, {'key': 'e_1_3_4_80_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1007/s00018-016-2377-9'}, { 'key': 'e_1_3_4_81_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pbio.0030005'}, {'key': 'e_1_3_4_82_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41592-018-0121-0'}, { 'key': 'e_1_3_4_83_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/0022-2836(87)90455-4'}, {'key': 'e_1_3_4_84_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2116269118'}, {'key': 'e_1_3_4_85_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jmb.2008.01.068'}, { 'key': 'e_1_3_4_86_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0959-437X(99)00005-2'}, { 'key': 'e_1_3_4_87_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/S0248-4900(03)00030-3'}, {'key': 'e_1_3_4_88_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41422-021-00581-y'}, { 'key': 'e_1_3_4_89_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cellin.2022.100068'}, {'key': 'e_1_3_4_90_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.1578409'}, {'key': 'e_1_3_4_91_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-023-39091-3'}, {'key': 'e_1_3_4_92_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41594-021-00653-y'}, {'key': 'e_1_3_4_93_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acschembio.1c00324'}, {'key': 'e_1_3_4_94_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/jacs.1c03003'}, {'key': 'e_1_3_4_95_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1261/rna.080035.124'}, {'key': 'e_1_3_4_96_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-28603-2'}, { 'key': 'e_1_3_4_97_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/microorganisms10081552'}, {'key': 'e_1_3_4_98_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.jbc.2021.100416'}, {'key': 'e_1_3_4_99_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-021-00162-z'}, {'key': 'e_1_3_4_100_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41573-020-0075-7'}, {'key': 'e_1_3_4_101_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2217/epi-2020-0162'}, {'key': 'e_1_3_4_102_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fmicb.2022.915202'}, { 'key': 'e_1_3_4_103_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1371/journal.pone.0281281'}, {'key': 'e_1_3_4_104_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/anie.202105942'}, {'key': 'e_1_3_4_105_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.1111444'}, {'key': 'e_1_3_4_106_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/sj.cr.7290248'}, {'key': 'e_1_3_4_107_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms23052408'}, { 'key': 'e_1_3_4_108_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.mgene.2021.100910'}, {'key': 'e_1_3_4_109_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/all.14850'}, {'key': 'e_1_3_4_110_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/ijbs.59151'}, {'key': 'e_1_3_4_111_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13102030'}, { 'key': 'e_1_3_4_112_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.ymthe.2021.05.004'}, {'key': 'e_1_3_4_113_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1111/cbdd.13978'}, { 'key': 'e_1_3_4_114_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.gendis.2022.11.016'}, { 'key': 'e_1_3_4_115_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.cell.2020.04.020'}, {'key': 'e_1_3_4_116_1', 'doi-asserted-by': 'publisher', 'DOI': '10.7150/thno.51479'}, { 'key': 'e_1_3_4_117_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-021-24577-9'}, { 'key': 'e_1_3_4_118_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-30546-7'}, { 'key': 'e_1_3_4_119_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-34339-w'}, {'key': 'e_1_3_4_120_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/v13040650'}, {'key': 'e_1_3_4_121_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3389/fchem.2021.802766'}, { 'key': 'e_1_3_4_122_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41467-022-32216-0'}, {'key': 'e_1_3_4_123_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/jac/dkaa460'}, { 'key': 'e_1_3_4_124_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acscentsci.1c01019'}, {'key': 'e_1_3_4_125_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/nar/gkab1096'}, {'key': 'e_1_3_4_126_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/sciadv.abl6096'}, { 'key': 'e_1_3_4_127_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2022.105478'}, { 'key': 'e_1_3_4_128_1', 'doi-asserted-by': 'crossref', 'unstructured': 'Li Y. Structure-based design of antisense oligonucleotides that inhibit ' 'SARS-CoV-2 replication. bioRxiv 2021.', 'DOI': '10.1101/2021.08.23.457434'}, {'key': 'e_1_3_4_129_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1074/jbc.AC120.013449'}, {'key': 'e_1_3_4_130_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2023051118'}, { 'key': 'e_1_3_4_131_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.antiviral.2022.105452'}, { 'key': 'e_1_3_4_132_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acsmedchemlett.3c00051'}, { 'key': 'e_1_3_4_133_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1021/acscentsci.0c00984'}, { 'key': 'e_1_3_4_134_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.bbrc.2021.01.013'}, {'key': 'e_1_3_4_135_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/JVI.00663-21'}, {'key': 'e_1_3_4_136_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1039/D1CB00172H'}, {'key': 'e_1_3_4_137_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms24021232'}, {'key': 'e_1_3_4_138_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/nrm.2017.103'}, {'key': 'e_1_3_4_139_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1002/wrna.1126'}, { 'key': 'e_1_3_4_140_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.virol.2004.11.038'}, {'key': 'e_1_3_4_141_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijms241713500'}, {'key': 'e_1_3_4_142_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1128/jvi.00635-23'}, {'key': 'e_1_3_4_143_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/1743-422X-10-132'}], 'container-title': 'RNA Biology', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.tandfonline.com/doi/pdf/10.1080/15476286.2024.2433830', 'content-type': 'unspecified', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 12, 12]], 'date-time': '2024-12-12T14:41:42Z', 'timestamp': 1734014502000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.tandfonline.com/doi/full/10.1080/15476286.2024.2433830'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 12, 4]]}, 'references-count': 142, 'journal-issue': {'issue': '1', 'published-print': {'date-parts': [[2024, 12, 31]]}}, 'alternative-id': ['10.1080/15476286.2024.2433830'], 'URL': 'http://dx.doi.org/10.1080/15476286.2024.2433830', 'relation': {}, 'ISSN': ['1547-6286', '1555-8584'], 'subject': [], 'container-title-short': 'RNA Biology', 'published': {'date-parts': [[2024, 12, 4]]}, 'assertion': [ { 'value': 'The publishing and review policy for this title is described in its Aims & ' 'Scope.', 'order': 1, 'name': 'peerreview_statement', 'label': 'Peer Review Statement'}, { 'value': 'http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=krnb20', 'URL': 'http://www.tandfonline.com/action/journalInformation?show=aimsScope&journalCode=krnb20', 'order': 2, 'name': 'aims_and_scope_url', 'label': 'Aim & Scope'}, { 'value': '2024-11-16', 'order': 1, 'name': 'revised', 'label': 'Revised', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2024-11-19', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'publication_history', 'label': 'Publication History'}}, { 'value': '2024-12-04', 'order': 3, 'name': 'published', 'label': 'Published', 'group': {'name': 'publication_history', 'label': 'Publication History'}}]}
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit