Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review
Abhinav Sati, Tanvi N Ranade, Suraj N Mali, Haya Khader Ahmad Yasin, Nehal Samdani, Nikil Navnath Satpute, Susmita Yadav, Amit P Pratap
Molecules, doi:10.3390/molecules30092004
AgNPs have gained significant attention due to their unique physicochemical properties, making them valuable across a range of fields including medicine, textiles, and household products. With their strong antimicrobial and antiviral properties, AgNPs have shown promise in treating infections, particularly in wound care management. This review explores the mechanisms underlying the antiviral activities of AgNPs, as well as the methods used for their synthesis, which include physical, chemical, and biological approaches. The review also addresses the potential limitations of AgNPs, including their cytotoxicity to humans and the environment. The interaction between AgNPs and microorganisms, particularly viruses, varies based on synthesis methods and particle morphology. As viral infections, including resistant strains, present major global health challenges, there is a growing need for alternative antiviral therapies. Metal nanoparticles like AgNPs offer potential advantages over conventional antiviral drugs due to their broad target range, which reduces the likelihood of resistance development. This review highlights AgNPs' effectiveness against a variety of viruses, such as HIV, hepatitis B, and respiratory syncytial virus, and discusses their potential for use in novel antiviral treatments. The review also examines AgNPs' toxicity, offering insights into their future therapeutic roles.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Abdel-Halim, El-Rafie, Al-Deyab, Polyacrylamide/Guar Gum Graft Copolymer for Preparation of Silver Nanoparticles, Carbohydr. Polym, 
doi:10.1016/j.carbpol.2011.03.039Abdelkhaliq, Van Der Zande, Peters, Bouwmeester, Combination of the BeWo B30 Placental Transport Model and the Embryonic Stem Cell Test to Assess the Potential Developmental Toxicity of Silver Nanoparticles, Part. Fibre Toxicol, 
doi:10.1186/s12989-020-00342-6Agnihotri, Mukherji, Mukherji, Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm Using the Same Protocol and Their Antibacterial Efficacy, RSC Adv, 
doi:10.1039/c3ra44507kAhmed, Murtaza, Mehmood, Bhatti, Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia Laureola: Characterization and Antibacterial Activity, Mater. Lett, 
doi:10.1016/j.matlet.2015.03.143Ahmed, Saifullah; Ahmad, Swami, Ikram, Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract, J. Radiat. Res. Appl. Sci, 
doi:10.1016/j.jrras.2015.06.006Al-Askar, Aseel, El-Gendi, Sobhy, Samy et al., Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica Granatum L.) Peel Extract against Tobacco Mosaic Virus, Plants, 
doi:10.3390/plants12112103Al-Mubaddel, Haider, Al-Masry, Al-Zeghayer, Imran et al., Engineered Nanostructures: A Review of Their Synthesis, Characterization and Toxic Hazard Considerations, Arab. J. Chem, 
doi:10.1016/j.arabjc.2012.09.010Alharbi, Ahmed, Abdul Rahman, Zahirah Noor Azman, Algburi et al., Development of ZnO and Si Semiconductor-Based Ultraviolet Photodetectors Enhanced by Laser-Ablated Silver Nanoparticles, Photonics Nanostruct, 
doi:10.1016/j.photonics.2024.101228Ali, Tahir Maher, Al-Bajari, Green biosynthesis of silver nanoparticles from taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells, J. Hyg. Eng. Des
Alshehri, Jakubowska, Mło Żniak, Horaczek, Rudka et al., Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications, ACS Appl. Mater. Interfaces, 
doi:10.1021/am3022569Alwan, Al-Saeed, Abid, Safety Assessment and Biochemical Evaluation of the Effect of Biogenic Silver Nanoparticles (Using Bark Extract of C. Zeylanicum) on Rattus Norvegicus Rats. Baghdad, J. Biochem. Appl. Biol. Sci, 
doi:10.47419/bjbabs.v2i03.67Amaral, Carraro, Antoniêto, Costa, Fraga-Silva et al., Biogenic Silver Nanoparticles Produced by Trichoderma Reesei Inhibit SARS-CoV-2 Infection, Reduce Lung Viral Load and Ameliorate Acute Pulmonary Inflammation, Curr. Res. Biotechnol, 
doi:10.1016/j.crbiot.2025.100277Amendola, Meneghetti, Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles, Phys. Chem. Chem. Phys, 
doi:10.1039/b900654kAshraf, Ansari, Khan, Alzohairy, Choi, Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques, Sci. Rep, 
doi:10.1038/srep20414Baloushi, Senthilkumar, Kandhan, Subramanian, Kizhakkayil et al., Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells, Int. J. Nanomed, 
doi:10.2147/IJN.S451694Bamal, Singh, Chaudhary, Kumar, Singh et al., Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review, Nanomaterials, 
doi:10.3390/nano11082086Barabadi, Vahidi, Karami, Kamali, Jounaki et al., Cephalosporium Aphidicola-Derived Silver Nanoparticles: In Vitro Physicochemical, Antibacterial, Antifungal, Biofilm Inhibition, Biofilm Degradation, Antioxidant, Alpha-Amylase, and Urease Inhibitory Properties, Bionanoscience, 
doi:10.1007/s12668-024-01622-7Baram-Pinto, Shukla, Gedanken, Sarid, Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles, Small, 
doi:10.1002/smll.200902384Bastys, Pastoriza-Santos, Rodríguez-González, Vaisnoras, Liz-Marzán, Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths, Adv. Funct. Mater, 
doi:10.1002/adfm.200500667Bhagat, Rajput, Arya, Khan, Lehana, Biological and Electrical Properties of Biosynthesized Silver Nanoparticles, Bull. Mater. Sci
Bharti, Mukherji, Mukherji, Antiviral Application of Colloidal and Immobilized Silver Nanoparticles, Nanotechnology, 
doi:10.1088/1361-6528/abe489Bouafia, Laouini, Ahmed, Soldatov, Algarni et al., The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications, Nanomaterials, 
doi:10.3390/nano11092318Butler, Hrncirova, Jacot, Dutta, Clark et al., Detection and Quantification of Antiviral Drug Tenofovir Using Silver Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) with Spatially Resolved Hotspot Selection, Front. Nanotechnol, 
doi:10.3389/fnano.2023.1270474Chen, Aqeel, Maqsood, Khalid, Irshad et al., Mitigation of Lead Toxicity in Vigna Radiata Genotypes by Silver Nanoparticles, Environ. Pollut, 
doi:10.1016/j.envpol.2022.119606Chen, Huang, Pranata, Lee, Chen et al., Modulation of Innate Immune Toxicity by Silver Nanoparticle Exposure and the Preventive Effects of Pterostilbene, Int. J. Mol. Sci, 
doi:10.3390/ijms22052536Chen, Liang, An Overview of Functional Nanoparticles as Novel Emerging Antiviral Therapeutic Agents, Mater. Sci. Eng. C, 
doi:10.1016/j.msec.2020.110924Chi, Lin, Li, Zhang, Zhang, In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells, Environ. Sci. Pollut. Res
Cho, Mizuta, Akagi, Toyoda, Sone et al., Size-Dependent Acute Toxicity of Silver Nanoparticles in Mice, J. Toxicol. Pathol, 
doi:10.1293/tox.2017-0043Das, Kumar, Singh, Agrawal, Albukhaty et al., Green Synthesis of Silver Nanoparticles Using Trema Orientalis (L.) Extract and Evaluation of Their Antibacterial Activity, Green. Chem. Lett. Rev, 
doi:10.1080/17518253.2024.2444679De Souza, Rosa, Constantino-Teles, Ferreira, Archanjo et al., Silver Nanoparticles-Functionalized Textile against SARS-CoV-2: Antiviral Activity of the Capping Oleylamine Molecule, ACS Appl. Mater. Interfaces, 
doi:10.1021/acsami.4c15289Demchenko, Mamunya, Sytnyk, Iurzhenko, Krivtsun et al., Fabrication of Polylactide Composites with Silver Nanoparticles by Sputtering Deposition and Their Antimicrobial and Antiviral Applications, Polym. Int, 
doi:10.1002/pi.6707Dhaka, Chand Mali, Sharma, Trivedi, A Review on Biological Synthesis of Silver Nanoparticles and Their Potential Applications, Results Chem
Dhayalan, Riyaz, Karikalan, Srinivasan, Biomedical Applications of Silver Nanoparticles
Dinç, Comprehensive Toxicity Assessment of Silver Nanoparticles on Bacteria, Human Vein Endothelial Cells, and Caenorhabditis Elegans, Results Chem, 
doi:10.1016/j.rechem.2025.102092Doan, Nguyen, Nguyen, Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review, J. Nanoparticle Res, 
doi:10.1007/s11051-023-05716-3Dos Santos, Paterno, Moreira, Sales, Original Photochemical Synthesis of Ag Nanoparticles Mediated by Potato Starch, SN Appl. Sci, 
doi:10.1007/s42452-019-0586-1Doszpoly, Shaalan, El-Matbouli, Silver Nanoparticles Proved to Be Efficient Antivirals In Vitro against Three Highly Pathogenic Fish Viruses, Viruses, 
doi:10.3390/v15081689Długosz, Żebracka, Sochocka, Franz, Ochnik et al., Selective and Complementary Antimicrobial and Antiviral Activity of Silver, Copper, and Selenium Nanoparticle Suspensions in Deep Eutectic Solvent, Env. Environ. Res, 
doi:10.1016/j.envres.2024.120351El Bagoury, Mahmoud, Kassem, Elhabashy, Green Synthesis of Silver Nanoparticles Using Green Tea Extract and Evaluation of Their Antiviral Potential against Foot-and-Mouth Disease Virus Serotype O: An In-Vitro Study. Egypt, J. Vet. Sci, 
doi:10.21608/ejvs.2024.309594.2289El-Ganainy, Soliman, Ismail, Sattar, Farroh et al., Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus, Polymers, 
doi:10.3390/polym15132961Elbeshehy, Elazzazy, Aggelis, Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens, Front. Microbiol, 
doi:10.3389/fmicb.2015.00453Elechiguerra, Burt, Morones, Camacho-Bragado, Gao et al., Interaction of Silver Nanoparticles with HIV-1, J. Nanobiotechnology, 
doi:10.1186/1477-3155-3-6Elnosary, Aboelmagd, Sofy, Sofy, Elshazly, Antiviral and Antibacterial Properties of Synthesis Silver Nanoparticles with Nigella Arvensis Aqueous Extract. Egypt, J. Chem, 
doi:10.21608/EJCHEM.2022.159976.6894Elwakil, Eldrieny, Almotairy, El-Khatib, Potent Biological Activity of Newly Fabricated Silver Nanoparticles Coated by a Carbon Shell Synthesized by Electrical Arc, Sci. Rep, 
doi:10.1038/s41598-024-54648-yElyousfi, Dellali, Mezni, Ben Ali, Hedfi et al., Toxicity of Silver Nanoparticles on the Clam Ruditapes Decussatus Assessed through Biomarkers and Clearance Rate, Mater. Res. Express, 
doi:10.1088/2053-1591/ac2c2fEmam, Elezaby, Swidan, Loutfy, Hathout, Enhancing Polyacrylonitrile Nanofibers Antiviral Activity Using Greenly Synthesized Silver Nanoparticles, Arch. Pharm, 
doi:10.1002/ardp.202400943Emma, Judith, Peter, Naomi, Sub-Acute and Chronic Toxicity of Silver Nanoparticles Synthesized by Azadirachta Indica Extract, Afr. J. Biotechnol, 
doi:10.5897/ajb2020.17057Evanoff, Chumanov, Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections, J. Phys. Chem. B, 
doi:10.1021/jp0475640Fereydani, Jalalian, Saber, Green Synthesis of Silver Nanoparticles from Cuscuta Epithymum Extract, Evaluation of Antibacterial, Antioxidant Activity, Cytotoxic Effect on MCF-7 Cell Line
Frippiat, Art, Delguste, Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives, Nanomaterials, 
doi:10.3390/nano15030202Gaikwad, Ingle, Gade, Rai, Falanga et al., Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3, Int. J. Nanomed, 
doi:10.2147/IJN.S50070Galdiero, Falanga, Vitiello, Cantisani, Marra et al., Silver Nanoparticles as Potential Antiviral Agents, Molecules, 
doi:10.3390/molecules16108894Gangal, Bachhar, Joshi, Akhtar, Duseja et al., Green Synthesis of Silver Nanoparticles from the Essential Oil of Curcuma Amada and Their Antihyperglycemic Effect in STZ Induced Diabetic Rats, Inorg. Chem. Commun, 
doi:10.1016/j.inoche.2024.112873Gattucci, Lallukka, Grifasi, Piumetti, Miola, Tannic Acid-Assisted Green Functionalization of Clinoptilolite: A Step-by-Step Characterization of Silver Nanoparticles in Situ Reduction, Ceram. Int, 
doi:10.1016/j.ceramint.2025.01.151Gharieb, Khalil, Menshawy, El-Aty, El-Khatib, The Impact of Different Temperatures on NanoSilver Carbon Manufacturing by Arc Discharge Method, Alfarama J. Basic. Appl. Sci, 
doi:10.21608/ajbas.2024.251945.1199Ghasemi, Dabirian, Kariminejad, Koohi, Nemattalab et al., Process Optimization for Green Synthesis of Silver Nanoparticles Using Rubus Discolor Leaves Extract and Its Biological Activities against Multi-Drug Resistant Bacteria and Cancer Cells, Sci. Rep, 
doi:10.1038/s41598-024-54702-9Gonçalves, Lopes Barbosa, Silva Olak, Belebecha Terezo, Nishi et al., Antiviral Therapies: Advances and Perspectives, Fundam. Clin. Pharmacol, 
doi:10.1111/fcp.12609Greulich, Braun, Peetsch, Diendorf, Siebers et al., The Toxic Effect of Silver Ions and Silver Nanoparticles towards Bacteria and Human Cells Occurs in the Same Concentration Range, RSC Adv, 
doi:10.1039/c2ra20684fGurunathan, Qasim, Choi, Do, Park et al., Antiviral Potential of Nanoparticles-Can Nanoparticles Fight against Coronaviruses?, Nanomaterials, 
doi:10.3390/nano10091645Habibi, Ghajarieh, Application of Nanofibers in Virus and Bacteria Filtration, Russ. J. Appl. Chem
Hadinejad, Morad, Jahanshahi, Zarrabi, Pazoki-Toroudi et al., A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation, Adv. Fiber Mater
Haes, Haynes, Mcfarland, Schatz, Van Duyne et al., Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy, MRS Bull, 
doi:10.1557/mrs2005.100Haghighat, Kim, Sourinejad, Yu, Johari, Titanium Dioxide Nanoparticles Affect the Toxicity of Silver Nanoparticles in Common Carp (Cyprinus Carpio), Chemosphere, 
doi:10.1016/j.chemosphere.2020.127805Hak, Jahan, Sharma, Farooqui, Article in Community Practitioner: The Journal of the Community Practitioners' & Health Visitors, Association. Community Pract, 
doi:10.5281/zenodo.10663865He, Lu, Liu, Lu, Li et al., Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size, Nanomaterials, 
doi:10.3390/nano12060990He, Qian, Yin, Zhu, Preparation of Polychrome Silver Nanoparticles in Different Solvents, J. Mater. Chem, 
doi:10.1039/B205214HHuang, Li, Sun, Lu, Su et al., Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum Camphora Leaf, Nanotechnology, 
doi:10.1088/0957-4484/18/10/105104Idres, Idris, Gao, Preclinical Testing of Antiviral SiRNA Therapeutics Delivered in Lipid Nanoparticles in Animal Models-a Comprehensive Review, Drug Deliv. Transl. Res, 
doi:10.1007/s13346-025-01815-xJaswal, Gupta, A Review on the Toxicity of Silver Nanoparticles on Human Health, Mater. Today Proc
Jeevanandam, Krishnan, Hii, Pan, Chan et al., Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites, J. Nanostructure Chem
Jian, Chen, Ahmed, Shang, Zhang et al., Toxicity and Action Mechanisms of Silver Nanoparticles against the Mycotoxin-Producing Fungus Fusarium Graminearum, J. Adv. Res, 
doi:10.1016/j.jare.2021.09.006Kakakhel, Wu, Sajjad, Zhang, Khan et al., Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus Carpio), Env. Environ. Sci. Eur, 
doi:10.1186/s12302-021-00453-7Kamarudin, Hashim, Ong, Hassan, Abdul Manaf, Synthesis of Silver Nanoparticles Stabilised by PVP for Polymeric Membrane Application: A Comparative Study, Mater. Technol, 
doi:10.1080/10667857.2021.1908768Ke, Li, Qu, Ye, Peijnenburg et al., Offspring Toxicity of Silver Nanoparticles to Arabidopsis Thaliana Flowering and Floral Development, J. Hazard. Mater, 
doi:10.1016/j.jhazmat.2019.121975Kelly, Coronado, Zhao, Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B, 
doi:10.1021/jp026731yKenmotsu, Hirasawa, Tamadate, Matsumoto, Osone et al., Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation, ACS Omega, 
doi:10.1021/acsomega.4c03046Khan, Naureen, Javed, Khalid, Khan, Alocasia Odora-Mediated Synthesis of Silver Nanoparticles, Their Cytotoxicity, and Virucidal Potential, Appl. Microbiol. Biotechnol, 
doi:10.1007/s00253-022-12298-yKhan, Saleh, Wahab, Khan, Khan et al., Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold, Int. J. Nanomed
Khayati, Janghorban, The Nanostructure Evolution of Ag Powder Synthesized by High Energy Ball Milling, Adv. Powder Technol, 
doi:10.1016/j.apt.2011.05.005Khoshnamvand, Hao, Fadare, Hanachi, Chen et al., Toxicity of Biosynthesized Silver Nanoparticles to Aquatic Organisms of Different Trophic Levels, Chemosphere, 
doi:10.1016/j.chemosphere.2020.127346Lara, Ayala-Nuñez, Ixtepan-Turrent, Rodriguez-Padilla, Mode of Antiviral Action of Silver Nanoparticles against HIV-1, J. Nanobiotechnology
Lara, Ixtepan-Turrent, Garza-Treviño, Rodriguez-Padilla, PVP-Coated Silver Nanoparticles Block the Transmission of Cell-Free and Cell-Associated HIV-1 in Human Cervical Culture, J. Nanobiotechnology, 
doi:10.1186/1477-3155-8-15Lima, Vieira, Souza, Florêncio, Silva et al., Green Synthesis of Silver Nanoparticles Using Paullinia Cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties, Pharmaceutics, 
doi:10.3390/pharmaceutics17030356Losetty, Devanesan, Alsalhi, Velu, Muthupillai et al., Green Synthesis of Silver Nanoparticles Using Malachra Alceifolia (Wild Okra) for Wastewater Treatment and Biomedical Applications with Molecular Docking Approach, Environ. Sci. Pollut. Res, 
doi:10.1007/s11356-024-34872-9Luceri, Francese, Lembo, Ferraris, Balagna, Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications, Microorganisms, 
doi:10.3390/microorganisms11030629Maaz, Silver Nanoparticles: Fabrication, Characterization and Applications
Makhlof, Diab, Mabrouk, Abd El Kareem, Antiviral and Antioxidant Activity, Green Synthesis, and Optimization of Silver Nanoparticles Derived from Ulva Lactuca. Egypt, J. Phycol, 
doi:10.21608/egyjs.2024.264183.1028Mali, Pandey, Multiple QSAR and Molecular Modelling for Identification of Potent Human Adenovirus Inhibitors, J. Indian. Chem. Soc, 
doi:10.1016/j.jics.2021.100082Mali, Pratap, Thorat, The Rise of New Coronavirus Infection (COVID-19): A Recent Update and Potential Therapeutic Candidates, Eurasian J. Med. Oncol
Malik, Wani, Hashim, Microemulsion Method: A Novel Route to Synthesize Organic and Inorganic Nanomaterials. 1st Nano Update, Arab. J. Chem
Manisekaran, Chettiar, Marasamy, Ibarra, Lopez-Ayuso et al., Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update, ChemistrySelect, 
doi:10.1002/slct.202403772Marinho, Matias, Toledo, Smaniotto, Ximenes-Da-Silva et al., Toxicity of Silver Nanoparticles on Different Tissues in Adult Danio Rerio, Fish. Physiol. Biochem, 
doi:10.1007/s10695-020-00909-2Martín-Faivre, Prince, Cornu, Villeret, Sanchez-Guzman et al., Pulmonary Delivery of Silver Nanoparticles Prevents Influenza Infection by Recruiting and Activating Lymphoid Cells, Biomaterials, 
doi:10.1016/j.biomaterials.2024.122721Maziero, Thipe, Rogero, Cavalcante, Damasceno et al., Species-Specific in Vitro and in Vivo Evaluation of Toxicity of Silver Nanoparticles Stabilized with Gum Arabic Protein, Int. J. Nanomed, 
doi:10.2147/IJN.S250467Mejía-Méndez, Sánchez-Ante, Cerro-López, Minutti-Calva, Navarro-López et al., Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe Fedtschenkoi: Characterization and Bioactivities, Biomolecules, 
doi:10.3390/biom14070782Michalec, Nieckarz, Klimek, Lange, Matuszewski et al., Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth, Molecules, 
doi:10.3390/molecules30071521Mohammed, Jawad, Çevik, Sulaiman, Albukhaty et al., Investigating the Antimicrobial, Antioxidant, and Anticancer Effects of Elettaria Cardamomum Seed Extract Conjugated to Green Synthesized Silver Nanoparticles by Laser Ablation, Plasmonics, 
doi:10.1007/s11468-023-02067-6Morens, Folkers, Fauci, The Challenge of Emerging and Re-Emerging Infectious Diseases, Nature, 
doi:10.1038/nature02759Mukherji, Bharti, Shukla, Mukherji, Synthesis and Characterization of Size-and Shape-Controlled Silver Nanoparticles, Phys. Sci. Rev, 
doi:10.1515/psr-2017-0082Métraux, Mirkin, Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Adv. Mater, 
doi:10.1002/adma.200401086Naganthran, Verasoundarapandian, Khalid, Masarudin, Zulkharnain et al., Characterization and Biomedical Application of Silver Nanoparticles, Materials, 
doi:10.3390/ma15020427Natsuki, Natsuki, Hashimoto, A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications, Int. J. Mater. Sci. Appl, 
doi:10.11648/j.ijmsa.20150405.17Naumenko, Zahorodnia, Pop, Rizun, Antiviral Activity of Silver Nanoparticles against the Influenza A Virus, J. Virus Erad, 
doi:10.1016/j.jve.2023.100330Niaz, Hemat, Jamil, Aziz, Exploring the Relationship between Confinement Geometry and the Formation of High-Quality Silver Nanoparticles by Laser Ablation in Liquid Media, Indian. J. Phys, 
doi:10.1007/s12648-024-03251-yNie, Zhao, Xu, Synthesis, Applications, Toxicity and Toxicity Mechanisms of Silver Nanoparticles: A Review, Ecotoxicol. Env. Environ. Saf
Noga, Milan, Frydrych, Jurowski, Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)-Critical Review: State of the Art, Int. J. Mol. Sci, 
doi:10.3390/ijms24065133Obasi, Nebolisa, Akinwunmi, Abimbolu, Ezeorah et al., Eco-Friendly and Facile Production Method, Natural Products Chemistry, and Pharmacological Properties of Silver Nanoparticles Using Telfaria Occidentalis Leaf and Stem Extracts, Eur. J. Sustain. Dev. Res, 
doi:10.29333/ejosdr/15942Papp, Sieben, Ludwig, Roskamp, Böttcher et al., Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionalized Gold Nanoparticles, Small, 
doi:10.1002/smll.201001349Park, Park, Kim, Kim, Woo et al., Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid, Appl. Env. Environ. Microbiol, 
doi:10.1128/AEM.03427-13Pencheva, Bryaskova, Kantardjiev, Polyvinyl Alcohol/Silver Nanoparticles (PVA/AgNps) as a Model for Testing the Biological Activity of Hybrid Materials with Included Silver Nanoparticles, Mater. Sci. Eng. C, 
doi:10.1016/j.msec.2012.05.016Pilaquinga, Bosch, Morey, Bastidas-Caldes, Torres et al., High in Vitro Activity of Gold and Silver Nanoparticles from Solanum Mammosum L. against SARS-CoV-2 Surrogate Phi6 and Viral Model PhiX174, Mikrobiolohichnyi Zhurnal, 
doi:10.15407/microbiolj86.02.036Pinheiro, Lima, Miguel, Filho, Ferreira et al., Assessing Toxicity Mechanism of Silver Nanoparticles by Using Brine Shrimp (Artemia Salina) as Model, Chemosphere, 
doi:10.1016/J.CHEMOSPHERE.2023.140673Pinzaru, Coricovac, Dehelean, Moacă, Mioc et al., Stable PEG-Coated Silver Nanoparticles-A Comprehensive Toxicological Profile, Food Chem. Toxicol, 
doi:10.1016/j.fct.2017.11.051Prucek, Tuček, Kilianová, Panáček, Kvítek et al., The Targeted Antibacterial and Antifungal Properties of Magnetic Nanocomposite of Iron Oxide and Silver Nanoparticles, Biomaterials, 
doi:10.1016/j.biomaterials.2011.03.039Raffi, Rumaiz, Hasan, Shah, Studies of the Growth Parameters for Silver Nanoparticle Synthesis by Inert Gas Condensation, J. Mater. Res, 
doi:10.1557/jmr.2007.0420Rafique, Rafique, Kalsoom, Afzal, Butt et al., Laser Ablation Synthesis of Silver Nanoparticles in Water and Dependence on Laser Nature, Opt. Quantum Electron, 
doi:10.1007/s11082-019-1902-0Rahmah, Ahmed, Rashid, Qasim, Preparation of Silver Nanoparticles Using Laser Ablation for In Vitro Treatment of MCF-7 Cancer Cells with Antibacterial Activity, Plasmonics, 
doi:10.1007/s11468-023-02150-yRajapaksha, Orrell-Trigg, Shah, Cheeseman, Vu et al., Broad Spectrum Antibacterial Zinc Oxide-Reduced Graphene Oxide Nanocomposite for Water Depollution, Mater. Today Chem, 
doi:10.1016/j.mtchem.2022.101242Rakowska, Tiddia, Faruqui, Bankier, Pei et al., Antiviral Surfaces and Coatings and Their Mechanisms of Action, Commun. Mater
Ranade, Sati, Pratap, Mali, Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions, Chem. Pap, 
doi:10.1007/s11696-025-03892-1Ratti, Naddeo, Tan, Griepenburg, Tomko et al., Irradiation with Visible Light Enhances the Antibacterial Toxicity of Silver Nanoparticles Produced by Laser Ablation, Appl. Phys. A Mater. Sci. Process
Raveendran, Fu, Wallen, Completely, Green" Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc, 
doi:10.1021/ja029267jRaza, Kanwal, Rauf, Sabri, Riaz et al., Size-and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes, Nanomaterials, 
doi:10.3390/nano6040074Roduner, Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles
Rogers, Parkinson, Choi, Speshock, Hussain, A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation, Nanoscale Res. Lett, 
doi:10.1007/s11671-008-9128-2Sadiq, Khan, Shen, Wang, Xu et al., Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges, Molecules, 
doi:10.3390/molecules28227674Sadrolhosseini, Mahdi, Alizadeh, Rashid, Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid
Sahu, Sahoo, Dash, Mishra, Behera, Antimicrobial Activity of Silver Nanoparticles Against Common Bovine Mastitis Pathogens: A Comparative Analysis, Curr. Microbiol, 
doi:10.1007/s00284-025-04101-8Sambale, Wagner, Stahl, Khaydarov, Scheper et al., Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines, J. Nanomater, 
doi:10.1155/2015/136765Santos, Silva, Cardoso, De Albuquerque-Júnior, Zielinska et al., Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity, Antibiotics
Sati, Nandiwdekar, Ratnaparkhi, Doke, Pinjari et al., Bio-Based Alkyd-Polyesteramide-Polyurethane Coatings from Castor, Neem, and Karanja Oils with Inherent Antimicrobial Properties for Enhanced Hygiene, Coatings, 
doi:10.3390/coatings15040370Sati, Ranade, Mali, Ahmad Yasin, Pratap, Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update, ACS Omega, 
doi:10.1021/acsomega.4c11045Sau, Murphy, Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution, J. Am. Chem. Soc, 
doi:10.1021/ja047846dSharifi-Rad, Elshafie, Pohl, Green Synthesis of Silver Nanoparticles (AgNPs) by Lallemantia Royleana Leaf Extract: Their Bio-Pharmaceutical and Catalytic Properties, J. Photochem. Photobiol. A Chem, 
doi:10.1016/j.jphotochem.2023.115318Shivananda, Lakshmeesha Rao, Sangappa Structural, Thermal and Electrical Properties of Silk Fibroin-Silver Nanoparticles Composite Films, J. Mater. Sci. Mater. Electron, 
doi:10.1007/s10854-019-00786-3Sinclair, Van Den, Hengel, Raza, Rutjes et al., Surface Chemistry-Dependent Antiviral Activity of Silver Nanoparticles, Nanotechnology, 
doi:10.1088/1361-6528/ac03d6Singh, Dhiman, Kumar, Designing Silver Nanoparticles Impregnated Acacia and Tragacanth Gum Based Copolymeric Hydrogels for Drug Delivery Applications, Results Surf. Interfaces, 
doi:10.1016/j.rsurfi.2024.100256Singla, Jana, Thakur, Kumari, Goyal et al., Green Synthesis of Silver Nanoparticles Using Oxalis Griffithii Extract and Assessing Their Antimicrobial Activity, OpenNano, 
doi:10.1016/j.onano.2022.100047Somda, Bargul, Wesonga, Wachira, Green Synthesis of Brassica Carinata Microgreen Silver Nanoparticles, Characterization, Safety Assessment, and Antimicrobial Activities, Sci. Rep, 
doi:10.1038/s41598-024-80528-6Souza, Corrêa, Thaís Bruni, Da Veiga, The Effects of Solubility of Silver Nanoparticles, Accumulation, and Toxicity to the Aquatic Plant Lemna Minor, Environ. Sci. Pollut. Res, 
doi:10.1007/s11356-020-11862-1Sredojević, Lazić, Pirković, Periša, Murafa et al., Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin, Nanomaterials, 
doi:10.3390/nano12183195Srikar, Giri, Pal, Mishra, Upadhyay, Green Synthesis of Silver Nanoparticles: A Review, Green. Sustain. Chem, 
doi:10.4236/gsc.2016.61004Srikhao, Ounkaew, Srichiangsa, Phanthanawiboon, Boonmars et al., Green-Synthesized Silver Nanoparticle Coating on Paper for Antibacterial and Antiviral Applications, Polym. Bull, 
doi:10.1007/s00289-022-04530-6Sun, Singh, Vig, Pillai, Singh, Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus, J. Biomed. Nanotechnol
Syafiuddin, Salmiati; Salim, Beng Hong Kueh, Hadibarata, Nur, A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges, J. Chin. Chem. Soc, 
doi:10.1002/jccs.201700067Szyma Ńska, Orłowski, Winnicka, Tomaszewska, Celichowski et al., Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and in Vivo Studies, Int. J. Mol. Sci, 
doi:10.3390/ijms19020387Taha, Youssef, Auda, El-Bahy, Ramadan, Efficacy of Silver Nanoparticles against Trichinella Spiralis in Mice and the Role of Multivitamin in Alleviating Its Toxicity, Sci. Rep, 
doi:10.1038/s41598-024-56337-2Taleb Safa, Koohestani, Green Synthesis of Silver Nanoparticles with Green Tea Extract from Silver Recycling of Radiographic Films, Results Eng, 
doi:10.1016/j.rineng.2024.101808Thwala, Klaine, Musee, Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia Minima, Molecules, 
doi:10.3390/molecules26082305Tien, Liao, Huang, Tseng, Lung et al., Novel Technique for Preparing A Nano-Silver Water Suspension by The Arc-Discharge Method, Rev. Adv. Mater. Sci
Tien, Tseng, Liao, Huang, Tsung, Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method, J. Alloys Compd, 
doi:10.1016/j.jallcom.2007.09.048Tomaszewska, Bednarczyk, Janicka, Chodkowski, Krzyzowska et al., The Influence of the AgNPs Ligand on the Antiviral Activity Against HSV-2, Int. J. Nanomed, 
doi:10.2147/IJN.S496050Torres-Mendieta, Nguyen, Guadagnini, Semerad, Łukowiec et al., Growth Suppression of Bacteria by Biofilm Deterioration Using Silver Nanoparticles with Magnetic Doping, Nanoscale, 
doi:10.1039/D2NR03902HTortella, Rubilar, Durán, Diez, Martínez et al., Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment, J. Hazard. Mater
Tsuji, Hashimoto, Nishizawa, Kubokawa, Tsuji, Microwave-Assisted Synthesis of Metallic Nanostructures in Solution, Chem.-A Eur. J
Tsuji, Miyamae, Lim, Kimura, Zhang et al., Crystal Structures and Growth Mechanisms of Au@Ag Core-Shell Nanoparticles Prepared by the Microwave-Polyol Method, Cryst. Growth Des, 
doi:10.1021/cg060103eVeerasamy, Xin, Gunasagaran, Xiang, Yang et al., Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities, J. Saudi Chem. Soc, 
doi:10.1016/j.jscs.2010.06.004Vu, Phung, Tran, Mugemana, Giang et al., Polystyrene Nanoparticles Prepared by Nanoprecipitation: A Recyclable Template for Fabricating Hollow Silica, J. Ind. Eng. Chem, 
doi:10.1016/j.jiec.2021.02.010Vuković, Milić, Dobrošević, Milić, Ilić et al., Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells, Nanomaterials, 
doi:10.3390/nano10071390Wang, Yin, Bai, Zhou, Wang et al., Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein, Biomolecules, 
doi:10.3390/biom14091152Widatalla, Yassin, Alrasheid, Rahman Ahmed, Widdatallah et al., Green Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract, Characterization and Evaluation of Antimicrobial Activity, Nanoscale Adv, 
doi:10.1039/d1na00509jWiley, Im, Li, Mclellan, Siekkinen et al., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem. B, 
doi:10.1021/jp0608628Xu, Wang, Huang, Chen, Wang et al., Silver Nanoparticles: Synthesis, Medical Applications and Biosafety, Theranostics
Yadav, Mali, Pandey, Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation, Biol. Trace Elem. Res
Yamari, Abchir, Mali, Errougui, Talbi et al., The Anti-SARS-CoV-2 Activity of Novel 9, 10-Dihydrophenanthrene Derivatives: An Insight into Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation. Sci. Afr, 
doi:10.1016/j.sciaf.2023.e01754Yan, Zhou, Zhu, Bao, Su, Polystyrene Nanoplastics Mediated the Toxicity of Silver Nanoparticles in Zebrafish Embryos, Front. Mar. Sci, 
doi:10.3389/fmars.2023.1195125Yaqoob, Umar, Ibrahim, Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications-a Review, Appl. Nanosci, 
doi:10.1007/s13204-020-01318-wZhang, Niu, Yan, Cai, Immobilizing Silver Nanoparticles onto the Surface of Magnetic Silica Composite to Prepare Magnetic Disinfectant with Enhanced Stability and Antibacterial Activity, Colloids Surf. A Physicochem. Eng. Asp, 
doi:10.1016/j.colsurfa.2010.12.009Zhao, Xu, Wang, Li, Zhang et al., Toxicity Mechanism of Silver Nanoparticles to Chlamydomonas Reinhardtii: Photosynthesis, Oxidative Stress, Membrane Permeability, and Ultrastructure Analysis, Environ. Sci. Pollut. Res, 
doi:10.1007/s11356-020-11714-yDOI record:
{
  "DOI": "10.3390/molecules30092004",
  "ISSN": [
    "1420-3049"
  ],
  "URL": "http://dx.doi.org/10.3390/molecules30092004",
  "abstract": "<jats:p>AgNPs have gained significant attention due to their unique physicochemical properties, making them valuable across a range of fields including medicine, textiles, and household products. With their strong antimicrobial and antiviral properties, AgNPs have shown promise in treating infections, particularly in wound care management. This review explores the mechanisms underlying the antiviral activities of AgNPs, as well as the methods used for their synthesis, which include physical, chemical, and biological approaches. The review also addresses the potential limitations of AgNPs, including their cytotoxicity to humans and the environment. The interaction between AgNPs and microorganisms, particularly viruses, varies based on synthesis methods and particle morphology. As viral infections, including resistant strains, present major global health challenges, there is a growing need for alternative antiviral therapies. Metal nanoparticles like AgNPs offer potential advantages over conventional antiviral drugs due to their broad target range, which reduces the likelihood of resistance development. This review highlights AgNPs’ effectiveness against a variety of viruses, such as HIV, hepatitis B, and respiratory syncytial virus, and discusses their potential for use in novel antiviral treatments. The review also examines AgNPs’ toxicity, offering insights into their future therapeutic roles.</jats:p>",
  "alternative-id": [
    "molecules30092004"
  ],
  "author": [
    {
      "ORCID": "https://orcid.org/0009-0008-0337-2279",
      "affiliation": [
        {
          "name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
        }
      ],
      "authenticated-orcid": false,
      "family": "Sati",
      "given": "Abhinav",
      "sequence": "first"
    },
    {
      "affiliation": [
        {
          "name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
        }
      ],
      "family": "Ranade",
      "given": "Tanvi N.",
      "sequence": "additional"
    },
    {
      "ORCID": "https://orcid.org/0000-0003-1995-136X",
      "affiliation": [
        {
          "name": "Department of Pharmaceutical Chemistry, School of Pharmacy, D.Y. Patil University, Nerul, Navi Mumbai 400706, India"
        }
      ],
      "authenticated-orcid": false,
      "family": "Mali",
      "given": "Suraj N.",
      "sequence": "additional"
    },
    {
      "affiliation": [
        {
          "name": "Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates"
        },
        {
          "name": "Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates"
        }
      ],
      "family": "Yasin",
      "given": "Haya Khader Ahmad",
      "sequence": "additional"
    },
    {
      "ORCID": "https://orcid.org/0009-0007-4777-3114",
      "affiliation": [
        {
          "name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
        }
      ],
      "authenticated-orcid": false,
      "family": "Samdani",
      "given": "Nehal",
      "sequence": "additional"
    },
    {
      "ORCID": "https://orcid.org/0009-0000-4063-038X",
      "affiliation": [
        {
          "name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
        }
      ],
      "authenticated-orcid": false,
      "family": "Satpute",
      "given": "Nikil Navnath",
      "sequence": "additional"
    },
    {
      "affiliation": [
        {
          "name": "Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India"
        }
      ],
      "family": "Yadav",
      "given": "Susmita",
      "sequence": "additional"
    },
    {
      "ORCID": "https://orcid.org/0000-0002-8945-6885",
      "affiliation": [
        {
          "name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
        }
      ],
      "authenticated-orcid": false,
      "family": "Pratap",
      "given": "Amit P.",
      "sequence": "additional"
    }
  ],
  "container-title": "Molecules",
  "container-title-short": "Molecules",
  "content-domain": {
    "crossmark-restriction": false,
    "domain": []
  },
  "created": {
    "date-parts": [
      [
        2025,
        5,
        1
      ]
    ],
    "date-time": "2025-05-01T10:49:02Z",
    "timestamp": 1746096542000
  },
  "deposited": {
    "date-parts": [
      [
        2025,
        5,
        2
      ]
    ],
    "date-time": "2025-05-02T11:46:54Z",
    "timestamp": 1746186414000
  },
  "indexed": {
    "date-parts": [
      [
        2025,
        5,
        3
      ]
    ],
    "date-time": "2025-05-03T04:05:14Z",
    "timestamp": 1746245114339,
    "version": "3.40.4"
  },
  "is-referenced-by-count": 0,
  "issue": "9",
  "issued": {
    "date-parts": [
      [
        2025,
        4,
        30
      ]
    ]
  },
  "journal-issue": {
    "issue": "9",
    "published-online": {
      "date-parts": [
        [
          2025,
          5
        ]
      ]
    }
  },
  "language": "en",
  "license": [
    {
      "URL": "https://creativecommons.org/licenses/by/4.0/",
      "content-version": "vor",
      "delay-in-days": 0,
      "start": {
        "date-parts": [
          [
            2025,
            4,
            30
          ]
        ],
        "date-time": "2025-04-30T00:00:00Z",
        "timestamp": 1745971200000
      }
    }
  ],
  "link": [
    {
      "URL": "https://www.mdpi.com/1420-3049/30/9/2004/pdf",
      "content-type": "unspecified",
      "content-version": "vor",
      "intended-application": "similarity-checking"
    }
  ],
  "member": "1968",
  "original-title": [],
  "page": "2004",
  "prefix": "10.3390",
  "published": {
    "date-parts": [
      [
        2025,
        4,
        30
      ]
    ]
  },
  "published-online": {
    "date-parts": [
      [
        2025,
        4,
        30
      ]
    ]
  },
  "publisher": "MDPI AG",
  "reference": [
    {
      "DOI": "10.2147/IJN.S496050",
      "article-title": "The Influence of the AgNPs Ligand on the Antiviral Activity Against HSV-2",
      "author": "Tomaszewska",
      "doi-asserted-by": "crossref",
      "first-page": "2659",
      "journal-title": "Int. J. Nanomed.",
      "key": "ref_1",
      "volume": "20",
      "year": "2025"
    },
    {
      "DOI": "10.1007/s13346-025-01815-x",
      "doi-asserted-by": "crossref",
      "key": "ref_2",
      "unstructured": "Idres, Y.M., Idris, A., and Gao, W. (2025). Preclinical Testing of Antiviral SiRNA Therapeutics Delivered in Lipid Nanoparticles in Animal Models–a Comprehensive Review. Drug Deliv. Transl. Res., 1–18."
    },
    {
      "DOI": "10.1007/s12011-024-04446-4",
      "doi-asserted-by": "crossref",
      "key": "ref_3",
      "unstructured": "Yadav, S., Mali, S.N., and Pandey, A. (2024). Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation. Biol. Trace Elem. Res., 1–20."
    },
    {
      "DOI": "10.1016/j.cell.2020.08.021",
      "article-title": "Emerging Pandemic Diseases: How We Got to COVID-19",
      "author": "Morens",
      "doi-asserted-by": "crossref",
      "first-page": "1077",
      "journal-title": "Cell",
      "key": "ref_4",
      "volume": "182",
      "year": "2020"
    },
    {
      "DOI": "10.1038/nature02759",
      "article-title": "The Challenge of Emerging and Re-Emerging Infectious Diseases",
      "author": "Morens",
      "doi-asserted-by": "crossref",
      "first-page": "242",
      "journal-title": "Nature",
      "key": "ref_5",
      "volume": "430",
      "year": "2004"
    },
    {
      "DOI": "10.1111/fcp.12609",
      "article-title": "Antiviral Therapies: Advances and Perspectives",
      "author": "Nishi",
      "doi-asserted-by": "crossref",
      "first-page": "305",
      "journal-title": "Fundam. Clin. Pharmacol.",
      "key": "ref_6",
      "volume": "35",
      "year": "2021"
    },
    {
      "DOI": "10.1007/s11696-025-03892-1",
      "article-title": "Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions",
      "author": "Ranade",
      "doi-asserted-by": "crossref",
      "first-page": "1303",
      "journal-title": "Chem. Pap.",
      "key": "ref_7",
      "volume": "79",
      "year": "2025"
    },
    {
      "DOI": "10.1007/s13204-020-01318-w",
      "article-title": "Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications–a Review",
      "author": "Yaqoob",
      "doi-asserted-by": "crossref",
      "first-page": "1369",
      "journal-title": "Appl. Nanosci.",
      "key": "ref_8",
      "volume": "10",
      "year": "2020"
    },
    {
      "DOI": "10.1016/j.jiec.2021.02.010",
      "article-title": "Polystyrene Nanoparticles Prepared by Nanoprecipitation: A Recyclable Template for Fabricating Hollow Silica",
      "author": "Vu",
      "doi-asserted-by": "crossref",
      "first-page": "307",
      "journal-title": "J. Ind. Eng. Chem.",
      "key": "ref_9",
      "volume": "97",
      "year": "2021"
    },
    {
      "DOI": "10.1016/j.mtchem.2022.101242",
      "doi-asserted-by": "crossref",
      "key": "ref_10",
      "unstructured": "Rajapaksha, P., Orrell-Trigg, R., Shah, D., Cheeseman, S., Vu, K.B., Ngo, S.T., Murdoch, B.J., Choudhury, N.R., Yin, H., and Cozzolino, D. (2023). Broad Spectrum Antibacterial Zinc Oxide-Reduced Graphene Oxide Nanocomposite for Water Depollution. Mater. Today Chem., 27."
    },
    {
      "DOI": "10.1007/s11051-023-05716-3",
      "doi-asserted-by": "crossref",
      "key": "ref_11",
      "unstructured": "Doan, L., Nguyen, L.T., and Nguyen, N.T.N. (2023). Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review. J. Nanoparticle Res., 25."
    },
    {
      "article-title": "A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications",
      "author": "Natsuki",
      "first-page": "325",
      "journal-title": "Int. J. Mater. Sci. Appl.",
      "key": "ref_12",
      "volume": "4",
      "year": "2015"
    },
    {
      "DOI": "10.3390/nano11082086",
      "doi-asserted-by": "crossref",
      "key": "ref_13",
      "unstructured": "Bamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., and Sehrawat, A.R. (2021). Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials, 11."
    },
    {
      "DOI": "10.7150/thno.45413",
      "article-title": "Silver Nanoparticles: Synthesis, Medical Applications and Biosafety",
      "author": "Xu",
      "doi-asserted-by": "crossref",
      "first-page": "8996",
      "journal-title": "Theranostics",
      "key": "ref_14",
      "volume": "10",
      "year": "2020"
    },
    {
      "DOI": "10.3390/nano11092318",
      "doi-asserted-by": "crossref",
      "key": "ref_15",
      "unstructured": "Bouafia, A., Laouini, S.E., Ahmed, A.S.A., Soldatov, A.V., Algarni, H., Chong, K.F., and Ali, G.A.M. (2021). The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials, 11."
    },
    {
      "DOI": "10.1016/j.apt.2011.05.005",
      "article-title": "The Nanostructure Evolution of Ag Powder Synthesized by High Energy Ball Milling",
      "author": "Khayati",
      "doi-asserted-by": "crossref",
      "first-page": "393",
      "journal-title": "Adv. Powder Technol.",
      "key": "ref_16",
      "volume": "23",
      "year": "2012"
    },
    {
      "article-title": "Novel Technique for Preparing A Nano-Silver Water Suspension by The Arc-Discharge Method",
      "author": "Tien",
      "first-page": "752",
      "journal-title": "Rev. Adv. Mater. Sci.",
      "key": "ref_17",
      "volume": "18",
      "year": "2008"
    },
    {
      "DOI": "10.1016/j.jallcom.2007.09.048",
      "article-title": "Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method",
      "author": "Tien",
      "doi-asserted-by": "crossref",
      "first-page": "408",
      "journal-title": "J. Alloys Compd.",
      "key": "ref_18",
      "volume": "463",
      "year": "2008"
    },
    {
      "DOI": "10.1038/s41598-024-54648-y",
      "doi-asserted-by": "crossref",
      "key": "ref_19",
      "unstructured": "Elwakil, B.H., Eldrieny, A.M., Almotairy, A.R.Z., and El-Khatib, M. (2024). Potent Biological Activity of Newly Fabricated Silver Nanoparticles Coated by a Carbon Shell Synthesized by Electrical Arc. Sci. Rep., 14."
    },
    {
      "article-title": "The Impact of Different Temperatures on NanoSilver Carbon Manufacturing by Arc Discharge Method",
      "author": "Gharieb",
      "first-page": "409",
      "journal-title": "Alfarama J. Basic. Appl. Sci.",
      "key": "ref_20",
      "volume": "5",
      "year": "2024"
    },
    {
      "DOI": "10.1039/b900654k",
      "article-title": "Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles",
      "author": "Amendola",
      "doi-asserted-by": "crossref",
      "first-page": "3805",
      "journal-title": "Phys. Chem. Chem. Phys.",
      "key": "ref_21",
      "volume": "11",
      "year": "2009"
    },
    {
      "key": "ref_22",
      "unstructured": "Sadrolhosseini, A.R., Mahdi, M.A., Alizadeh, F., and Rashid, S.A. (2018). Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid. Laser Technology and Its Applications, IntechOpen."
    },
    {
      "DOI": "10.1007/s11468-023-02150-y",
      "article-title": "Preparation of Silver Nanoparticles Using Laser Ablation for In Vitro Treatment of MCF-7 Cancer Cells with Antibacterial Activity",
      "author": "Rahmah",
      "doi-asserted-by": "crossref",
      "first-page": "2097",
      "journal-title": "Plasmonics",
      "key": "ref_23",
      "volume": "19",
      "year": "2024"
    },
    {
      "DOI": "10.1007/s11082-019-1902-0",
      "doi-asserted-by": "crossref",
      "key": "ref_24",
      "unstructured": "Rafique, M., Rafique, M.S., Kalsoom, U., Afzal, A., Butt, S.H., and Usman, A. (2019). Laser Ablation Synthesis of Silver Nanoparticles in Water and Dependence on Laser Nature. Opt. Quantum Electron., 51."
    },
    {
      "DOI": "10.1021/acsomega.4c03046",
      "article-title": "Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation",
      "author": "Kenmotsu",
      "doi-asserted-by": "crossref",
      "first-page": "37716",
      "journal-title": "ACS Omega",
      "key": "ref_25",
      "volume": "9",
      "year": "2024"
    },
    {
      "DOI": "10.1007/s11468-023-02067-6",
      "article-title": "Investigating the Antimicrobial, Antioxidant, and Anticancer Effects of Elettaria Cardamomum Seed Extract Conjugated to Green Synthesized Silver Nanoparticles by Laser Ablation",
      "author": "Mohammed",
      "doi-asserted-by": "crossref",
      "first-page": "1187",
      "journal-title": "Plasmonics",
      "key": "ref_26",
      "volume": "19",
      "year": "2024"
    },
    {
      "DOI": "10.1007/s12648-024-03251-y",
      "article-title": "Exploring the Relationship between Confinement Geometry and the Formation of High-Quality Silver Nanoparticles by Laser Ablation in Liquid Media",
      "author": "Niaz",
      "doi-asserted-by": "crossref",
      "first-page": "4989",
      "journal-title": "Indian. J. Phys.",
      "key": "ref_27",
      "volume": "98",
      "year": "2024"
    },
    {
      "DOI": "10.1016/j.photonics.2024.101228",
      "doi-asserted-by": "crossref",
      "key": "ref_28",
      "unstructured": "Alharbi, A.M., Ahmed, N.M., Abdul Rahman, A., Zahirah Noor Azman, N., Algburi, S., Wadi, I.A., Binzowaimil, A.M., Aldaghri, O., and Ibnaouf, K.H. (2024). Development of ZnO and Si Semiconductor-Based Ultraviolet Photodetectors Enhanced by Laser-Ablated Silver Nanoparticles. Photonics Nanostruct, 58."
    },
    {
      "DOI": "10.1557/JMR.2007.0420",
      "article-title": "Studies of the Growth Parameters for Silver Nanoparticle Synthesis by Inert Gas Condensation",
      "author": "Raffi",
      "doi-asserted-by": "crossref",
      "first-page": "3378",
      "journal-title": "J. Mater. Res.",
      "key": "ref_29",
      "volume": "22",
      "year": "2007"
    },
    {
      "DOI": "10.1016/j.materresbull.2016.05.029",
      "article-title": "Functionalized Silver Nanoparticles Probe for Visual Colorimetric Sensing of Mercury",
      "author": "Jeevika",
      "doi-asserted-by": "crossref",
      "first-page": "48",
      "journal-title": "Mater. Res. Bull.",
      "key": "ref_30",
      "volume": "83",
      "year": "2016"
    },
    {
      "DOI": "10.1016/j.arabjc.2012.09.010",
      "article-title": "Engineered Nanostructures: A Review of Their Synthesis, Characterization and Toxic Hazard Considerations",
      "author": "Haider",
      "doi-asserted-by": "crossref",
      "first-page": "S376",
      "journal-title": "Arab. J. Chem.",
      "key": "ref_31",
      "volume": "10",
      "year": "2017"
    },
    {
      "DOI": "10.1016/j.jscs.2010.06.004",
      "article-title": "Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities",
      "author": "Veerasamy",
      "doi-asserted-by": "crossref",
      "first-page": "113",
      "journal-title": "J. Saudi Chem. Soc.",
      "key": "ref_32",
      "volume": "15",
      "year": "2011"
    },
    {
      "DOI": "10.1039/C3RA44507K",
      "article-title": "Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm Using the Same Protocol and Their Antibacterial Efficacy",
      "author": "Agnihotri",
      "doi-asserted-by": "crossref",
      "first-page": "3974",
      "journal-title": "RSC Adv.",
      "key": "ref_33",
      "volume": "4",
      "year": "2014"
    },
    {
      "DOI": "10.2147/IJN.S153167",
      "article-title": "Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold",
      "author": "Khan",
      "doi-asserted-by": "crossref",
      "first-page": "733",
      "journal-title": "Int. J. Nanomed.",
      "key": "ref_34",
      "volume": "13",
      "year": "2018"
    },
    {
      "DOI": "10.3390/ma15020427",
      "doi-asserted-by": "crossref",
      "key": "ref_35",
      "unstructured": "Naganthran, A., Verasoundarapandian, G., Khalid, F.E., Masarudin, M.J., Zulkharnain, A., Nawawi, N.M., Karim, M., Abdullah, C.A.C., and Ahmad, S.A. (2022). Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials, 15."
    },
    {
      "DOI": "10.1016/j.arabjc.2010.09.027",
      "article-title": "Microemulsion Method: A Novel Route to Synthesize Organic and Inorganic Nanomaterials. 1st Nano Update",
      "author": "Malik",
      "doi-asserted-by": "crossref",
      "first-page": "397",
      "journal-title": "Arab. J. Chem.",
      "key": "ref_36",
      "volume": "5",
      "year": "2012"
    },
    {
      "article-title": "Article in Community Practitioner: The Journal of the Community Practitioners’ & Health Visitors’ Association",
      "author": "Hak",
      "first-page": "9",
      "journal-title": "Community Pract.",
      "key": "ref_37",
      "volume": "83",
      "year": "2024"
    },
    {
      "DOI": "10.1007/s42452-019-0586-1",
      "doi-asserted-by": "crossref",
      "key": "ref_38",
      "unstructured": "dos Santos, M.A., Paterno, L.G., Moreira, S.G.C., and Sales, M.J.A. (2019). Original Photochemical Synthesis of Ag Nanoparticles Mediated by Potato Starch. SN Appl. Sci., 1."
    },
    {
      "DOI": "10.1021/ja029267j",
      "article-title": "Completely “Green” Synthesis and Stabilization of Metal Nanoparticles",
      "author": "Raveendran",
      "doi-asserted-by": "crossref",
      "first-page": "13940",
      "journal-title": "J. Am. Chem. Soc.",
      "key": "ref_39",
      "volume": "125",
      "year": "2003"
    },
    {
      "DOI": "10.1016/j.fct.2017.11.051",
      "article-title": "Stable PEG-Coated Silver Nanoparticles–A Comprehensive Toxicological Profile",
      "author": "Pinzaru",
      "doi-asserted-by": "crossref",
      "first-page": "546",
      "journal-title": "Food Chem. Toxicol.",
      "key": "ref_40",
      "volume": "111",
      "year": "2018"
    },
    {
      "DOI": "10.1016/j.msec.2012.05.016",
      "article-title": "Polyvinyl Alcohol/Silver Nanoparticles (PVA/AgNps) as a Model for Testing the Biological Activity of Hybrid Materials with Included Silver Nanoparticles",
      "author": "Pencheva",
      "doi-asserted-by": "crossref",
      "first-page": "2048",
      "journal-title": "Mater. Sci. Eng. C",
      "key": "ref_41",
      "volume": "32",
      "year": "2012"
    },
    {
      "DOI": "10.1016/j.carbpol.2011.03.039",
      "article-title": "Polyacrylamide/Guar Gum Graft Copolymer for Preparation of Silver Nanoparticles",
      "doi-asserted-by": "crossref",
      "first-page": "692",
      "journal-title": "Carbohydr. Polym.",
      "key": "ref_42",
      "volume": "85",
      "year": "2011"
    },
    {
      "DOI": "10.1016/j.rsurfi.2024.100256",
      "doi-asserted-by": "crossref",
      "key": "ref_43",
      "unstructured": "Singh, B., Dhiman, A., and Kumar, S. (2024). Designing Silver Nanoparticles Impregnated Acacia and Tragacanth Gum Based Copolymeric Hydrogels for Drug Delivery Applications. Results Surf. Interfaces, 16."
    },
    {
      "DOI": "10.4236/gsc.2016.61004",
      "article-title": "Green Synthesis of Silver Nanoparticles: A Review",
      "author": "Srikar",
      "doi-asserted-by": "crossref",
      "first-page": "34",
      "journal-title": "Green. Sustain. Chem.",
      "key": "ref_44",
      "volume": "06",
      "year": "2016"
    },
    {
      "DOI": "10.1088/0957-4484/18/10/105104",
      "doi-asserted-by": "crossref",
      "key": "ref_45",
      "unstructured": "Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., and He, N. (2007). Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum Camphora Leaf. Nanotechnology, 18."
    },
    {
      "article-title": "Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract",
      "author": "Ahmed",
      "first-page": "1",
      "journal-title": "J. Radiat. Res. Appl. Sci.",
      "key": "ref_46",
      "volume": "9",
      "year": "2016"
    },
    {
      "DOI": "10.1038/srep20414",
      "doi-asserted-by": "crossref",
      "key": "ref_47",
      "unstructured": "Ashraf, J.M., Ansari, M.A., Khan, H.M., Alzohairy, M.A., and Choi, I. (2016). Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques. Sci. Rep., 6."
    },
    {
      "DOI": "10.1080/17518253.2024.2444679",
      "doi-asserted-by": "crossref",
      "key": "ref_48",
      "unstructured": "Das, R., Kumar, P., Singh, A.K., Agrawal, S., Albukhaty, S., Bhattacharya, I., Tiwari, K.N., Mishra, S.K., Tripathi, A.K., and AlMalki, F.A. (2025). Green Synthesis of Silver Nanoparticles Using Trema Orientalis (L.) Extract and Evaluation of Their Antibacterial Activity. Green. Chem. Lett. Rev., 18."
    },
    {
      "DOI": "10.1016/j.onano.2022.100047",
      "doi-asserted-by": "crossref",
      "key": "ref_49",
      "unstructured": "Singla, S., Jana, A., Thakur, R., Kumari, C., Goyal, S., and Pradhan, J. (2022). Green Synthesis of Silver Nanoparticles Using Oxalis Griffithii Extract and Assessing Their Antimicrobial Activity. OpenNano, 7."
    },
    {
      "DOI": "10.1039/D1NA00509J",
      "article-title": "Green Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract, Characterization and Evaluation of Antimicrobial Activity",
      "author": "Widatalla",
      "doi-asserted-by": "crossref",
      "first-page": "911",
      "journal-title": "Nanoscale Adv.",
      "key": "ref_50",
      "volume": "4",
      "year": "2022"
    },
    {
      "DOI": "10.1016/j.jphotochem.2023.115318",
      "doi-asserted-by": "crossref",
      "key": "ref_51",
      "unstructured": "Sharifi-Rad, M., Elshafie, H.S., and Pohl, P. (2024). Green Synthesis of Silver Nanoparticles (AgNPs) by Lallemantia Royleana Leaf Extract: Their Bio-Pharmaceutical and Catalytic Properties. J. Photochem. Photobiol. A Chem., 448."
    },
    {
      "DOI": "10.3390/biom14070782",
      "doi-asserted-by": "crossref",
      "key": "ref_52",
      "unstructured": "Mejía-Méndez, J.L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D.E., Lozada-Ramírez, J.D., Bach, H., López-Mena, E.R., and Sánchez-Arreola, E. (2024). Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe Fedtschenkoi: Characterization and Bioactivities. Biomolecules, 14."
    },
    {
      "DOI": "10.1038/s41598-024-54702-9",
      "doi-asserted-by": "crossref",
      "key": "ref_53",
      "unstructured": "Ghasemi, S., Dabirian, S., Kariminejad, F., Koohi, D.E., Nemattalab, M., Majidimoghadam, S., Zamani, E., and Yousefbeyk, F. (2024). Process Optimization for Green Synthesis of Silver Nanoparticles Using Rubus Discolor Leaves Extract and Its Biological Activities against Multi-Drug Resistant Bacteria and Cancer Cells. Sci. Rep., 14."
    },
    {
      "DOI": "10.1016/j.rineng.2024.101808",
      "doi-asserted-by": "crossref",
      "key": "ref_54",
      "unstructured": "Taleb Safa, M.A., and Koohestani, H. (2024). Green Synthesis of Silver Nanoparticles with Green Tea Extract from Silver Recycling of Radiographic Films. Results Eng., 21."
    },
    {
      "DOI": "10.1007/s11356-024-34872-9",
      "article-title": "Green Synthesis of Silver Nanoparticles Using Malachra Alceifolia (Wild Okra) for Wastewater Treatment and Biomedical Applications with Molecular Docking Approach",
      "author": "Losetty",
      "doi-asserted-by": "crossref",
      "first-page": "55562",
      "journal-title": "Environ. Sci. Pollut. Res.",
      "key": "ref_55",
      "volume": "31",
      "year": "2024"
    },
    {
      "DOI": "10.1016/j.inoche.2024.112873",
      "doi-asserted-by": "crossref",
      "key": "ref_56",
      "unstructured": "Gangal, A., Bachhar, V., Joshi, V., Akhtar, N., Duseja, M., Sethiya, N.K., and Shukla, R.K. (2024). Green Synthesis of Silver Nanoparticles from the Essential Oil of Curcuma Amada and Their Antihyperglycemic Effect in STZ Induced Diabetic Rats. Inorg. Chem. Commun., 168."
    },
    {
      "DOI": "10.3390/pharmaceutics17030356",
      "doi-asserted-by": "crossref",
      "key": "ref_57",
      "unstructured": "Lima, A.K.O., Vieira, Í.R.S., Souza, L.M.d.S., Florêncio, I., Silva, I.G.M.d., Tavares Junior, A.G., Machado, Y.A.A., Santos, L.C.d., Taube, P.S., and Nakazato, G. (2025). Green Synthesis of Silver Nanoparticles Using Paullinia Cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties. Pharmaceutics, 17."
    },
    {
      "DOI": "10.3390/pharmaceutics13122034",
      "doi-asserted-by": "crossref",
      "key": "ref_58",
      "unstructured": "Ratan, Z.A., Mashrur, F.R., Chhoan, A.P., Shahriar, S.M., Haidere, M.F., Runa, N.J., Kim, S., Kweon, D.H., Hosseinzadeh, H., and Cho, J.Y. (2021). Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics, 13."
    },
    {
      "DOI": "10.5772/intechopen.71247",
      "doi-asserted-by": "crossref",
      "key": "ref_59",
      "unstructured": "Maaz, K. (2018). Silver Nanoparticles: Fabrication, Characterization and Applications, IntechOpen."
    },
    {
      "DOI": "10.1515/psr-2017-0082",
      "doi-asserted-by": "crossref",
      "key": "ref_60",
      "unstructured": "Mukherji, S., Bharti, S., Shukla, G., and Mukherji, S. (2019). Synthesis and Characterization of Size- and Shape-Controlled Silver Nanoparticles. Phys. Sci. Rev., 4."
    },
    {
      "DOI": "10.1557/mrs2005.100",
      "article-title": "Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy",
      "author": "Haes",
      "doi-asserted-by": "crossref",
      "first-page": "368",
      "journal-title": "MRS Bull.",
      "key": "ref_61",
      "volume": "30",
      "year": "2005"
    },
    {
      "DOI": "10.1021/jp026731y",
      "article-title": "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment",
      "author": "Kelly",
      "doi-asserted-by": "crossref",
      "first-page": "668",
      "journal-title": "J. Phys. Chem. B",
      "key": "ref_62",
      "volume": "107",
      "year": "2003"
    },
    {
      "DOI": "10.1002/adfm.200500667",
      "article-title": "Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths",
      "author": "Bastys",
      "doi-asserted-by": "crossref",
      "first-page": "766",
      "journal-title": "Adv. Funct. Mater.",
      "key": "ref_63",
      "volume": "16",
      "year": "2006"
    },
    {
      "DOI": "10.1002/adma.200401086",
      "article-title": "Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness",
      "author": "Mirkin",
      "doi-asserted-by": "crossref",
      "first-page": "412",
      "journal-title": "Adv. Mater.",
      "key": "ref_64",
      "volume": "17",
      "year": "2005"
    },
    {
      "DOI": "10.1021/ja047846d",
      "article-title": "Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution",
      "author": "Sau",
      "doi-asserted-by": "crossref",
      "first-page": "8648",
      "journal-title": "J. Am. Chem. Soc.",
      "key": "ref_65",
      "volume": "126",
      "year": "2004"
    },
    {
      "DOI": "10.1039/b205214h",
      "article-title": "Preparation of Polychrome Silver Nanoparticles in Different Solvents",
      "author": "He",
      "doi-asserted-by": "crossref",
      "first-page": "3783",
      "journal-title": "J. Mater. Chem.",
      "key": "ref_66",
      "volume": "12",
      "year": "2002"
    },
    {
      "DOI": "10.1021/cg060103e",
      "article-title": "Crystal Structures and Growth Mechanisms of Au@Ag Core−Shell Nanoparticles Prepared by the Microwave−Polyol Method",
      "author": "Tsuji",
      "doi-asserted-by": "crossref",
      "first-page": "1801",
      "journal-title": "Cryst. Growth Des.",
      "key": "ref_67",
      "volume": "6",
      "year": "2006"
    },
    {
      "DOI": "10.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-2",
      "article-title": "Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures",
      "author": "Xiao",
      "doi-asserted-by": "crossref",
      "first-page": "1887",
      "journal-title": "Adv. Mater.",
      "key": "ref_68",
      "volume": "13",
      "year": "2001"
    },
    {
      "DOI": "10.1002/chem.200400417",
      "article-title": "Microwave-Assisted Synthesis of Metallic Nanostructures in Solution",
      "author": "Tsuji",
      "doi-asserted-by": "crossref",
      "first-page": "440",
      "journal-title": "Chem.–A Eur. J.",
      "key": "ref_69",
      "volume": "11",
      "year": "2005"
    },
    {
      "DOI": "10.1021/jp0608628",
      "article-title": "Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis",
      "author": "Wiley",
      "doi-asserted-by": "crossref",
      "first-page": "15666",
      "journal-title": "J. Phys. Chem. B",
      "key": "ref_70",
      "volume": "110",
      "year": "2006"
    },
    {
      "DOI": "10.1016/j.matlet.2015.03.143",
      "article-title": "Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia Laureola: Characterization and Antibacterial Activity",
      "author": "Ahmed",
      "doi-asserted-by": "crossref",
      "first-page": "10",
      "journal-title": "Mater. Lett.",
      "key": "ref_71",
      "volume": "153",
      "year": "2015"
    },
    {
      "DOI": "10.3390/nano6040074",
      "doi-asserted-by": "crossref",
      "key": "ref_72",
      "unstructured": "Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S., and Naseem, S. (2016). Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials, 6."
    },
    {
      "DOI": "10.1016/j.rechem.2023.101108",
      "doi-asserted-by": "crossref",
      "key": "ref_73",
      "unstructured": "Dhaka, A., Chand Mali, S., Sharma, S., and Trivedi, R. (2023). A Review on Biological Synthesis of Silver Nanoparticles and Their Potential Applications. Results Chem., 6."
    },
    {
      "DOI": "10.5772/intechopen.92480",
      "doi-asserted-by": "crossref",
      "key": "ref_74",
      "unstructured": "Kumar, S., Kumar, P., and Pathak, C.S. (2021). Biomedical Applications of Silver Nanoparticles. Silver Micro-Nanoparticles—Properties, Synthesis, Characterization, and Applications, IntechOpen."
    },
    {
      "DOI": "10.1002/jccs.201700067",
      "article-title": "A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges",
      "author": "Syafiuddin",
      "doi-asserted-by": "crossref",
      "first-page": "732",
      "journal-title": "J. Chin. Chem. Soc.",
      "key": "ref_75",
      "volume": "64",
      "year": "2017"
    },
    {
      "DOI": "10.1039/9781839168970",
      "doi-asserted-by": "crossref",
      "key": "ref_76",
      "unstructured": "Roduner, E. (2015). Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles, RSC."
    },
    {
      "DOI": "10.1088/0953-8984/20/32/325237",
      "doi-asserted-by": "crossref",
      "key": "ref_77",
      "unstructured": "Attarian Shandiz, M. (2008). Effective Coordination Number Model for the Size Dependency of Physical Properties of. J. Phys. Condens. Matter, 20."
    },
    {
      "DOI": "10.1016/0040-6090(86)90422-0",
      "article-title": "Small Particle Melting of Pure Metals",
      "author": "Allen",
      "doi-asserted-by": "crossref",
      "first-page": "297",
      "journal-title": "Thin Solid. Film.",
      "key": "ref_78",
      "volume": "144",
      "year": "1986"
    },
    {
      "DOI": "10.1016/j.actamat.2005.01.047",
      "article-title": "Metal–Metal Bonding Process Using Ag Metallo-Organic Nanoparticles",
      "author": "Ide",
      "doi-asserted-by": "crossref",
      "first-page": "2385",
      "journal-title": "Acta Mater.",
      "key": "ref_79",
      "volume": "53",
      "year": "2005"
    },
    {
      "DOI": "10.1021/jp0475640",
      "article-title": "Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections",
      "author": "Evanoff",
      "doi-asserted-by": "crossref",
      "first-page": "13957",
      "journal-title": "J. Phys. Chem. B",
      "key": "ref_80",
      "volume": "108",
      "year": "2004"
    },
    {
      "DOI": "10.1002/pssc.200675903",
      "article-title": "Optical Properties of Silver Nanoparticles",
      "author": "Noguez",
      "doi-asserted-by": "crossref",
      "first-page": "4118",
      "journal-title": "Phys. Status Solidi C",
      "key": "ref_81",
      "volume": "4",
      "year": "2007"
    },
    {
      "DOI": "10.1021/am3022569",
      "article-title": "Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications",
      "author": "Alshehri",
      "doi-asserted-by": "crossref",
      "first-page": "7007",
      "journal-title": "ACS Appl. Mater. Interfaces",
      "key": "ref_82",
      "volume": "4",
      "year": "2012"
    },
    {
      "DOI": "10.1007/s12034-015-1007-8",
      "article-title": "Biological and Electrical Properties of Biosynthesized Silver Nanoparticles",
      "author": "Bhagat",
      "doi-asserted-by": "crossref",
      "first-page": "1253",
      "journal-title": "Bull. Mater. Sci.",
      "key": "ref_83",
      "volume": "38",
      "year": "2015"
    },
    {
      "DOI": "10.1007/s10854-019-00786-3",
      "article-title": "Sangappa Structural, Thermal and Electrical Properties of Silk Fibroin–Silver Nanoparticles Composite Films",
      "author": "Shivananda",
      "doi-asserted-by": "crossref",
      "first-page": "41",
      "journal-title": "J. Mater. Sci. Mater. Electron.",
      "key": "ref_84",
      "volume": "31",
      "year": "2020"
    },
    {
      "DOI": "10.1016/j.sciaf.2023.e01754",
      "doi-asserted-by": "crossref",
      "key": "ref_85",
      "unstructured": "Yamari, I., Abchir, O., Mali, S.N., Errougui, A., Talbi, M., Kouali, M.E., and Chtita, S. (2023). The Anti-SARS-CoV-2 Activity of Novel 9, 10-Dihydrophenanthrene Derivatives: An Insight into Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation. Sci. Afr., 21."
    },
    {
      "DOI": "10.1007/s40097-021-00465-y",
      "article-title": "Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites",
      "author": "Jeevanandam",
      "doi-asserted-by": "crossref",
      "first-page": "809",
      "journal-title": "J. Nanostructure Chem.",
      "key": "ref_86",
      "volume": "12",
      "year": "2022"
    },
    {
      "DOI": "10.3390/microorganisms11030629",
      "doi-asserted-by": "crossref",
      "key": "ref_87",
      "unstructured": "Luceri, A., Francese, R., Lembo, D., Ferraris, M., and Balagna, C. (2023). Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms, 11."
    },
    {
      "DOI": "10.1002/pi.6707",
      "article-title": "Fabrication of Polylactide Composites with Silver Nanoparticles by Sputtering Deposition and Their Antimicrobial and Antiviral Applications",
      "author": "Demchenko",
      "doi-asserted-by": "crossref",
      "first-page": "207",
      "journal-title": "Polym. Int.",
      "key": "ref_88",
      "volume": "74",
      "year": "2025"
    },
    {
      "DOI": "10.1021/acsami.4c15289",
      "doi-asserted-by": "crossref",
      "key": "ref_89",
      "unstructured": "de Souza, T.B., Rosa, A.S., Constantino-Teles, P., Ferreira, V.N.S., Archanjo, B.S., Soares, C.A.G., Picciani, P.H.S., Allão Cassaro, R.A., Miranda, M.D., and Poneti, G. (2025). Silver Nanoparticles-Functionalized Textile against SARS-CoV-2: Antiviral Activity of the Capping Oleylamine Molecule. ACS Appl. Mater. Interfaces, 17."
    },
    {
      "DOI": "10.1016/j.biomaterials.2024.122721",
      "doi-asserted-by": "crossref",
      "key": "ref_90",
      "unstructured": "Martín-Faivre, L., Prince, L., Cornu, C., Villeret, B., Sanchez-Guzman, D., Rouzet, F., Sallenave, J.M., and Garcia-Verdugo, I. (2025). Pulmonary Delivery of Silver Nanoparticles Prevents Influenza Infection by Recruiting and Activating Lymphoid Cells. Biomaterials, 312."
    },
    {
      "DOI": "10.21608/ejvs.2024.309594.2289",
      "doi-asserted-by": "crossref",
      "key": "ref_91",
      "unstructured": "EL Bagoury, G.F., Mahmoud, A.H., Kassem, S., and Elhabashy, R. (2025). Green Synthesis of Silver Nanoparticles Using Green Tea Extract and Evaluation of Their Antiviral Potential against Foot-and-Mouth Disease Virus Serotype O: An In-Vitro Study. Egypt. J. Vet. Sci., 1–11."
    },
    {
      "DOI": "10.1016/j.ceramint.2025.01.151",
      "article-title": "Tannic Acid-Assisted Green Functionalization of Clinoptilolite: A Step-by-Step Characterization of Silver Nanoparticles in Situ Reduction",
      "author": "Gattucci",
      "doi-asserted-by": "crossref",
      "first-page": "13051",
      "journal-title": "Ceram. Int.",
      "key": "ref_92",
      "volume": "51",
      "year": "2025"
    },
    {
      "DOI": "10.1016/j.crbiot.2025.100277",
      "doi-asserted-by": "crossref",
      "key": "ref_93",
      "unstructured": "Amaral, M.V.M.V., Carraro, C.B., Antoniêto, A.C.C., Costa, M.N., Fraga-Silva, T.F.C., Cipriano, U.G., Abuná, R.P.F., Rodrigues, T.S., Martins, R.B., and Luzenti, A.M. (2025). Biogenic Silver Nanoparticles Produced by Trichoderma Reesei Inhibit SARS-CoV-2 Infection, Reduce Lung Viral Load and Ameliorate Acute Pulmonary Inflammation. Curr. Res. Biotechnol., 9."
    },
    {
      "DOI": "10.1007/s00284-025-04101-8",
      "doi-asserted-by": "crossref",
      "key": "ref_94",
      "unstructured": "Sahu, S.K., Sahoo, P.R., Dash, S., Mishra, S.R., and Behera, P.C. (2025). Antimicrobial Activity of Silver Nanoparticles Against Common Bovine Mastitis Pathogens: A Comparative Analysis. Curr. Microbiol., 82."
    },
    {
      "DOI": "10.29333/ejosdr/15942",
      "doi-asserted-by": "crossref",
      "key": "ref_95",
      "unstructured": "Obasi, D.E., Nebolisa, N.M., Akinwunmi, A.R., Abimbolu, A.K., Ezeorah, M.C., Areola, O.M., Donatus, U.D., Oladipupo, V.T., Ohiani, J.J., and Ayanleke, T.A. (2025). Eco-Friendly and Facile Production Method, Natural Products Chemistry, and Pharmacological Properties of Silver Nanoparticles Using Telfaria Occidentalis Leaf and Stem Extracts. Eur. J. Sustain. Dev. Res., 9."
    },
    {
      "key": "ref_96",
      "unstructured": "Fereydani, M., Jalalian, A., and Saber, N. (2019). Green Synthesis of Silver Nanoparticles from Cuscuta Epithymum Extract, Evaluation of Antibacterial, Antioxidant Activity, Cytotoxic Effect on MCF-7 Cell Line, Elsevier."
    },
    {
      "DOI": "10.1016/j.envres.2024.120351",
      "doi-asserted-by": "crossref",
      "key": "ref_97",
      "unstructured": "Długosz, O., Żebracka, A., Sochocka, M., Franz, D., Ochnik, M., Chmielowiec-Korzeniowska, A., and Banach, M. (2025). Selective and Complementary Antimicrobial and Antiviral Activity of Silver, Copper, and Selenium Nanoparticle Suspensions in Deep Eutectic Solvent. Env. Environ. Res., 264."
    },
    {
      "DOI": "10.1007/s12668-024-01622-7",
      "doi-asserted-by": "crossref",
      "key": "ref_98",
      "unstructured": "Barabadi, H., Vahidi, H., Karami, K., Kamali, M., Jounaki, K., Jahani, R., Hosseini, O., Amidi, S., and Ashouri, F. (2025). Cephalosporium Aphidicola-Derived Silver Nanoparticles: In Vitro Physicochemical, Antibacterial, Antifungal, Biofilm Inhibition, Biofilm Degradation, Antioxidant, Alpha-Amylase, and Urease Inhibitory Properties. Bionanoscience, 15."
    },
    {
      "DOI": "10.1007/s00289-022-04530-6",
      "article-title": "Green-Synthesized Silver Nanoparticle Coating on Paper for Antibacterial and Antiviral Applications",
      "author": "Srikhao",
      "doi-asserted-by": "crossref",
      "first-page": "9651",
      "journal-title": "Polym. Bull.",
      "key": "ref_99",
      "volume": "80",
      "year": "2023"
    },
    {
      "DOI": "10.1016/j.jve.2023.100330",
      "doi-asserted-by": "crossref",
      "key": "ref_100",
      "unstructured": "Naumenko, K., Zahorodnia, S., Pop, C.V., and Rizun, N. (2023). Antiviral Activity of Silver Nanoparticles against the Influenza A Virus. J. Virus Erad., 9."
    },
    {
      "article-title": "Antiviral and Antibacterial Properties of Synthesis Silver Nanoparticles with Nigella Arvensis Aqueous Extract",
      "author": "Elnosary",
      "first-page": "209",
      "journal-title": "Egypt. J. Chem.",
      "key": "ref_101",
      "volume": "66",
      "year": "2023"
    },
    {
      "DOI": "10.3390/polym15132961",
      "doi-asserted-by": "crossref",
      "key": "ref_102",
      "unstructured": "El-Ganainy, S.M., Soliman, A.M., Ismail, A.M., Sattar, M.N., Farroh, K.Y., and Shafie, R.M. (2023). Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers, 15."
    },
    {
      "DOI": "10.3390/v15081689",
      "doi-asserted-by": "crossref",
      "key": "ref_103",
      "unstructured": "Doszpoly, A., Shaalan, M., and El-Matbouli, M. (2023). Silver Nanoparticles Proved to Be Efficient Antivirals In Vitro against Three Highly Pathogenic Fish Viruses. Viruses, 15."
    },
    {
      "DOI": "10.3390/plants12112103",
      "doi-asserted-by": "crossref",
      "key": "ref_104",
      "unstructured": "Al-Askar, A.A., Aseel, D.G., El-Gendi, H., Sobhy, S., Samy, M.A., Hamdy, E., El-Messeiry, S., Behiry, S.I., Elbeaino, T., and Abdelkhalek, A. (2023). Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica Granatum L.) Peel Extract against Tobacco Mosaic Virus. Plants, 12."
    },
    {
      "article-title": "Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3",
      "author": "Gaikwad",
      "first-page": "4303",
      "journal-title": "Int. J. Nanomed.",
      "key": "ref_105",
      "volume": "8",
      "year": "2013"
    },
    {
      "DOI": "10.21608/egyjs.2024.264183.1028",
      "article-title": "Antiviral and Antioxidant Activity, Green Synthesis, and Optimization of Silver Nanoparticles Derived from Ulva Lactuca",
      "author": "Makhlof",
      "doi-asserted-by": "crossref",
      "first-page": "1",
      "journal-title": "Egypt. J. Phycol.",
      "key": "ref_106",
      "volume": "25",
      "year": "2024"
    },
    {
      "DOI": "10.3389/fnano.2023.1270474",
      "doi-asserted-by": "crossref",
      "key": "ref_107",
      "unstructured": "Butler, M.R., Hrncirova, J., Jacot, T.A., Dutta, S., Clark, M.R., Doncel, G.F., and Cooper, J.B. (2023). Detection and Quantification of Antiviral Drug Tenofovir Using Silver Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) with Spatially Resolved Hotspot Selection. Front. Nanotechnol., 5."
    },
    {
      "article-title": "Green biosynthesis of silver nanoparticles from taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells",
      "first-page": "361",
      "journal-title": "J. Hyg. Eng. Des.",
      "key": "ref_108",
      "volume": "42",
      "year": "2023"
    },
    {
      "DOI": "10.1007/s00253-022-12298-y",
      "article-title": "Alocasia Odora–Mediated Synthesis of Silver Nanoparticles, Their Cytotoxicity, and Virucidal Potential",
      "author": "Khan",
      "doi-asserted-by": "crossref",
      "first-page": "111",
      "journal-title": "Appl. Microbiol. Biotechnol.",
      "key": "ref_109",
      "volume": "107",
      "year": "2023"
    },
    {
      "DOI": "10.1088/1361-6528/acb558",
      "doi-asserted-by": "crossref",
      "key": "ref_110",
      "unstructured": "Pilaquinga, F., Bosch, R., Morey, J., Bastidas-Caldes, C., Torres, M., Toscano, F., Debut, A., Pazmiño-Viteri, K., and de las Nieves Piña, M. (2023). High in Vitro Activity of Gold and Silver Nanoparticles from Solanum Mammosum L. against SARS-CoV-2 Surrogate Phi6 and Viral Model PhiX174. Nanotechnology, 34."
    },
    {
      "DOI": "10.15407/microbiolj86.02.036",
      "doi-asserted-by": "crossref",
      "key": "ref_111",
      "unstructured": "111. Rybalchenko, N.P., Artiukh, L.O., Naumenko, S., Zaremba, P.Y., Demchenko, V.L., Kokhtych, L.M., Iurzhenko, M.V., Rybalchenko, T.V., and Ovsyankina, V. (2024). Antimicrobial and Antiviral Activity of Nanocomposites Based on Polyelectrolyte Complexes with Silver Nanoparticles. Mikrobiolohichnyi Zhurnal, 86, 36–50."
    },
    {
      "DOI": "10.1088/1361-6528/ac03d6",
      "doi-asserted-by": "crossref",
      "key": "ref_112",
      "unstructured": "Sinclair, T.R., Van Den Hengel, S.K., Raza, B.G., Rutjes, S.A., De Roda Husman, A.M., Peijnenburg, W.J.G.M., Roesink, H.D.W., and De Vos, W.M. (2021). Surface Chemistry-Dependent Antiviral Activity of Silver Nanoparticles. Nanotechnology, 32."
    },
    {
      "DOI": "10.1088/1361-6528/abe489",
      "doi-asserted-by": "crossref",
      "key": "ref_113",
      "unstructured": "Bharti, S., Mukherji, S., and Mukherji, S. (2021). Antiviral Application of Colloidal and Immobilized Silver Nanoparticles. Nanotechnology, 32."
    },
    {
      "DOI": "10.1002/ardp.202400943",
      "doi-asserted-by": "crossref",
      "key": "ref_114",
      "unstructured": "Emam, M.H., Elezaby, R.S., Swidan, S.A., Loutfy, S.A., and Hathout, R.M. (2025). Enhancing Polyacrylonitrile Nanofibers Antiviral Activity Using Greenly Synthesized Silver Nanoparticles. Arch. Pharm., 358."
    },
    {
      "DOI": "10.1016/j.msec.2020.110924",
      "doi-asserted-by": "crossref",
      "key": "ref_115",
      "unstructured": "Chen, L., and Liang, J. (2020). An Overview of Functional Nanoparticles as Novel Emerging Antiviral Therapeutic Agents. Mater. Sci. Eng. C, 112."
    },
    {
      "DOI": "10.1128/AEM.03427-13",
      "article-title": "Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid",
      "author": "Park",
      "doi-asserted-by": "crossref",
      "first-page": "2343",
      "journal-title": "Appl. Env. Environ. Microbiol.",
      "key": "ref_116",
      "volume": "80",
      "year": "2014"
    },
    {
      "DOI": "10.1038/s43246-021-00153-y",
      "doi-asserted-by": "crossref",
      "key": "ref_117",
      "unstructured": "Rakowska, P.D., Tiddia, M., Faruqui, N., Bankier, C., Pei, Y., Pollard, A.J., Zhang, J., and Gilmore, I.S. (2021). Antiviral Surfaces and Coatings and Their Mechanisms of Action. Commun. Mater., 2."
    },
    {
      "DOI": "10.3390/molecules28227674",
      "doi-asserted-by": "crossref",
      "key": "ref_118",
      "unstructured": "Sadiq, S., Khan, I., Shen, Z., Wang, M., Xu, T., Khan, S., Zhou, X., Bahadur, A., Rafiq, M., and Sohail, S. (2023). Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules, 28."
    },
    {
      "DOI": "10.3390/nano10091645",
      "doi-asserted-by": "crossref",
      "key": "ref_119",
      "unstructured": "Gurunathan, S., Qasim, M., Choi, Y., Do, J.T., Park, C., Hong, K., Kim, J.H., and Song, H. (2020). Antiviral Potential of Nanoparticles—Can Nanoparticles Fight against Coronaviruses?. Nanomaterials, 10."
    },
    {
      "DOI": "10.1007/s42765-023-00275-7",
      "article-title": "A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation",
      "author": "Hadinejad",
      "doi-asserted-by": "crossref",
      "first-page": "1273",
      "journal-title": "Adv. Fiber Mater.",
      "key": "ref_120",
      "volume": "5",
      "year": "2023"
    },
    {
      "DOI": "10.3390/molecules16108894",
      "article-title": "Silver Nanoparticles as Potential Antiviral Agents",
      "author": "Galdiero",
      "doi-asserted-by": "crossref",
      "first-page": "8894",
      "journal-title": "Molecules",
      "key": "ref_121",
      "volume": "16",
      "year": "2011"
    },
    {
      "DOI": "10.1002/slct.202403772",
      "doi-asserted-by": "crossref",
      "key": "ref_122",
      "unstructured": "Manisekaran, R., Chettiar, A.-D.R., Marasamy, L., Ibarra, V.C., Lopez-Ayuso, C.A., Chavez-Granados, P.A., Kandasamy, G., Acosta-Torres, L.S., and Arthikala, M.-K. (2024). Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update. ChemistrySelect, 9."
    },
    {
      "DOI": "10.1021/acsomega.4c11045",
      "article-title": "Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update",
      "author": "Sati",
      "doi-asserted-by": "crossref",
      "first-page": "7549",
      "journal-title": "ACS Omega",
      "key": "ref_123",
      "volume": "10",
      "year": "2025"
    },
    {
      "DOI": "10.3390/ijms19020387",
      "doi-asserted-by": "crossref",
      "key": "ref_124",
      "unstructured": "Szymańska, E., Orłowski, P., Winnicka, K., Tomaszewska, E., Bąska, P., Celichowski, G., Grobełny, J., Basa, A., and Krzyżowska, M. (2018). Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and in Vivo Studies. Int. J. Mol. Sci., 19."
    },
    {
      "DOI": "10.3390/nano15030202",
      "doi-asserted-by": "crossref",
      "key": "ref_125",
      "unstructured": "Frippiat, T., Art, T., and Delguste, C. (2025). Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives. Nanomaterials, 15."
    },
    {
      "DOI": "10.3390/biom14091152",
      "doi-asserted-by": "crossref",
      "key": "ref_126",
      "unstructured": "Wang, D., Yin, C., Bai, Y., Zhou, M., Wang, N., Tong, C., Yang, Y., and Liu, B. (2024). Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein. Biomolecules, 14."
    },
    {
      "DOI": "10.3390/nano12060990",
      "doi-asserted-by": "crossref",
      "key": "ref_127",
      "unstructured": "He, Q., Lu, J., Liu, N., Lu, W., Li, Y., Shang, C., Li, X., Hu, L., and Jiang, G. (2022). Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials, 12."
    },
    {
      "DOI": "10.1016/j.jics.2021.100082",
      "doi-asserted-by": "crossref",
      "key": "ref_128",
      "unstructured": "Mali, S.N., and Pandey, A. (2021). Multiple QSAR and Molecular Modelling for Identification of Potent Human Adenovirus Inhibitors. J. Indian. Chem. Soc., 98."
    },
    {
      "DOI": "10.1186/1477-3155-8-15",
      "doi-asserted-by": "crossref",
      "key": "ref_129",
      "unstructured": "Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., and Rodriguez-Padilla, C. (2010). PVP-Coated Silver Nanoparticles Block the Transmission of Cell-Free and Cell-Associated HIV-1 in Human Cervical Culture. J. Nanobiotechnology, 8."
    },
    {
      "DOI": "10.1186/1477-3155-8-1",
      "doi-asserted-by": "crossref",
      "key": "ref_130",
      "unstructured": "Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., and Rodriguez-Padilla, C. (2010). Mode of Antiviral Action of Silver Nanoparticles against HIV-1. J. Nanobiotechnology, 8."
    },
    {
      "DOI": "10.1002/smll.200902384",
      "article-title": "Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles",
      "author": "Shukla",
      "doi-asserted-by": "crossref",
      "first-page": "1044",
      "journal-title": "Small",
      "key": "ref_131",
      "volume": "6",
      "year": "2010"
    },
    {
      "DOI": "10.1166/jbn.2008.012",
      "article-title": "Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus",
      "author": "Sun",
      "doi-asserted-by": "crossref",
      "first-page": "149",
      "journal-title": "J. Biomed. Nanotechnol.",
      "key": "ref_132",
      "volume": "4",
      "year": "2008"
    },
    {
      "DOI": "10.1007/s11671-008-9128-2",
      "doi-asserted-by": "crossref",
      "key": "ref_133",
      "unstructured": "Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., and Hussain, S.M. (2008). A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett., 3."
    },
    {
      "DOI": "10.1002/smll.201001349",
      "article-title": "Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid- Functionalized Gold Nanoparticles",
      "author": "Papp",
      "doi-asserted-by": "crossref",
      "first-page": "2900",
      "journal-title": "Small",
      "key": "ref_134",
      "volume": "6",
      "year": "2010"
    },
    {
      "article-title": "The Rise of New Coronavirus Infection (COVID-19): A Recent Update and Potential Therapeutic Candidates",
      "author": "Mali",
      "first-page": "35",
      "journal-title": "Eurasian J. Med. Oncol.",
      "key": "ref_135",
      "volume": "4",
      "year": "2020"
    },
    {
      "DOI": "10.1134/S1070427222040036",
      "article-title": "Application of Nanofibers in Virus and Bacteria Filtration",
      "author": "Habibi",
      "doi-asserted-by": "crossref",
      "first-page": "486",
      "journal-title": "Russ. J. Appl. Chem.",
      "key": "ref_136",
      "volume": "95",
      "year": "2022"
    },
    {
      "DOI": "10.3389/fmicb.2015.00453",
      "doi-asserted-by": "crossref",
      "key": "ref_137",
      "unstructured": "Elbeshehy, E.K.F., Elazzazy, A.M., and Aggelis, G. (2015). Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens. Front. Microbiol., 6."
    },
    {
      "DOI": "10.1186/1477-3155-3-6",
      "doi-asserted-by": "crossref",
      "key": "ref_138",
      "unstructured": "Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., and Yacaman, M.J. (2005). Interaction of Silver Nanoparticles with HIV-1. J. Nanobiotechnology, 3."
    },
    {
      "DOI": "10.1016/j.jviromet.2013.07.020",
      "article-title": "Inhibitory Effects of Silver Nanoparticles against Adenovirus Type 3 in Vitro",
      "author": "Chen",
      "doi-asserted-by": "crossref",
      "first-page": "470",
      "journal-title": "J. Virol. Methods",
      "key": "ref_139",
      "volume": "193",
      "year": "2013"
    },
    {
      "DOI": "10.1080/10667857.2021.1908768",
      "article-title": "Synthesis of Silver Nanoparticles Stabilised by PVP for Polymeric Membrane Application: A Comparative Study",
      "author": "Kamarudin",
      "doi-asserted-by": "crossref",
      "first-page": "289",
      "journal-title": "Mater. Technol.",
      "key": "ref_140",
      "volume": "37",
      "year": "2022"
    },
    {
      "DOI": "10.1016/j.ecoenv.2023.114636",
      "doi-asserted-by": "crossref",
      "key": "ref_141",
      "unstructured": "Nie, P., Zhao, Y., and Xu, H. (2023). Synthesis, Applications, Toxicity and Toxicity Mechanisms of Silver Nanoparticles: A Review. Ecotoxicol. Env. Environ. Saf., 253."
    },
    {
      "DOI": "10.1016/j.matpr.2021.04.266",
      "article-title": "A Review on the Toxicity of Silver Nanoparticles on Human Health",
      "author": "Jaswal",
      "doi-asserted-by": "crossref",
      "first-page": "859",
      "journal-title": "Mater. Today Proc.",
      "key": "ref_142",
      "volume": "81",
      "year": "2021"
    },
    {
      "DOI": "10.3390/ijms24065133",
      "doi-asserted-by": "crossref",
      "key": "ref_143",
      "unstructured": "Noga, M., Milan, J., Frydrych, A., and Jurowski, K. (2023). Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci., 24."
    },
    {
      "DOI": "10.47419/bjbabs.v2i03.67",
      "article-title": "Safety Assessment and Biochemical Evaluation of the Effect of Biogenic Silver Nanoparticles (Using Bark Extract of C. Zeylanicum) on Rattus Norvegicus Rats",
      "author": "Alwan",
      "doi-asserted-by": "crossref",
      "first-page": "133",
      "journal-title": "Baghdad J. Biochem. Appl. Biol. Sci.",
      "key": "ref_144",
      "volume": "2",
      "year": "2021"
    },
    {
      "DOI": "10.3390/nano10071390",
      "doi-asserted-by": "crossref",
      "key": "ref_145",
      "unstructured": "Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., Šerić, V., and Vrček, I.V. (2020). Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials, 10."
    },
    {
      "DOI": "10.1016/j.jhazmat.2019.121974",
      "doi-asserted-by": "crossref",
      "key": "ref_146",
      "unstructured": "Tortella, G.R., Rubilar, O., Durán, N., Diez, M.C., Martínez, M., Parada, J., and Seabra, A.B. (2020). Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. J. Hazard. Mater., 390."
    },
    {
      "DOI": "10.1088/2053-1591/ac2c2f",
      "doi-asserted-by": "crossref",
      "key": "ref_147",
      "unstructured": "Elyousfi, S., Dellali, M., Mezni, A., Ben Ali, M., Hedfi, A., Almalki, M., Mezni, A., Rohal-Lupher, M., Dervishi, A., and Boufahja, F. (2021). Toxicity of Silver Nanoparticles on the Clam Ruditapes Decussatus Assessed through Biomarkers and Clearance Rate. Mater. Res. Express, 8."
    },
    {
      "DOI": "10.1016/j.chemosphere.2023.140673",
      "doi-asserted-by": "crossref",
      "key": "ref_148",
      "unstructured": "Pinheiro, S.K.d.P., Lima, A.K.M., Miguel, T.B.A.R., Filho, A.G.S., Ferreira, O.P., Pontes, M.d.S., Grillo, R., and Miguel, E.d.C. (2024). Assessing Toxicity Mechanism of Silver Nanoparticles by Using Brine Shrimp (Artemia Salina) as Model. Chemosphere, 347."
    },
    {
      "DOI": "10.2147/IJN.S451694",
      "article-title": "Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells",
      "author": "Senthilkumar",
      "doi-asserted-by": "crossref",
      "first-page": "3891",
      "journal-title": "Int. J. Nanomed.",
      "key": "ref_149",
      "volume": "19",
      "year": "2024"
    },
    {
      "DOI": "10.1038/s41598-024-56337-2",
      "doi-asserted-by": "crossref",
      "key": "ref_150",
      "unstructured": "Taha, N.M., Youssef, F.S., Auda, H.M., El-Bahy, M.M., and Ramadan, R.M. (2024). Efficacy of Silver Nanoparticles against Trichinella Spiralis in Mice and the Role of Multivitamin in Alleviating Its Toxicity. Sci. Rep., 14."
    },
    {
      "DOI": "10.1016/j.rechem.2025.102092",
      "doi-asserted-by": "crossref",
      "key": "ref_151",
      "unstructured": "Dinç, B. (2025). Comprehensive Toxicity Assessment of Silver Nanoparticles on Bacteria, Human Vein Endothelial Cells, and Caenorhabditis Elegans. Results Chem., 14."
    },
    {
      "DOI": "10.1186/s12302-021-00453-7",
      "doi-asserted-by": "crossref",
      "key": "ref_152",
      "unstructured": "Kakakhel, M.A., Wu, F., Sajjad, W., Zhang, Q., Khan, I., Ullah, K., and Wang, W. (2021). Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus Carpio). Env. Environ. Sci. Eur., 33."
    },
    {
      "DOI": "10.3390/molecules26082305",
      "doi-asserted-by": "crossref",
      "key": "ref_153",
      "unstructured": "Thwala, M., Klaine, S., and Musee, N. (2021). Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia Minima. Molecules, 26."
    },
    {
      "DOI": "10.3389/fmars.2023.1195125",
      "doi-asserted-by": "crossref",
      "key": "ref_154",
      "unstructured": "Yan, Z., Zhou, Y., Zhu, P., Bao, X., and Su, P. (2023). Polystyrene Nanoplastics Mediated the Toxicity of Silver Nanoparticles in Zebrafish Embryos. Front. Mar. Sci., 10."
    },
    {
      "DOI": "10.3390/nano12183195",
      "doi-asserted-by": "crossref",
      "key": "ref_155",
      "unstructured": "Sredojević, D., Lazić, V., Pirković, A., Periša, J., Murafa, N., Spremo-Potparević, B., Živković, L., Topalović, D., Zarubica, A., and Jovanović Krivokuća, M. (2022). Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. Nanomaterials, 12."
    },
    {
      "DOI": "10.1155/2015/136765",
      "doi-asserted-by": "crossref",
      "key": "ref_156",
      "unstructured": "Sambale, F., Wagner, S., Stahl, F., Khaydarov, R.R., Scheper, T., and Bahnemann, D. (2015). Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. J. Nanomater., 2015."
    },
    {
      "DOI": "10.3390/antibiotics10070852",
      "doi-asserted-by": "crossref",
      "key": "ref_157",
      "unstructured": "Santos, T.S., Silva, T.M., Cardoso, J.C., de Albuquerque-Júnior, R.L.C., Zielinska, A., Souto, E.B., Severino, P., and Mendonça, M.D.C. (2021). Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics, 10."
    },
    {
      "DOI": "10.1039/c2ra20684f",
      "article-title": "The Toxic Effect of Silver Ions and Silver Nanoparticles towards Bacteria and Human Cells Occurs in the Same Concentration Range",
      "author": "Greulich",
      "doi-asserted-by": "crossref",
      "first-page": "6981",
      "journal-title": "RSC Adv.",
      "key": "ref_158",
      "volume": "2",
      "year": "2012"
    },
    {
      "DOI": "10.1293/tox.2017-0043",
      "article-title": "Size-Dependent Acute Toxicity of Silver Nanoparticles in Mice",
      "author": "Cho",
      "doi-asserted-by": "crossref",
      "first-page": "73",
      "journal-title": "J. Toxicol. Pathol.",
      "key": "ref_159",
      "volume": "31",
      "year": "2018"
    },
    {
      "DOI": "10.1016/j.jare.2021.09.006",
      "article-title": "Toxicity and Action Mechanisms of Silver Nanoparticles against the Mycotoxin-Producing Fungus Fusarium Graminearum",
      "author": "Jian",
      "doi-asserted-by": "crossref",
      "first-page": "1",
      "journal-title": "J. Adv. Res.",
      "key": "ref_160",
      "volume": "38",
      "year": "2022"
    },
    {
      "DOI": "10.1007/s11356-020-11714-y",
      "article-title": "Toxicity Mechanism of Silver Nanoparticles to Chlamydomonas Reinhardtii: Photosynthesis, Oxidative Stress, Membrane Permeability, and Ultrastructure Analysis",
      "author": "Zhao",
      "doi-asserted-by": "crossref",
      "first-page": "15032",
      "journal-title": "Environ. Sci. Pollut. Res.",
      "key": "ref_161",
      "volume": "28",
      "year": "2020"
    },
    {
      "DOI": "10.1007/s11356-020-11862-1",
      "article-title": "The Effects of Solubility of Silver Nanoparticles, Accumulation, and Toxicity to the Aquatic Plant Lemna Minor",
      "author": "Souza",
      "doi-asserted-by": "crossref",
      "first-page": "16720",
      "journal-title": "Environ. Sci. Pollut. Res.",
      "key": "ref_162",
      "volume": "28",
      "year": "2021"
    },
    {
      "DOI": "10.1016/j.jhazmat.2019.121975",
      "doi-asserted-by": "crossref",
      "key": "ref_163",
      "unstructured": "Ke, M., Li, Y., Qu, Q., Ye, Y., Peijnenburg, W.J.G.M., Zhang, Z., Xu, N., Lu, T., Sun, L., and Qian, H. (2020). Offspring Toxicity of Silver Nanoparticles to Arabidopsis Thaliana Flowering and Floral Development. J. Hazard. Mater., 386."
    },
    {
      "DOI": "10.1007/s10695-020-00909-2",
      "article-title": "Toxicity of Silver Nanoparticles on Different Tissues in Adult Danio Rerio",
      "author": "Marinho",
      "doi-asserted-by": "crossref",
      "first-page": "239",
      "journal-title": "Fish. Physiol. Biochem.",
      "key": "ref_164",
      "volume": "47",
      "year": "2021"
    },
    {
      "DOI": "10.2147/IJN.S250467",
      "article-title": "Species-Specific in Vitro and in Vivo Evaluation of Toxicity of Silver Nanoparticles Stabilized with Gum Arabic Protein",
      "author": "Maziero",
      "doi-asserted-by": "crossref",
      "first-page": "7359",
      "journal-title": "Int. J. Nanomed.",
      "key": "ref_165",
      "volume": "15",
      "year": "2020"
    },
    {
      "DOI": "10.1186/s12989-020-00342-6",
      "doi-asserted-by": "crossref",
      "key": "ref_166",
      "unstructured": "Abdelkhaliq, A., Van Der Zande, M., Peters, R.J.B., and Bouwmeester, H. (2020). Combination of the BeWo B30 Placental Transport Model and the Embryonic Stem Cell Test to Assess the Potential Developmental Toxicity of Silver Nanoparticles. Part. Fibre Toxicol., 17."
    },
    {
      "DOI": "10.3390/ijms22052536",
      "doi-asserted-by": "crossref",
      "key": "ref_167",
      "unstructured": "Chen, R.J., Huang, C.C., Pranata, R., Lee, Y.H., Chen, Y.Y., Wu, Y.H., and Wang, Y.J. (2021). Modulation of Innate Immune Toxicity by Silver Nanoparticle Exposure and the Preventive Effects of Pterostilbene. Int. J. Mol. Sci., 22."
    },
    {
      "DOI": "10.3390/molecules30071521",
      "doi-asserted-by": "crossref",
      "key": "ref_168",
      "unstructured": "Michalec, S., Nieckarz, W., Klimek, W., Lange, A., Matuszewski, A., Piotrowska, K., Hotowy, A., Kunowska-Slósarz, M., and Sosnowska, M. (2025). Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth. Molecules, 30."
    },
    {
      "DOI": "10.5897/AJB2020.17057",
      "article-title": "Sub-Acute and Chronic Toxicity of Silver Nanoparticles Synthesized by Azadirachta Indica Extract",
      "author": "Emma",
      "doi-asserted-by": "crossref",
      "first-page": "320",
      "journal-title": "Afr. J. Biotechnol.",
      "key": "ref_169",
      "volume": "19",
      "year": "2020"
    },
    {
      "DOI": "10.1016/j.chemosphere.2020.127346",
      "doi-asserted-by": "crossref",
      "key": "ref_170",
      "unstructured": "Khoshnamvand, M., Hao, Z., Fadare, O.O., Hanachi, P., Chen, Y., and Liu, J. (2020). Toxicity of Biosynthesized Silver Nanoparticles to Aquatic Organisms of Different Trophic Levels. Chemosphere, 258."
    },
    {
      "DOI": "10.1038/s41598-024-80528-6",
      "doi-asserted-by": "crossref",
      "key": "ref_171",
      "unstructured": "Somda, D., Bargul, J.L., Wesonga, J.M., and Wachira, S.W. (2024). Green Synthesis of Brassica Carinata Microgreen Silver Nanoparticles, Characterization, Safety Assessment, and Antimicrobial Activities. Sci. Rep., 14."
    },
    {
      "DOI": "10.3390/coatings15040370",
      "doi-asserted-by": "crossref",
      "key": "ref_172",
      "unstructured": "Sati, A., Nandiwdekar, O., Ratnaparkhi, A., Doke, R.B., Pinjari, D.V., Mali, S.N., and Pratap, A.P. (2025). Bio-Based Alkyd–Polyesteramide–Polyurethane Coatings from Castor, Neem, and Karanja Oils with Inherent Antimicrobial Properties for Enhanced Hygiene. Coatings, 15."
    },
    {
      "DOI": "10.1016/j.chemosphere.2020.127805",
      "doi-asserted-by": "crossref",
      "key": "ref_173",
      "unstructured": "Haghighat, F., Kim, Y., Sourinejad, I., Yu, I.J., and Johari, S.A. (2021). Titanium Dioxide Nanoparticles Affect the Toxicity of Silver Nanoparticles in Common Carp (Cyprinus Carpio). Chemosphere, 262."
    },
    {
      "DOI": "10.1016/j.envpol.2022.119606",
      "doi-asserted-by": "crossref",
      "key": "ref_174",
      "unstructured": "Chen, F., Aqeel, M., Maqsood, M.F., Khalid, N., Irshad, M.K., Ibrahim, M., Akhter, N., Afzaal, M., Ma, J., and Hashem, M. (2022). Mitigation of Lead Toxicity in Vigna Radiata Genotypes by Silver Nanoparticles. Environ. Pollut., 308."
    },
    {
      "DOI": "10.1007/s11356-018-3217-2",
      "article-title": "In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells",
      "author": "Chi",
      "doi-asserted-by": "crossref",
      "first-page": "32373",
      "journal-title": "Environ. Sci. Pollut. Res.",
      "key": "ref_175",
      "volume": "25",
      "year": "2018"
    },
    {
      "DOI": "10.1016/j.biomaterials.2011.03.039",
      "article-title": "The Targeted Antibacterial and Antifungal Properties of Magnetic Nanocomposite of Iron Oxide and Silver Nanoparticles",
      "author": "Prucek",
      "doi-asserted-by": "crossref",
      "first-page": "4704",
      "journal-title": "Biomaterials",
      "key": "ref_176",
      "volume": "32",
      "year": "2011"
    },
    {
      "DOI": "10.1039/D2NR03902H",
      "article-title": "Growth Suppression of Bacteria by Biofilm Deterioration Using Silver Nanoparticles with Magnetic Doping",
      "author": "Nguyen",
      "doi-asserted-by": "crossref",
      "first-page": "18143",
      "journal-title": "Nanoscale",
      "key": "ref_177",
      "volume": "14",
      "year": "2022"
    },
    {
      "DOI": "10.1016/j.colsurfa.2010.12.009",
      "article-title": "Immobilizing Silver Nanoparticles onto the Surface of Magnetic Silica Composite to Prepare Magnetic Disinfectant with Enhanced Stability and Antibacterial Activity",
      "author": "Zhang",
      "doi-asserted-by": "crossref",
      "first-page": "186",
      "journal-title": "Colloids Surf. A Physicochem. Eng. Asp.",
      "key": "ref_178",
      "volume": "375",
      "year": "2011"
    },
    {
      "DOI": "10.1007/s00339-016-9935-8",
      "doi-asserted-by": "crossref",
      "key": "ref_179",
      "unstructured": "Ratti, M., Naddeo, J.J., Tan, Y., Griepenburg, J.C., Tomko, J., Trout, C., O’Malley, S.M., Bubb, D.M., and Klein, E.A. (2016). Irradiation with Visible Light Enhances the Antibacterial Toxicity of Silver Nanoparticles Produced by Laser Ablation. Appl. Phys. A Mater. Sci. Process, 122."
    }
  ],
  "reference-count": 179,
  "references-count": 179,
  "relation": {},
  "resource": {
    "primary": {
      "URL": "https://www.mdpi.com/1420-3049/30/9/2004"
    }
  },
  "score": 1,
  "short-title": [],
  "source": "Crossref",
  "subject": [],
  "subtitle": [],
  "title": "Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review",
  "type": "journal-article",
  "volume": "30"
}