Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review
Abhinav Sati, Tanvi N Ranade, Suraj N Mali, Haya Khader Ahmad Yasin, Nehal Samdani, Nikil Navnath Satpute, Susmita Yadav, Amit P Pratap
Molecules, doi:10.3390/molecules30092004
AgNPs have gained significant attention due to their unique physicochemical properties, making them valuable across a range of fields including medicine, textiles, and household products. With their strong antimicrobial and antiviral properties, AgNPs have shown promise in treating infections, particularly in wound care management. This review explores the mechanisms underlying the antiviral activities of AgNPs, as well as the methods used for their synthesis, which include physical, chemical, and biological approaches. The review also addresses the potential limitations of AgNPs, including their cytotoxicity to humans and the environment. The interaction between AgNPs and microorganisms, particularly viruses, varies based on synthesis methods and particle morphology. As viral infections, including resistant strains, present major global health challenges, there is a growing need for alternative antiviral therapies. Metal nanoparticles like AgNPs offer potential advantages over conventional antiviral drugs due to their broad target range, which reduces the likelihood of resistance development. This review highlights AgNPs' effectiveness against a variety of viruses, such as HIV, hepatitis B, and respiratory syncytial virus, and discusses their potential for use in novel antiviral treatments. The review also examines AgNPs' toxicity, offering insights into their future therapeutic roles.
Conflicts of Interest: The authors declare no conflicts of interest.
References
Abdel-Halim, El-Rafie, Al-Deyab, Polyacrylamide/Guar Gum Graft Copolymer for Preparation of Silver Nanoparticles, Carbohydr. Polym,
doi:10.1016/j.carbpol.2011.03.039
Abdelkhaliq, Van Der Zande, Peters, Bouwmeester, Combination of the BeWo B30 Placental Transport Model and the Embryonic Stem Cell Test to Assess the Potential Developmental Toxicity of Silver Nanoparticles, Part. Fibre Toxicol,
doi:10.1186/s12989-020-00342-6
Agnihotri, Mukherji, Mukherji, Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm Using the Same Protocol and Their Antibacterial Efficacy, RSC Adv,
doi:10.1039/c3ra44507k
Ahmed, Murtaza, Mehmood, Bhatti, Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia Laureola: Characterization and Antibacterial Activity, Mater. Lett,
doi:10.1016/j.matlet.2015.03.143
Ahmed, Saifullah; Ahmad, Swami, Ikram, Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract, J. Radiat. Res. Appl. Sci,
doi:10.1016/j.jrras.2015.06.006
Al-Askar, Aseel, El-Gendi, Sobhy, Samy et al., Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica Granatum L.) Peel Extract against Tobacco Mosaic Virus, Plants,
doi:10.3390/plants12112103
Al-Mubaddel, Haider, Al-Masry, Al-Zeghayer, Imran et al., Engineered Nanostructures: A Review of Their Synthesis, Characterization and Toxic Hazard Considerations, Arab. J. Chem,
doi:10.1016/j.arabjc.2012.09.010
Alharbi, Ahmed, Abdul Rahman, Zahirah Noor Azman, Algburi et al., Development of ZnO and Si Semiconductor-Based Ultraviolet Photodetectors Enhanced by Laser-Ablated Silver Nanoparticles, Photonics Nanostruct,
doi:10.1016/j.photonics.2024.101228
Ali, Tahir Maher, Al-Bajari, Green biosynthesis of silver nanoparticles from taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells, J. Hyg. Eng. Des
Alshehri, Jakubowska, Mło Żniak, Horaczek, Rudka et al., Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications, ACS Appl. Mater. Interfaces,
doi:10.1021/am3022569
Alwan, Al-Saeed, Abid, Safety Assessment and Biochemical Evaluation of the Effect of Biogenic Silver Nanoparticles (Using Bark Extract of C. Zeylanicum) on Rattus Norvegicus Rats. Baghdad, J. Biochem. Appl. Biol. Sci,
doi:10.47419/bjbabs.v2i03.67
Amaral, Carraro, Antoniêto, Costa, Fraga-Silva et al., Biogenic Silver Nanoparticles Produced by Trichoderma Reesei Inhibit SARS-CoV-2 Infection, Reduce Lung Viral Load and Ameliorate Acute Pulmonary Inflammation, Curr. Res. Biotechnol,
doi:10.1016/j.crbiot.2025.100277
Amendola, Meneghetti, Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles, Phys. Chem. Chem. Phys,
doi:10.1039/b900654k
Ashraf, Ansari, Khan, Alzohairy, Choi, Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques, Sci. Rep,
doi:10.1038/srep20414
Baloushi, Senthilkumar, Kandhan, Subramanian, Kizhakkayil et al., Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells, Int. J. Nanomed,
doi:10.2147/IJN.S451694
Bamal, Singh, Chaudhary, Kumar, Singh et al., Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review, Nanomaterials,
doi:10.3390/nano11082086
Barabadi, Vahidi, Karami, Kamali, Jounaki et al., Cephalosporium Aphidicola-Derived Silver Nanoparticles: In Vitro Physicochemical, Antibacterial, Antifungal, Biofilm Inhibition, Biofilm Degradation, Antioxidant, Alpha-Amylase, and Urease Inhibitory Properties, Bionanoscience,
doi:10.1007/s12668-024-01622-7
Baram-Pinto, Shukla, Gedanken, Sarid, Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles, Small,
doi:10.1002/smll.200902384
Bastys, Pastoriza-Santos, Rodríguez-González, Vaisnoras, Liz-Marzán, Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths, Adv. Funct. Mater,
doi:10.1002/adfm.200500667
Bhagat, Rajput, Arya, Khan, Lehana, Biological and Electrical Properties of Biosynthesized Silver Nanoparticles, Bull. Mater. Sci
Bharti, Mukherji, Mukherji, Antiviral Application of Colloidal and Immobilized Silver Nanoparticles, Nanotechnology,
doi:10.1088/1361-6528/abe489
Bouafia, Laouini, Ahmed, Soldatov, Algarni et al., The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications, Nanomaterials,
doi:10.3390/nano11092318
Butler, Hrncirova, Jacot, Dutta, Clark et al., Detection and Quantification of Antiviral Drug Tenofovir Using Silver Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) with Spatially Resolved Hotspot Selection, Front. Nanotechnol,
doi:10.3389/fnano.2023.1270474
Chen, Aqeel, Maqsood, Khalid, Irshad et al., Mitigation of Lead Toxicity in Vigna Radiata Genotypes by Silver Nanoparticles, Environ. Pollut,
doi:10.1016/j.envpol.2022.119606
Chen, Huang, Pranata, Lee, Chen et al., Modulation of Innate Immune Toxicity by Silver Nanoparticle Exposure and the Preventive Effects of Pterostilbene, Int. J. Mol. Sci,
doi:10.3390/ijms22052536
Chen, Liang, An Overview of Functional Nanoparticles as Novel Emerging Antiviral Therapeutic Agents, Mater. Sci. Eng. C,
doi:10.1016/j.msec.2020.110924
Chi, Lin, Li, Zhang, Zhang, In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells, Environ. Sci. Pollut. Res
Cho, Mizuta, Akagi, Toyoda, Sone et al., Size-Dependent Acute Toxicity of Silver Nanoparticles in Mice, J. Toxicol. Pathol,
doi:10.1293/tox.2017-0043
Das, Kumar, Singh, Agrawal, Albukhaty et al., Green Synthesis of Silver Nanoparticles Using Trema Orientalis (L.) Extract and Evaluation of Their Antibacterial Activity, Green. Chem. Lett. Rev,
doi:10.1080/17518253.2024.2444679
De Souza, Rosa, Constantino-Teles, Ferreira, Archanjo et al., Silver Nanoparticles-Functionalized Textile against SARS-CoV-2: Antiviral Activity of the Capping Oleylamine Molecule, ACS Appl. Mater. Interfaces,
doi:10.1021/acsami.4c15289
Demchenko, Mamunya, Sytnyk, Iurzhenko, Krivtsun et al., Fabrication of Polylactide Composites with Silver Nanoparticles by Sputtering Deposition and Their Antimicrobial and Antiviral Applications, Polym. Int,
doi:10.1002/pi.6707
Dhaka, Chand Mali, Sharma, Trivedi, A Review on Biological Synthesis of Silver Nanoparticles and Their Potential Applications, Results Chem
Dhayalan, Riyaz, Karikalan, Srinivasan, Biomedical Applications of Silver Nanoparticles
Dinç, Comprehensive Toxicity Assessment of Silver Nanoparticles on Bacteria, Human Vein Endothelial Cells, and Caenorhabditis Elegans, Results Chem,
doi:10.1016/j.rechem.2025.102092
Doan, Nguyen, Nguyen, Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review, J. Nanoparticle Res,
doi:10.1007/s11051-023-05716-3
Dos Santos, Paterno, Moreira, Sales, Original Photochemical Synthesis of Ag Nanoparticles Mediated by Potato Starch, SN Appl. Sci,
doi:10.1007/s42452-019-0586-1
Doszpoly, Shaalan, El-Matbouli, Silver Nanoparticles Proved to Be Efficient Antivirals In Vitro against Three Highly Pathogenic Fish Viruses, Viruses,
doi:10.3390/v15081689
Długosz, Żebracka, Sochocka, Franz, Ochnik et al., Selective and Complementary Antimicrobial and Antiviral Activity of Silver, Copper, and Selenium Nanoparticle Suspensions in Deep Eutectic Solvent, Env. Environ. Res,
doi:10.1016/j.envres.2024.120351
El Bagoury, Mahmoud, Kassem, Elhabashy, Green Synthesis of Silver Nanoparticles Using Green Tea Extract and Evaluation of Their Antiviral Potential against Foot-and-Mouth Disease Virus Serotype O: An In-Vitro Study. Egypt, J. Vet. Sci,
doi:10.21608/ejvs.2024.309594.2289
El-Ganainy, Soliman, Ismail, Sattar, Farroh et al., Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus, Polymers,
doi:10.3390/polym15132961
Elbeshehy, Elazzazy, Aggelis, Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens, Front. Microbiol,
doi:10.3389/fmicb.2015.00453
Elechiguerra, Burt, Morones, Camacho-Bragado, Gao et al., Interaction of Silver Nanoparticles with HIV-1, J. Nanobiotechnology,
doi:10.1186/1477-3155-3-6
Elnosary, Aboelmagd, Sofy, Sofy, Elshazly, Antiviral and Antibacterial Properties of Synthesis Silver Nanoparticles with Nigella Arvensis Aqueous Extract. Egypt, J. Chem,
doi:10.21608/EJCHEM.2022.159976.6894
Elwakil, Eldrieny, Almotairy, El-Khatib, Potent Biological Activity of Newly Fabricated Silver Nanoparticles Coated by a Carbon Shell Synthesized by Electrical Arc, Sci. Rep,
doi:10.1038/s41598-024-54648-y
Elyousfi, Dellali, Mezni, Ben Ali, Hedfi et al., Toxicity of Silver Nanoparticles on the Clam Ruditapes Decussatus Assessed through Biomarkers and Clearance Rate, Mater. Res. Express,
doi:10.1088/2053-1591/ac2c2f
Emam, Elezaby, Swidan, Loutfy, Hathout, Enhancing Polyacrylonitrile Nanofibers Antiviral Activity Using Greenly Synthesized Silver Nanoparticles, Arch. Pharm,
doi:10.1002/ardp.202400943
Emma, Judith, Peter, Naomi, Sub-Acute and Chronic Toxicity of Silver Nanoparticles Synthesized by Azadirachta Indica Extract, Afr. J. Biotechnol,
doi:10.5897/ajb2020.17057
Evanoff, Chumanov, Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections, J. Phys. Chem. B,
doi:10.1021/jp0475640
Fereydani, Jalalian, Saber, Green Synthesis of Silver Nanoparticles from Cuscuta Epithymum Extract, Evaluation of Antibacterial, Antioxidant Activity, Cytotoxic Effect on MCF-7 Cell Line
Frippiat, Art, Delguste, Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives, Nanomaterials,
doi:10.3390/nano15030202
Gaikwad, Ingle, Gade, Rai, Falanga et al., Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3, Int. J. Nanomed,
doi:10.2147/IJN.S50070
Galdiero, Falanga, Vitiello, Cantisani, Marra et al., Silver Nanoparticles as Potential Antiviral Agents, Molecules,
doi:10.3390/molecules16108894
Gangal, Bachhar, Joshi, Akhtar, Duseja et al., Green Synthesis of Silver Nanoparticles from the Essential Oil of Curcuma Amada and Their Antihyperglycemic Effect in STZ Induced Diabetic Rats, Inorg. Chem. Commun,
doi:10.1016/j.inoche.2024.112873
Gattucci, Lallukka, Grifasi, Piumetti, Miola, Tannic Acid-Assisted Green Functionalization of Clinoptilolite: A Step-by-Step Characterization of Silver Nanoparticles in Situ Reduction, Ceram. Int,
doi:10.1016/j.ceramint.2025.01.151
Gharieb, Khalil, Menshawy, El-Aty, El-Khatib, The Impact of Different Temperatures on NanoSilver Carbon Manufacturing by Arc Discharge Method, Alfarama J. Basic. Appl. Sci,
doi:10.21608/ajbas.2024.251945.1199
Ghasemi, Dabirian, Kariminejad, Koohi, Nemattalab et al., Process Optimization for Green Synthesis of Silver Nanoparticles Using Rubus Discolor Leaves Extract and Its Biological Activities against Multi-Drug Resistant Bacteria and Cancer Cells, Sci. Rep,
doi:10.1038/s41598-024-54702-9
Gonçalves, Lopes Barbosa, Silva Olak, Belebecha Terezo, Nishi et al., Antiviral Therapies: Advances and Perspectives, Fundam. Clin. Pharmacol,
doi:10.1111/fcp.12609
Greulich, Braun, Peetsch, Diendorf, Siebers et al., The Toxic Effect of Silver Ions and Silver Nanoparticles towards Bacteria and Human Cells Occurs in the Same Concentration Range, RSC Adv,
doi:10.1039/c2ra20684f
Gurunathan, Qasim, Choi, Do, Park et al., Antiviral Potential of Nanoparticles-Can Nanoparticles Fight against Coronaviruses?, Nanomaterials,
doi:10.3390/nano10091645
Habibi, Ghajarieh, Application of Nanofibers in Virus and Bacteria Filtration, Russ. J. Appl. Chem
Hadinejad, Morad, Jahanshahi, Zarrabi, Pazoki-Toroudi et al., A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation, Adv. Fiber Mater
Haes, Haynes, Mcfarland, Schatz, Van Duyne et al., Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy, MRS Bull,
doi:10.1557/mrs2005.100
Haghighat, Kim, Sourinejad, Yu, Johari, Titanium Dioxide Nanoparticles Affect the Toxicity of Silver Nanoparticles in Common Carp (Cyprinus Carpio), Chemosphere,
doi:10.1016/j.chemosphere.2020.127805
Hak, Jahan, Sharma, Farooqui, Article in Community Practitioner: The Journal of the Community Practitioners' & Health Visitors, Association. Community Pract,
doi:10.5281/zenodo.10663865
He, Lu, Liu, Lu, Li et al., Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size, Nanomaterials,
doi:10.3390/nano12060990
He, Qian, Yin, Zhu, Preparation of Polychrome Silver Nanoparticles in Different Solvents, J. Mater. Chem,
doi:10.1039/B205214H
Huang, Li, Sun, Lu, Su et al., Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum Camphora Leaf, Nanotechnology,
doi:10.1088/0957-4484/18/10/105104
Idres, Idris, Gao, Preclinical Testing of Antiviral SiRNA Therapeutics Delivered in Lipid Nanoparticles in Animal Models-a Comprehensive Review, Drug Deliv. Transl. Res,
doi:10.1007/s13346-025-01815-x
Jaswal, Gupta, A Review on the Toxicity of Silver Nanoparticles on Human Health, Mater. Today Proc
Jeevanandam, Krishnan, Hii, Pan, Chan et al., Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites, J. Nanostructure Chem
Jian, Chen, Ahmed, Shang, Zhang et al., Toxicity and Action Mechanisms of Silver Nanoparticles against the Mycotoxin-Producing Fungus Fusarium Graminearum, J. Adv. Res,
doi:10.1016/j.jare.2021.09.006
Kakakhel, Wu, Sajjad, Zhang, Khan et al., Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus Carpio), Env. Environ. Sci. Eur,
doi:10.1186/s12302-021-00453-7
Kamarudin, Hashim, Ong, Hassan, Abdul Manaf, Synthesis of Silver Nanoparticles Stabilised by PVP for Polymeric Membrane Application: A Comparative Study, Mater. Technol,
doi:10.1080/10667857.2021.1908768
Ke, Li, Qu, Ye, Peijnenburg et al., Offspring Toxicity of Silver Nanoparticles to Arabidopsis Thaliana Flowering and Floral Development, J. Hazard. Mater,
doi:10.1016/j.jhazmat.2019.121975
Kelly, Coronado, Zhao, Schatz, The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment, J. Phys. Chem. B,
doi:10.1021/jp026731y
Kenmotsu, Hirasawa, Tamadate, Matsumoto, Osone et al., Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation, ACS Omega,
doi:10.1021/acsomega.4c03046
Khan, Naureen, Javed, Khalid, Khan, Alocasia Odora-Mediated Synthesis of Silver Nanoparticles, Their Cytotoxicity, and Virucidal Potential, Appl. Microbiol. Biotechnol,
doi:10.1007/s00253-022-12298-y
Khan, Saleh, Wahab, Khan, Khan et al., Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold, Int. J. Nanomed
Khayati, Janghorban, The Nanostructure Evolution of Ag Powder Synthesized by High Energy Ball Milling, Adv. Powder Technol,
doi:10.1016/j.apt.2011.05.005
Khoshnamvand, Hao, Fadare, Hanachi, Chen et al., Toxicity of Biosynthesized Silver Nanoparticles to Aquatic Organisms of Different Trophic Levels, Chemosphere,
doi:10.1016/j.chemosphere.2020.127346
Lara, Ayala-Nuñez, Ixtepan-Turrent, Rodriguez-Padilla, Mode of Antiviral Action of Silver Nanoparticles against HIV-1, J. Nanobiotechnology
Lara, Ixtepan-Turrent, Garza-Treviño, Rodriguez-Padilla, PVP-Coated Silver Nanoparticles Block the Transmission of Cell-Free and Cell-Associated HIV-1 in Human Cervical Culture, J. Nanobiotechnology,
doi:10.1186/1477-3155-8-15
Lima, Vieira, Souza, Florêncio, Silva et al., Green Synthesis of Silver Nanoparticles Using Paullinia Cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties, Pharmaceutics,
doi:10.3390/pharmaceutics17030356
Losetty, Devanesan, Alsalhi, Velu, Muthupillai et al., Green Synthesis of Silver Nanoparticles Using Malachra Alceifolia (Wild Okra) for Wastewater Treatment and Biomedical Applications with Molecular Docking Approach, Environ. Sci. Pollut. Res,
doi:10.1007/s11356-024-34872-9
Luceri, Francese, Lembo, Ferraris, Balagna, Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications, Microorganisms,
doi:10.3390/microorganisms11030629
Maaz, Silver Nanoparticles: Fabrication, Characterization and Applications
Makhlof, Diab, Mabrouk, Abd El Kareem, Antiviral and Antioxidant Activity, Green Synthesis, and Optimization of Silver Nanoparticles Derived from Ulva Lactuca. Egypt, J. Phycol,
doi:10.21608/egyjs.2024.264183.1028
Mali, Pandey, Multiple QSAR and Molecular Modelling for Identification of Potent Human Adenovirus Inhibitors, J. Indian. Chem. Soc,
doi:10.1016/j.jics.2021.100082
Mali, Pratap, Thorat, The Rise of New Coronavirus Infection (COVID-19): A Recent Update and Potential Therapeutic Candidates, Eurasian J. Med. Oncol
Malik, Wani, Hashim, Microemulsion Method: A Novel Route to Synthesize Organic and Inorganic Nanomaterials. 1st Nano Update, Arab. J. Chem
Manisekaran, Chettiar, Marasamy, Ibarra, Lopez-Ayuso et al., Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update, ChemistrySelect,
doi:10.1002/slct.202403772
Marinho, Matias, Toledo, Smaniotto, Ximenes-Da-Silva et al., Toxicity of Silver Nanoparticles on Different Tissues in Adult Danio Rerio, Fish. Physiol. Biochem,
doi:10.1007/s10695-020-00909-2
Martín-Faivre, Prince, Cornu, Villeret, Sanchez-Guzman et al., Pulmonary Delivery of Silver Nanoparticles Prevents Influenza Infection by Recruiting and Activating Lymphoid Cells, Biomaterials,
doi:10.1016/j.biomaterials.2024.122721
Maziero, Thipe, Rogero, Cavalcante, Damasceno et al., Species-Specific in Vitro and in Vivo Evaluation of Toxicity of Silver Nanoparticles Stabilized with Gum Arabic Protein, Int. J. Nanomed,
doi:10.2147/IJN.S250467
Mejía-Méndez, Sánchez-Ante, Cerro-López, Minutti-Calva, Navarro-López et al., Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe Fedtschenkoi: Characterization and Bioactivities, Biomolecules,
doi:10.3390/biom14070782
Michalec, Nieckarz, Klimek, Lange, Matuszewski et al., Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth, Molecules,
doi:10.3390/molecules30071521
Mohammed, Jawad, Çevik, Sulaiman, Albukhaty et al., Investigating the Antimicrobial, Antioxidant, and Anticancer Effects of Elettaria Cardamomum Seed Extract Conjugated to Green Synthesized Silver Nanoparticles by Laser Ablation, Plasmonics,
doi:10.1007/s11468-023-02067-6
Morens, Folkers, Fauci, The Challenge of Emerging and Re-Emerging Infectious Diseases, Nature,
doi:10.1038/nature02759
Mukherji, Bharti, Shukla, Mukherji, Synthesis and Characterization of Size-and Shape-Controlled Silver Nanoparticles, Phys. Sci. Rev,
doi:10.1515/psr-2017-0082
Métraux, Mirkin, Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness, Adv. Mater,
doi:10.1002/adma.200401086
Naganthran, Verasoundarapandian, Khalid, Masarudin, Zulkharnain et al., Characterization and Biomedical Application of Silver Nanoparticles, Materials,
doi:10.3390/ma15020427
Natsuki, Natsuki, Hashimoto, A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications, Int. J. Mater. Sci. Appl,
doi:10.11648/j.ijmsa.20150405.17
Naumenko, Zahorodnia, Pop, Rizun, Antiviral Activity of Silver Nanoparticles against the Influenza A Virus, J. Virus Erad,
doi:10.1016/j.jve.2023.100330
Niaz, Hemat, Jamil, Aziz, Exploring the Relationship between Confinement Geometry and the Formation of High-Quality Silver Nanoparticles by Laser Ablation in Liquid Media, Indian. J. Phys,
doi:10.1007/s12648-024-03251-y
Nie, Zhao, Xu, Synthesis, Applications, Toxicity and Toxicity Mechanisms of Silver Nanoparticles: A Review, Ecotoxicol. Env. Environ. Saf
Noga, Milan, Frydrych, Jurowski, Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)-Critical Review: State of the Art, Int. J. Mol. Sci,
doi:10.3390/ijms24065133
Obasi, Nebolisa, Akinwunmi, Abimbolu, Ezeorah et al., Eco-Friendly and Facile Production Method, Natural Products Chemistry, and Pharmacological Properties of Silver Nanoparticles Using Telfaria Occidentalis Leaf and Stem Extracts, Eur. J. Sustain. Dev. Res,
doi:10.29333/ejosdr/15942
Papp, Sieben, Ludwig, Roskamp, Böttcher et al., Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid-Functionalized Gold Nanoparticles, Small,
doi:10.1002/smll.201001349
Park, Park, Kim, Kim, Woo et al., Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid, Appl. Env. Environ. Microbiol,
doi:10.1128/AEM.03427-13
Pencheva, Bryaskova, Kantardjiev, Polyvinyl Alcohol/Silver Nanoparticles (PVA/AgNps) as a Model for Testing the Biological Activity of Hybrid Materials with Included Silver Nanoparticles, Mater. Sci. Eng. C,
doi:10.1016/j.msec.2012.05.016
Pilaquinga, Bosch, Morey, Bastidas-Caldes, Torres et al., High in Vitro Activity of Gold and Silver Nanoparticles from Solanum Mammosum L. against SARS-CoV-2 Surrogate Phi6 and Viral Model PhiX174, Mikrobiolohichnyi Zhurnal,
doi:10.15407/microbiolj86.02.036
Pinheiro, Lima, Miguel, Filho, Ferreira et al., Assessing Toxicity Mechanism of Silver Nanoparticles by Using Brine Shrimp (Artemia Salina) as Model, Chemosphere,
doi:10.1016/J.CHEMOSPHERE.2023.140673
Pinzaru, Coricovac, Dehelean, Moacă, Mioc et al., Stable PEG-Coated Silver Nanoparticles-A Comprehensive Toxicological Profile, Food Chem. Toxicol,
doi:10.1016/j.fct.2017.11.051
Prucek, Tuček, Kilianová, Panáček, Kvítek et al., The Targeted Antibacterial and Antifungal Properties of Magnetic Nanocomposite of Iron Oxide and Silver Nanoparticles, Biomaterials,
doi:10.1016/j.biomaterials.2011.03.039
Raffi, Rumaiz, Hasan, Shah, Studies of the Growth Parameters for Silver Nanoparticle Synthesis by Inert Gas Condensation, J. Mater. Res,
doi:10.1557/jmr.2007.0420
Rafique, Rafique, Kalsoom, Afzal, Butt et al., Laser Ablation Synthesis of Silver Nanoparticles in Water and Dependence on Laser Nature, Opt. Quantum Electron,
doi:10.1007/s11082-019-1902-0
Rahmah, Ahmed, Rashid, Qasim, Preparation of Silver Nanoparticles Using Laser Ablation for In Vitro Treatment of MCF-7 Cancer Cells with Antibacterial Activity, Plasmonics,
doi:10.1007/s11468-023-02150-y
Rajapaksha, Orrell-Trigg, Shah, Cheeseman, Vu et al., Broad Spectrum Antibacterial Zinc Oxide-Reduced Graphene Oxide Nanocomposite for Water Depollution, Mater. Today Chem,
doi:10.1016/j.mtchem.2022.101242
Rakowska, Tiddia, Faruqui, Bankier, Pei et al., Antiviral Surfaces and Coatings and Their Mechanisms of Action, Commun. Mater
Ranade, Sati, Pratap, Mali, Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions, Chem. Pap,
doi:10.1007/s11696-025-03892-1
Ratti, Naddeo, Tan, Griepenburg, Tomko et al., Irradiation with Visible Light Enhances the Antibacterial Toxicity of Silver Nanoparticles Produced by Laser Ablation, Appl. Phys. A Mater. Sci. Process
Raveendran, Fu, Wallen, Completely, Green" Synthesis and Stabilization of Metal Nanoparticles, J. Am. Chem. Soc,
doi:10.1021/ja029267j
Raza, Kanwal, Rauf, Sabri, Riaz et al., Size-and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes, Nanomaterials,
doi:10.3390/nano6040074
Roduner, Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles
Rogers, Parkinson, Choi, Speshock, Hussain, A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation, Nanoscale Res. Lett,
doi:10.1007/s11671-008-9128-2
Sadiq, Khan, Shen, Wang, Xu et al., Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges, Molecules,
doi:10.3390/molecules28227674
Sadrolhosseini, Mahdi, Alizadeh, Rashid, Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid
Sahu, Sahoo, Dash, Mishra, Behera, Antimicrobial Activity of Silver Nanoparticles Against Common Bovine Mastitis Pathogens: A Comparative Analysis, Curr. Microbiol,
doi:10.1007/s00284-025-04101-8
Sambale, Wagner, Stahl, Khaydarov, Scheper et al., Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines, J. Nanomater,
doi:10.1155/2015/136765
Santos, Silva, Cardoso, De Albuquerque-Júnior, Zielinska et al., Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity, Antibiotics
Sati, Nandiwdekar, Ratnaparkhi, Doke, Pinjari et al., Bio-Based Alkyd-Polyesteramide-Polyurethane Coatings from Castor, Neem, and Karanja Oils with Inherent Antimicrobial Properties for Enhanced Hygiene, Coatings,
doi:10.3390/coatings15040370
Sati, Ranade, Mali, Ahmad Yasin, Pratap, Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity-A 2024 Update, ACS Omega,
doi:10.1021/acsomega.4c11045
Sau, Murphy, Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution, J. Am. Chem. Soc,
doi:10.1021/ja047846d
Sharifi-Rad, Elshafie, Pohl, Green Synthesis of Silver Nanoparticles (AgNPs) by Lallemantia Royleana Leaf Extract: Their Bio-Pharmaceutical and Catalytic Properties, J. Photochem. Photobiol. A Chem,
doi:10.1016/j.jphotochem.2023.115318
Shivananda, Lakshmeesha Rao, Sangappa Structural, Thermal and Electrical Properties of Silk Fibroin-Silver Nanoparticles Composite Films, J. Mater. Sci. Mater. Electron,
doi:10.1007/s10854-019-00786-3
Sinclair, Van Den, Hengel, Raza, Rutjes et al., Surface Chemistry-Dependent Antiviral Activity of Silver Nanoparticles, Nanotechnology,
doi:10.1088/1361-6528/ac03d6
Singh, Dhiman, Kumar, Designing Silver Nanoparticles Impregnated Acacia and Tragacanth Gum Based Copolymeric Hydrogels for Drug Delivery Applications, Results Surf. Interfaces,
doi:10.1016/j.rsurfi.2024.100256
Singla, Jana, Thakur, Kumari, Goyal et al., Green Synthesis of Silver Nanoparticles Using Oxalis Griffithii Extract and Assessing Their Antimicrobial Activity, OpenNano,
doi:10.1016/j.onano.2022.100047
Somda, Bargul, Wesonga, Wachira, Green Synthesis of Brassica Carinata Microgreen Silver Nanoparticles, Characterization, Safety Assessment, and Antimicrobial Activities, Sci. Rep,
doi:10.1038/s41598-024-80528-6
Souza, Corrêa, Thaís Bruni, Da Veiga, The Effects of Solubility of Silver Nanoparticles, Accumulation, and Toxicity to the Aquatic Plant Lemna Minor, Environ. Sci. Pollut. Res,
doi:10.1007/s11356-020-11862-1
Sredojević, Lazić, Pirković, Periša, Murafa et al., Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin, Nanomaterials,
doi:10.3390/nano12183195
Srikar, Giri, Pal, Mishra, Upadhyay, Green Synthesis of Silver Nanoparticles: A Review, Green. Sustain. Chem,
doi:10.4236/gsc.2016.61004
Srikhao, Ounkaew, Srichiangsa, Phanthanawiboon, Boonmars et al., Green-Synthesized Silver Nanoparticle Coating on Paper for Antibacterial and Antiviral Applications, Polym. Bull,
doi:10.1007/s00289-022-04530-6
Sun, Singh, Vig, Pillai, Singh, Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus, J. Biomed. Nanotechnol
Syafiuddin, Salmiati; Salim, Beng Hong Kueh, Hadibarata, Nur, A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges, J. Chin. Chem. Soc,
doi:10.1002/jccs.201700067
Szyma Ńska, Orłowski, Winnicka, Tomaszewska, Celichowski et al., Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and in Vivo Studies, Int. J. Mol. Sci,
doi:10.3390/ijms19020387
Taha, Youssef, Auda, El-Bahy, Ramadan, Efficacy of Silver Nanoparticles against Trichinella Spiralis in Mice and the Role of Multivitamin in Alleviating Its Toxicity, Sci. Rep,
doi:10.1038/s41598-024-56337-2
Taleb Safa, Koohestani, Green Synthesis of Silver Nanoparticles with Green Tea Extract from Silver Recycling of Radiographic Films, Results Eng,
doi:10.1016/j.rineng.2024.101808
Thwala, Klaine, Musee, Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia Minima, Molecules,
doi:10.3390/molecules26082305
Tien, Liao, Huang, Tseng, Lung et al., Novel Technique for Preparing A Nano-Silver Water Suspension by The Arc-Discharge Method, Rev. Adv. Mater. Sci
Tien, Tseng, Liao, Huang, Tsung, Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method, J. Alloys Compd,
doi:10.1016/j.jallcom.2007.09.048
Tomaszewska, Bednarczyk, Janicka, Chodkowski, Krzyzowska et al., The Influence of the AgNPs Ligand on the Antiviral Activity Against HSV-2, Int. J. Nanomed,
doi:10.2147/IJN.S496050
Torres-Mendieta, Nguyen, Guadagnini, Semerad, Łukowiec et al., Growth Suppression of Bacteria by Biofilm Deterioration Using Silver Nanoparticles with Magnetic Doping, Nanoscale,
doi:10.1039/D2NR03902H
Tortella, Rubilar, Durán, Diez, Martínez et al., Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment, J. Hazard. Mater
Tsuji, Hashimoto, Nishizawa, Kubokawa, Tsuji, Microwave-Assisted Synthesis of Metallic Nanostructures in Solution, Chem.-A Eur. J
Tsuji, Miyamae, Lim, Kimura, Zhang et al., Crystal Structures and Growth Mechanisms of Au@Ag Core-Shell Nanoparticles Prepared by the Microwave-Polyol Method, Cryst. Growth Des,
doi:10.1021/cg060103e
Veerasamy, Xin, Gunasagaran, Xiang, Yang et al., Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities, J. Saudi Chem. Soc,
doi:10.1016/j.jscs.2010.06.004
Vu, Phung, Tran, Mugemana, Giang et al., Polystyrene Nanoparticles Prepared by Nanoprecipitation: A Recyclable Template for Fabricating Hollow Silica, J. Ind. Eng. Chem,
doi:10.1016/j.jiec.2021.02.010
Vuković, Milić, Dobrošević, Milić, Ilić et al., Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells, Nanomaterials,
doi:10.3390/nano10071390
Wang, Yin, Bai, Zhou, Wang et al., Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein, Biomolecules,
doi:10.3390/biom14091152
Widatalla, Yassin, Alrasheid, Rahman Ahmed, Widdatallah et al., Green Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract, Characterization and Evaluation of Antimicrobial Activity, Nanoscale Adv,
doi:10.1039/d1na00509j
Wiley, Im, Li, Mclellan, Siekkinen et al., Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis, J. Phys. Chem. B,
doi:10.1021/jp0608628
Xu, Wang, Huang, Chen, Wang et al., Silver Nanoparticles: Synthesis, Medical Applications and Biosafety, Theranostics
Yadav, Mali, Pandey, Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation, Biol. Trace Elem. Res
Yamari, Abchir, Mali, Errougui, Talbi et al., The Anti-SARS-CoV-2 Activity of Novel 9, 10-Dihydrophenanthrene Derivatives: An Insight into Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation. Sci. Afr,
doi:10.1016/j.sciaf.2023.e01754
Yan, Zhou, Zhu, Bao, Su, Polystyrene Nanoplastics Mediated the Toxicity of Silver Nanoparticles in Zebrafish Embryos, Front. Mar. Sci,
doi:10.3389/fmars.2023.1195125
Yaqoob, Umar, Ibrahim, Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications-a Review, Appl. Nanosci,
doi:10.1007/s13204-020-01318-w
Zhang, Niu, Yan, Cai, Immobilizing Silver Nanoparticles onto the Surface of Magnetic Silica Composite to Prepare Magnetic Disinfectant with Enhanced Stability and Antibacterial Activity, Colloids Surf. A Physicochem. Eng. Asp,
doi:10.1016/j.colsurfa.2010.12.009
Zhao, Xu, Wang, Li, Zhang et al., Toxicity Mechanism of Silver Nanoparticles to Chlamydomonas Reinhardtii: Photosynthesis, Oxidative Stress, Membrane Permeability, and Ultrastructure Analysis, Environ. Sci. Pollut. Res,
doi:10.1007/s11356-020-11714-y
DOI record:
{
"DOI": "10.3390/molecules30092004",
"ISSN": [
"1420-3049"
],
"URL": "http://dx.doi.org/10.3390/molecules30092004",
"abstract": "<jats:p>AgNPs have gained significant attention due to their unique physicochemical properties, making them valuable across a range of fields including medicine, textiles, and household products. With their strong antimicrobial and antiviral properties, AgNPs have shown promise in treating infections, particularly in wound care management. This review explores the mechanisms underlying the antiviral activities of AgNPs, as well as the methods used for their synthesis, which include physical, chemical, and biological approaches. The review also addresses the potential limitations of AgNPs, including their cytotoxicity to humans and the environment. The interaction between AgNPs and microorganisms, particularly viruses, varies based on synthesis methods and particle morphology. As viral infections, including resistant strains, present major global health challenges, there is a growing need for alternative antiviral therapies. Metal nanoparticles like AgNPs offer potential advantages over conventional antiviral drugs due to their broad target range, which reduces the likelihood of resistance development. This review highlights AgNPs’ effectiveness against a variety of viruses, such as HIV, hepatitis B, and respiratory syncytial virus, and discusses their potential for use in novel antiviral treatments. The review also examines AgNPs’ toxicity, offering insights into their future therapeutic roles.</jats:p>",
"alternative-id": [
"molecules30092004"
],
"author": [
{
"ORCID": "https://orcid.org/0009-0008-0337-2279",
"affiliation": [
{
"name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
}
],
"authenticated-orcid": false,
"family": "Sati",
"given": "Abhinav",
"sequence": "first"
},
{
"affiliation": [
{
"name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
}
],
"family": "Ranade",
"given": "Tanvi N.",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0003-1995-136X",
"affiliation": [
{
"name": "Department of Pharmaceutical Chemistry, School of Pharmacy, D.Y. Patil University, Nerul, Navi Mumbai 400706, India"
}
],
"authenticated-orcid": false,
"family": "Mali",
"given": "Suraj N.",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman P.O. Box 346, United Arab Emirates"
},
{
"name": "Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates"
}
],
"family": "Yasin",
"given": "Haya Khader Ahmad",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0009-0007-4777-3114",
"affiliation": [
{
"name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
}
],
"authenticated-orcid": false,
"family": "Samdani",
"given": "Nehal",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0009-0000-4063-038X",
"affiliation": [
{
"name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
}
],
"authenticated-orcid": false,
"family": "Satpute",
"given": "Nikil Navnath",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra 835215, India"
}
],
"family": "Yadav",
"given": "Susmita",
"sequence": "additional"
},
{
"ORCID": "https://orcid.org/0000-0002-8945-6885",
"affiliation": [
{
"name": "Department of Oils, Oleochemicals and Surfactants Technology, Institute of Chemical Technology, Mumbai 400019, India"
}
],
"authenticated-orcid": false,
"family": "Pratap",
"given": "Amit P.",
"sequence": "additional"
}
],
"container-title": "Molecules",
"container-title-short": "Molecules",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2025,
5,
1
]
],
"date-time": "2025-05-01T10:49:02Z",
"timestamp": 1746096542000
},
"deposited": {
"date-parts": [
[
2025,
5,
2
]
],
"date-time": "2025-05-02T11:46:54Z",
"timestamp": 1746186414000
},
"indexed": {
"date-parts": [
[
2025,
5,
3
]
],
"date-time": "2025-05-03T04:05:14Z",
"timestamp": 1746245114339,
"version": "3.40.4"
},
"is-referenced-by-count": 0,
"issue": "9",
"issued": {
"date-parts": [
[
2025,
4,
30
]
]
},
"journal-issue": {
"issue": "9",
"published-online": {
"date-parts": [
[
2025,
5
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
4,
30
]
],
"date-time": "2025-04-30T00:00:00Z",
"timestamp": 1745971200000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/1420-3049/30/9/2004/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "2004",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2025,
4,
30
]
]
},
"published-online": {
"date-parts": [
[
2025,
4,
30
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.2147/IJN.S496050",
"article-title": "The Influence of the AgNPs Ligand on the Antiviral Activity Against HSV-2",
"author": "Tomaszewska",
"doi-asserted-by": "crossref",
"first-page": "2659",
"journal-title": "Int. J. Nanomed.",
"key": "ref_1",
"volume": "20",
"year": "2025"
},
{
"DOI": "10.1007/s13346-025-01815-x",
"doi-asserted-by": "crossref",
"key": "ref_2",
"unstructured": "Idres, Y.M., Idris, A., and Gao, W. (2025). Preclinical Testing of Antiviral SiRNA Therapeutics Delivered in Lipid Nanoparticles in Animal Models–a Comprehensive Review. Drug Deliv. Transl. Res., 1–18."
},
{
"DOI": "10.1007/s12011-024-04446-4",
"doi-asserted-by": "crossref",
"key": "ref_3",
"unstructured": "Yadav, S., Mali, S.N., and Pandey, A. (2024). Biogenic Nanoparticles as Safer Alternatives for Gastric Ulcers: An Update on Green Synthesis Methods, Toxicity, and Their Efficacy in Controlling Inflammation. Biol. Trace Elem. Res., 1–20."
},
{
"DOI": "10.1016/j.cell.2020.08.021",
"article-title": "Emerging Pandemic Diseases: How We Got to COVID-19",
"author": "Morens",
"doi-asserted-by": "crossref",
"first-page": "1077",
"journal-title": "Cell",
"key": "ref_4",
"volume": "182",
"year": "2020"
},
{
"DOI": "10.1038/nature02759",
"article-title": "The Challenge of Emerging and Re-Emerging Infectious Diseases",
"author": "Morens",
"doi-asserted-by": "crossref",
"first-page": "242",
"journal-title": "Nature",
"key": "ref_5",
"volume": "430",
"year": "2004"
},
{
"DOI": "10.1111/fcp.12609",
"article-title": "Antiviral Therapies: Advances and Perspectives",
"author": "Nishi",
"doi-asserted-by": "crossref",
"first-page": "305",
"journal-title": "Fundam. Clin. Pharmacol.",
"key": "ref_6",
"volume": "35",
"year": "2021"
},
{
"DOI": "10.1007/s11696-025-03892-1",
"article-title": "Curcumin-Integrated Biopolymer Films for Active Packaging: Current Trends and Future Directions",
"author": "Ranade",
"doi-asserted-by": "crossref",
"first-page": "1303",
"journal-title": "Chem. Pap.",
"key": "ref_7",
"volume": "79",
"year": "2025"
},
{
"DOI": "10.1007/s13204-020-01318-w",
"article-title": "Silver Nanoparticles: Various Methods of Synthesis, Size Affecting Factors and Their Potential Applications–a Review",
"author": "Yaqoob",
"doi-asserted-by": "crossref",
"first-page": "1369",
"journal-title": "Appl. Nanosci.",
"key": "ref_8",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1016/j.jiec.2021.02.010",
"article-title": "Polystyrene Nanoparticles Prepared by Nanoprecipitation: A Recyclable Template for Fabricating Hollow Silica",
"author": "Vu",
"doi-asserted-by": "crossref",
"first-page": "307",
"journal-title": "J. Ind. Eng. Chem.",
"key": "ref_9",
"volume": "97",
"year": "2021"
},
{
"DOI": "10.1016/j.mtchem.2022.101242",
"doi-asserted-by": "crossref",
"key": "ref_10",
"unstructured": "Rajapaksha, P., Orrell-Trigg, R., Shah, D., Cheeseman, S., Vu, K.B., Ngo, S.T., Murdoch, B.J., Choudhury, N.R., Yin, H., and Cozzolino, D. (2023). Broad Spectrum Antibacterial Zinc Oxide-Reduced Graphene Oxide Nanocomposite for Water Depollution. Mater. Today Chem., 27."
},
{
"DOI": "10.1007/s11051-023-05716-3",
"doi-asserted-by": "crossref",
"key": "ref_11",
"unstructured": "Doan, L., Nguyen, L.T., and Nguyen, N.T.N. (2023). Modifying Superparamagnetic Iron Oxides Nanoparticles for Doxorubicin Delivery Carriers: A Review. J. Nanoparticle Res., 25."
},
{
"article-title": "A Review of Silver Nanoparticles: Synthesis Methods, Properties and Applications",
"author": "Natsuki",
"first-page": "325",
"journal-title": "Int. J. Mater. Sci. Appl.",
"key": "ref_12",
"volume": "4",
"year": "2015"
},
{
"DOI": "10.3390/nano11082086",
"doi-asserted-by": "crossref",
"key": "ref_13",
"unstructured": "Bamal, D., Singh, A., Chaudhary, G., Kumar, M., Singh, M., Rani, N., Mundlia, P., and Sehrawat, A.R. (2021). Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. Nanomaterials, 11."
},
{
"DOI": "10.7150/thno.45413",
"article-title": "Silver Nanoparticles: Synthesis, Medical Applications and Biosafety",
"author": "Xu",
"doi-asserted-by": "crossref",
"first-page": "8996",
"journal-title": "Theranostics",
"key": "ref_14",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.3390/nano11092318",
"doi-asserted-by": "crossref",
"key": "ref_15",
"unstructured": "Bouafia, A., Laouini, S.E., Ahmed, A.S.A., Soldatov, A.V., Algarni, H., Chong, K.F., and Ali, G.A.M. (2021). The Recent Progress on Silver Nanoparticles: Synthesis and Electronic Applications. Nanomaterials, 11."
},
{
"DOI": "10.1016/j.apt.2011.05.005",
"article-title": "The Nanostructure Evolution of Ag Powder Synthesized by High Energy Ball Milling",
"author": "Khayati",
"doi-asserted-by": "crossref",
"first-page": "393",
"journal-title": "Adv. Powder Technol.",
"key": "ref_16",
"volume": "23",
"year": "2012"
},
{
"article-title": "Novel Technique for Preparing A Nano-Silver Water Suspension by The Arc-Discharge Method",
"author": "Tien",
"first-page": "752",
"journal-title": "Rev. Adv. Mater. Sci.",
"key": "ref_17",
"volume": "18",
"year": "2008"
},
{
"DOI": "10.1016/j.jallcom.2007.09.048",
"article-title": "Discovery of Ionic Silver in Silver Nanoparticle Suspension Fabricated by Arc Discharge Method",
"author": "Tien",
"doi-asserted-by": "crossref",
"first-page": "408",
"journal-title": "J. Alloys Compd.",
"key": "ref_18",
"volume": "463",
"year": "2008"
},
{
"DOI": "10.1038/s41598-024-54648-y",
"doi-asserted-by": "crossref",
"key": "ref_19",
"unstructured": "Elwakil, B.H., Eldrieny, A.M., Almotairy, A.R.Z., and El-Khatib, M. (2024). Potent Biological Activity of Newly Fabricated Silver Nanoparticles Coated by a Carbon Shell Synthesized by Electrical Arc. Sci. Rep., 14."
},
{
"article-title": "The Impact of Different Temperatures on NanoSilver Carbon Manufacturing by Arc Discharge Method",
"author": "Gharieb",
"first-page": "409",
"journal-title": "Alfarama J. Basic. Appl. Sci.",
"key": "ref_20",
"volume": "5",
"year": "2024"
},
{
"DOI": "10.1039/b900654k",
"article-title": "Laser Ablation Synthesis in Solution and Size Manipulation of Noble Metal Nanoparticles",
"author": "Amendola",
"doi-asserted-by": "crossref",
"first-page": "3805",
"journal-title": "Phys. Chem. Chem. Phys.",
"key": "ref_21",
"volume": "11",
"year": "2009"
},
{
"key": "ref_22",
"unstructured": "Sadrolhosseini, A.R., Mahdi, M.A., Alizadeh, F., and Rashid, S.A. (2018). Laser Ablation Technique for Synthesis of Metal Nanoparticle in Liquid. Laser Technology and Its Applications, IntechOpen."
},
{
"DOI": "10.1007/s11468-023-02150-y",
"article-title": "Preparation of Silver Nanoparticles Using Laser Ablation for In Vitro Treatment of MCF-7 Cancer Cells with Antibacterial Activity",
"author": "Rahmah",
"doi-asserted-by": "crossref",
"first-page": "2097",
"journal-title": "Plasmonics",
"key": "ref_23",
"volume": "19",
"year": "2024"
},
{
"DOI": "10.1007/s11082-019-1902-0",
"doi-asserted-by": "crossref",
"key": "ref_24",
"unstructured": "Rafique, M., Rafique, M.S., Kalsoom, U., Afzal, A., Butt, S.H., and Usman, A. (2019). Laser Ablation Synthesis of Silver Nanoparticles in Water and Dependence on Laser Nature. Opt. Quantum Electron., 51."
},
{
"DOI": "10.1021/acsomega.4c03046",
"article-title": "Surface-Enhanced Raman Scattering on Size-Classified Silver Nanoparticles Generated by Laser Ablation",
"author": "Kenmotsu",
"doi-asserted-by": "crossref",
"first-page": "37716",
"journal-title": "ACS Omega",
"key": "ref_25",
"volume": "9",
"year": "2024"
},
{
"DOI": "10.1007/s11468-023-02067-6",
"article-title": "Investigating the Antimicrobial, Antioxidant, and Anticancer Effects of Elettaria Cardamomum Seed Extract Conjugated to Green Synthesized Silver Nanoparticles by Laser Ablation",
"author": "Mohammed",
"doi-asserted-by": "crossref",
"first-page": "1187",
"journal-title": "Plasmonics",
"key": "ref_26",
"volume": "19",
"year": "2024"
},
{
"DOI": "10.1007/s12648-024-03251-y",
"article-title": "Exploring the Relationship between Confinement Geometry and the Formation of High-Quality Silver Nanoparticles by Laser Ablation in Liquid Media",
"author": "Niaz",
"doi-asserted-by": "crossref",
"first-page": "4989",
"journal-title": "Indian. J. Phys.",
"key": "ref_27",
"volume": "98",
"year": "2024"
},
{
"DOI": "10.1016/j.photonics.2024.101228",
"doi-asserted-by": "crossref",
"key": "ref_28",
"unstructured": "Alharbi, A.M., Ahmed, N.M., Abdul Rahman, A., Zahirah Noor Azman, N., Algburi, S., Wadi, I.A., Binzowaimil, A.M., Aldaghri, O., and Ibnaouf, K.H. (2024). Development of ZnO and Si Semiconductor-Based Ultraviolet Photodetectors Enhanced by Laser-Ablated Silver Nanoparticles. Photonics Nanostruct, 58."
},
{
"DOI": "10.1557/JMR.2007.0420",
"article-title": "Studies of the Growth Parameters for Silver Nanoparticle Synthesis by Inert Gas Condensation",
"author": "Raffi",
"doi-asserted-by": "crossref",
"first-page": "3378",
"journal-title": "J. Mater. Res.",
"key": "ref_29",
"volume": "22",
"year": "2007"
},
{
"DOI": "10.1016/j.materresbull.2016.05.029",
"article-title": "Functionalized Silver Nanoparticles Probe for Visual Colorimetric Sensing of Mercury",
"author": "Jeevika",
"doi-asserted-by": "crossref",
"first-page": "48",
"journal-title": "Mater. Res. Bull.",
"key": "ref_30",
"volume": "83",
"year": "2016"
},
{
"DOI": "10.1016/j.arabjc.2012.09.010",
"article-title": "Engineered Nanostructures: A Review of Their Synthesis, Characterization and Toxic Hazard Considerations",
"author": "Haider",
"doi-asserted-by": "crossref",
"first-page": "S376",
"journal-title": "Arab. J. Chem.",
"key": "ref_31",
"volume": "10",
"year": "2017"
},
{
"DOI": "10.1016/j.jscs.2010.06.004",
"article-title": "Biosynthesis of Silver Nanoparticles Using Mangosteen Leaf Extract and Evaluation of Their Antimicrobial Activities",
"author": "Veerasamy",
"doi-asserted-by": "crossref",
"first-page": "113",
"journal-title": "J. Saudi Chem. Soc.",
"key": "ref_32",
"volume": "15",
"year": "2011"
},
{
"DOI": "10.1039/C3RA44507K",
"article-title": "Size-Controlled Silver Nanoparticles Synthesized over the Range 5-100 Nm Using the Same Protocol and Their Antibacterial Efficacy",
"author": "Agnihotri",
"doi-asserted-by": "crossref",
"first-page": "3974",
"journal-title": "RSC Adv.",
"key": "ref_33",
"volume": "4",
"year": "2014"
},
{
"DOI": "10.2147/IJN.S153167",
"article-title": "Nanosilver: New Ageless and Versatile Biomedical Therapeutic Scaffold",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "733",
"journal-title": "Int. J. Nanomed.",
"key": "ref_34",
"volume": "13",
"year": "2018"
},
{
"DOI": "10.3390/ma15020427",
"doi-asserted-by": "crossref",
"key": "ref_35",
"unstructured": "Naganthran, A., Verasoundarapandian, G., Khalid, F.E., Masarudin, M.J., Zulkharnain, A., Nawawi, N.M., Karim, M., Abdullah, C.A.C., and Ahmad, S.A. (2022). Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. Materials, 15."
},
{
"DOI": "10.1016/j.arabjc.2010.09.027",
"article-title": "Microemulsion Method: A Novel Route to Synthesize Organic and Inorganic Nanomaterials. 1st Nano Update",
"author": "Malik",
"doi-asserted-by": "crossref",
"first-page": "397",
"journal-title": "Arab. J. Chem.",
"key": "ref_36",
"volume": "5",
"year": "2012"
},
{
"article-title": "Article in Community Practitioner: The Journal of the Community Practitioners’ & Health Visitors’ Association",
"author": "Hak",
"first-page": "9",
"journal-title": "Community Pract.",
"key": "ref_37",
"volume": "83",
"year": "2024"
},
{
"DOI": "10.1007/s42452-019-0586-1",
"doi-asserted-by": "crossref",
"key": "ref_38",
"unstructured": "dos Santos, M.A., Paterno, L.G., Moreira, S.G.C., and Sales, M.J.A. (2019). Original Photochemical Synthesis of Ag Nanoparticles Mediated by Potato Starch. SN Appl. Sci., 1."
},
{
"DOI": "10.1021/ja029267j",
"article-title": "Completely “Green” Synthesis and Stabilization of Metal Nanoparticles",
"author": "Raveendran",
"doi-asserted-by": "crossref",
"first-page": "13940",
"journal-title": "J. Am. Chem. Soc.",
"key": "ref_39",
"volume": "125",
"year": "2003"
},
{
"DOI": "10.1016/j.fct.2017.11.051",
"article-title": "Stable PEG-Coated Silver Nanoparticles–A Comprehensive Toxicological Profile",
"author": "Pinzaru",
"doi-asserted-by": "crossref",
"first-page": "546",
"journal-title": "Food Chem. Toxicol.",
"key": "ref_40",
"volume": "111",
"year": "2018"
},
{
"DOI": "10.1016/j.msec.2012.05.016",
"article-title": "Polyvinyl Alcohol/Silver Nanoparticles (PVA/AgNps) as a Model for Testing the Biological Activity of Hybrid Materials with Included Silver Nanoparticles",
"author": "Pencheva",
"doi-asserted-by": "crossref",
"first-page": "2048",
"journal-title": "Mater. Sci. Eng. C",
"key": "ref_41",
"volume": "32",
"year": "2012"
},
{
"DOI": "10.1016/j.carbpol.2011.03.039",
"article-title": "Polyacrylamide/Guar Gum Graft Copolymer for Preparation of Silver Nanoparticles",
"doi-asserted-by": "crossref",
"first-page": "692",
"journal-title": "Carbohydr. Polym.",
"key": "ref_42",
"volume": "85",
"year": "2011"
},
{
"DOI": "10.1016/j.rsurfi.2024.100256",
"doi-asserted-by": "crossref",
"key": "ref_43",
"unstructured": "Singh, B., Dhiman, A., and Kumar, S. (2024). Designing Silver Nanoparticles Impregnated Acacia and Tragacanth Gum Based Copolymeric Hydrogels for Drug Delivery Applications. Results Surf. Interfaces, 16."
},
{
"DOI": "10.4236/gsc.2016.61004",
"article-title": "Green Synthesis of Silver Nanoparticles: A Review",
"author": "Srikar",
"doi-asserted-by": "crossref",
"first-page": "34",
"journal-title": "Green. Sustain. Chem.",
"key": "ref_44",
"volume": "06",
"year": "2016"
},
{
"DOI": "10.1088/0957-4484/18/10/105104",
"doi-asserted-by": "crossref",
"key": "ref_45",
"unstructured": "Huang, J., Li, Q., Sun, D., Lu, Y., Su, Y., Yang, X., Wang, H., Wang, Y., Shao, W., and He, N. (2007). Biosynthesis of Silver and Gold Nanoparticles by Novel Sundried Cinnamomum Camphora Leaf. Nanotechnology, 18."
},
{
"article-title": "Green Synthesis of Silver Nanoparticles Using Azadirachta Indica Aqueous Leaf Extract",
"author": "Ahmed",
"first-page": "1",
"journal-title": "J. Radiat. Res. Appl. Sci.",
"key": "ref_46",
"volume": "9",
"year": "2016"
},
{
"DOI": "10.1038/srep20414",
"doi-asserted-by": "crossref",
"key": "ref_47",
"unstructured": "Ashraf, J.M., Ansari, M.A., Khan, H.M., Alzohairy, M.A., and Choi, I. (2016). Green Synthesis of Silver Nanoparticles and Characterization of Their Inhibitory Effects on AGEs Formation Using Biophysical Techniques. Sci. Rep., 6."
},
{
"DOI": "10.1080/17518253.2024.2444679",
"doi-asserted-by": "crossref",
"key": "ref_48",
"unstructured": "Das, R., Kumar, P., Singh, A.K., Agrawal, S., Albukhaty, S., Bhattacharya, I., Tiwari, K.N., Mishra, S.K., Tripathi, A.K., and AlMalki, F.A. (2025). Green Synthesis of Silver Nanoparticles Using Trema Orientalis (L.) Extract and Evaluation of Their Antibacterial Activity. Green. Chem. Lett. Rev., 18."
},
{
"DOI": "10.1016/j.onano.2022.100047",
"doi-asserted-by": "crossref",
"key": "ref_49",
"unstructured": "Singla, S., Jana, A., Thakur, R., Kumari, C., Goyal, S., and Pradhan, J. (2022). Green Synthesis of Silver Nanoparticles Using Oxalis Griffithii Extract and Assessing Their Antimicrobial Activity. OpenNano, 7."
},
{
"DOI": "10.1039/D1NA00509J",
"article-title": "Green Synthesis of Silver Nanoparticles Using Green Tea Leaf Extract, Characterization and Evaluation of Antimicrobial Activity",
"author": "Widatalla",
"doi-asserted-by": "crossref",
"first-page": "911",
"journal-title": "Nanoscale Adv.",
"key": "ref_50",
"volume": "4",
"year": "2022"
},
{
"DOI": "10.1016/j.jphotochem.2023.115318",
"doi-asserted-by": "crossref",
"key": "ref_51",
"unstructured": "Sharifi-Rad, M., Elshafie, H.S., and Pohl, P. (2024). Green Synthesis of Silver Nanoparticles (AgNPs) by Lallemantia Royleana Leaf Extract: Their Bio-Pharmaceutical and Catalytic Properties. J. Photochem. Photobiol. A Chem., 448."
},
{
"DOI": "10.3390/biom14070782",
"doi-asserted-by": "crossref",
"key": "ref_52",
"unstructured": "Mejía-Méndez, J.L., Sánchez-Ante, G., Cerro-López, M., Minutti-Calva, Y., Navarro-López, D.E., Lozada-Ramírez, J.D., Bach, H., López-Mena, E.R., and Sánchez-Arreola, E. (2024). Green Synthesis of Silver Nanoparticles with Extracts from Kalanchoe Fedtschenkoi: Characterization and Bioactivities. Biomolecules, 14."
},
{
"DOI": "10.1038/s41598-024-54702-9",
"doi-asserted-by": "crossref",
"key": "ref_53",
"unstructured": "Ghasemi, S., Dabirian, S., Kariminejad, F., Koohi, D.E., Nemattalab, M., Majidimoghadam, S., Zamani, E., and Yousefbeyk, F. (2024). Process Optimization for Green Synthesis of Silver Nanoparticles Using Rubus Discolor Leaves Extract and Its Biological Activities against Multi-Drug Resistant Bacteria and Cancer Cells. Sci. Rep., 14."
},
{
"DOI": "10.1016/j.rineng.2024.101808",
"doi-asserted-by": "crossref",
"key": "ref_54",
"unstructured": "Taleb Safa, M.A., and Koohestani, H. (2024). Green Synthesis of Silver Nanoparticles with Green Tea Extract from Silver Recycling of Radiographic Films. Results Eng., 21."
},
{
"DOI": "10.1007/s11356-024-34872-9",
"article-title": "Green Synthesis of Silver Nanoparticles Using Malachra Alceifolia (Wild Okra) for Wastewater Treatment and Biomedical Applications with Molecular Docking Approach",
"author": "Losetty",
"doi-asserted-by": "crossref",
"first-page": "55562",
"journal-title": "Environ. Sci. Pollut. Res.",
"key": "ref_55",
"volume": "31",
"year": "2024"
},
{
"DOI": "10.1016/j.inoche.2024.112873",
"doi-asserted-by": "crossref",
"key": "ref_56",
"unstructured": "Gangal, A., Bachhar, V., Joshi, V., Akhtar, N., Duseja, M., Sethiya, N.K., and Shukla, R.K. (2024). Green Synthesis of Silver Nanoparticles from the Essential Oil of Curcuma Amada and Their Antihyperglycemic Effect in STZ Induced Diabetic Rats. Inorg. Chem. Commun., 168."
},
{
"DOI": "10.3390/pharmaceutics17030356",
"doi-asserted-by": "crossref",
"key": "ref_57",
"unstructured": "Lima, A.K.O., Vieira, Í.R.S., Souza, L.M.d.S., Florêncio, I., Silva, I.G.M.d., Tavares Junior, A.G., Machado, Y.A.A., Santos, L.C.d., Taube, P.S., and Nakazato, G. (2025). Green Synthesis of Silver Nanoparticles Using Paullinia Cupana Kunth Leaf Extract Collected in Different Seasons: Biological Studies and Catalytic Properties. Pharmaceutics, 17."
},
{
"DOI": "10.3390/pharmaceutics13122034",
"doi-asserted-by": "crossref",
"key": "ref_58",
"unstructured": "Ratan, Z.A., Mashrur, F.R., Chhoan, A.P., Shahriar, S.M., Haidere, M.F., Runa, N.J., Kim, S., Kweon, D.H., Hosseinzadeh, H., and Cho, J.Y. (2021). Silver Nanoparticles as Potential Antiviral Agents. Pharmaceutics, 13."
},
{
"DOI": "10.5772/intechopen.71247",
"doi-asserted-by": "crossref",
"key": "ref_59",
"unstructured": "Maaz, K. (2018). Silver Nanoparticles: Fabrication, Characterization and Applications, IntechOpen."
},
{
"DOI": "10.1515/psr-2017-0082",
"doi-asserted-by": "crossref",
"key": "ref_60",
"unstructured": "Mukherji, S., Bharti, S., Shukla, G., and Mukherji, S. (2019). Synthesis and Characterization of Size- and Shape-Controlled Silver Nanoparticles. Phys. Sci. Rev., 4."
},
{
"DOI": "10.1557/mrs2005.100",
"article-title": "Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy",
"author": "Haes",
"doi-asserted-by": "crossref",
"first-page": "368",
"journal-title": "MRS Bull.",
"key": "ref_61",
"volume": "30",
"year": "2005"
},
{
"DOI": "10.1021/jp026731y",
"article-title": "The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment",
"author": "Kelly",
"doi-asserted-by": "crossref",
"first-page": "668",
"journal-title": "J. Phys. Chem. B",
"key": "ref_62",
"volume": "107",
"year": "2003"
},
{
"DOI": "10.1002/adfm.200500667",
"article-title": "Formation of Silver Nanoprisms with Surface Plasmons at Communication Wavelengths",
"author": "Bastys",
"doi-asserted-by": "crossref",
"first-page": "766",
"journal-title": "Adv. Funct. Mater.",
"key": "ref_63",
"volume": "16",
"year": "2006"
},
{
"DOI": "10.1002/adma.200401086",
"article-title": "Rapid Thermal Synthesis of Silver Nanoprisms with Chemically Tailorable Thickness",
"author": "Mirkin",
"doi-asserted-by": "crossref",
"first-page": "412",
"journal-title": "Adv. Mater.",
"key": "ref_64",
"volume": "17",
"year": "2005"
},
{
"DOI": "10.1021/ja047846d",
"article-title": "Room Temperature, High-Yield Synthesis of Multiple Shapes of Gold Nanoparticles in Aqueous Solution",
"author": "Sau",
"doi-asserted-by": "crossref",
"first-page": "8648",
"journal-title": "J. Am. Chem. Soc.",
"key": "ref_65",
"volume": "126",
"year": "2004"
},
{
"DOI": "10.1039/b205214h",
"article-title": "Preparation of Polychrome Silver Nanoparticles in Different Solvents",
"author": "He",
"doi-asserted-by": "crossref",
"first-page": "3783",
"journal-title": "J. Mater. Chem.",
"key": "ref_66",
"volume": "12",
"year": "2002"
},
{
"DOI": "10.1021/cg060103e",
"article-title": "Crystal Structures and Growth Mechanisms of Au@Ag Core−Shell Nanoparticles Prepared by the Microwave−Polyol Method",
"author": "Tsuji",
"doi-asserted-by": "crossref",
"first-page": "1801",
"journal-title": "Cryst. Growth Des.",
"key": "ref_67",
"volume": "6",
"year": "2006"
},
{
"DOI": "10.1002/1521-4095(200112)13:24<1887::AID-ADMA1887>3.0.CO;2-2",
"article-title": "Novel Ultrasonically Assisted Templated Synthesis of Palladium and Silver Dendritic Nanostructures",
"author": "Xiao",
"doi-asserted-by": "crossref",
"first-page": "1887",
"journal-title": "Adv. Mater.",
"key": "ref_68",
"volume": "13",
"year": "2001"
},
{
"DOI": "10.1002/chem.200400417",
"article-title": "Microwave-Assisted Synthesis of Metallic Nanostructures in Solution",
"author": "Tsuji",
"doi-asserted-by": "crossref",
"first-page": "440",
"journal-title": "Chem.–A Eur. J.",
"key": "ref_69",
"volume": "11",
"year": "2005"
},
{
"DOI": "10.1021/jp0608628",
"article-title": "Maneuvering the Surface Plasmon Resonance of Silver Nanostructures through Shape-Controlled Synthesis",
"author": "Wiley",
"doi-asserted-by": "crossref",
"first-page": "15666",
"journal-title": "J. Phys. Chem. B",
"key": "ref_70",
"volume": "110",
"year": "2006"
},
{
"DOI": "10.1016/j.matlet.2015.03.143",
"article-title": "Green Synthesis of Silver Nanoparticles Using Leaves Extract of Skimmia Laureola: Characterization and Antibacterial Activity",
"author": "Ahmed",
"doi-asserted-by": "crossref",
"first-page": "10",
"journal-title": "Mater. Lett.",
"key": "ref_71",
"volume": "153",
"year": "2015"
},
{
"DOI": "10.3390/nano6040074",
"doi-asserted-by": "crossref",
"key": "ref_72",
"unstructured": "Raza, M.A., Kanwal, Z., Rauf, A., Sabri, A.N., Riaz, S., and Naseem, S. (2016). Size- and Shape-Dependent Antibacterial Studies of Silver Nanoparticles Synthesized by Wet Chemical Routes. Nanomaterials, 6."
},
{
"DOI": "10.1016/j.rechem.2023.101108",
"doi-asserted-by": "crossref",
"key": "ref_73",
"unstructured": "Dhaka, A., Chand Mali, S., Sharma, S., and Trivedi, R. (2023). A Review on Biological Synthesis of Silver Nanoparticles and Their Potential Applications. Results Chem., 6."
},
{
"DOI": "10.5772/intechopen.92480",
"doi-asserted-by": "crossref",
"key": "ref_74",
"unstructured": "Kumar, S., Kumar, P., and Pathak, C.S. (2021). Biomedical Applications of Silver Nanoparticles. Silver Micro-Nanoparticles—Properties, Synthesis, Characterization, and Applications, IntechOpen."
},
{
"DOI": "10.1002/jccs.201700067",
"article-title": "A Review of Silver Nanoparticles: Research Trends, Global Consumption, Synthesis, Properties, and Future Challenges",
"author": "Syafiuddin",
"doi-asserted-by": "crossref",
"first-page": "732",
"journal-title": "J. Chin. Chem. Soc.",
"key": "ref_75",
"volume": "64",
"year": "2017"
},
{
"DOI": "10.1039/9781839168970",
"doi-asserted-by": "crossref",
"key": "ref_76",
"unstructured": "Roduner, E. (2015). Nanoscopic Materials: Size-Dependent Phenomena and Growth Principles, RSC."
},
{
"DOI": "10.1088/0953-8984/20/32/325237",
"doi-asserted-by": "crossref",
"key": "ref_77",
"unstructured": "Attarian Shandiz, M. (2008). Effective Coordination Number Model for the Size Dependency of Physical Properties of. J. Phys. Condens. Matter, 20."
},
{
"DOI": "10.1016/0040-6090(86)90422-0",
"article-title": "Small Particle Melting of Pure Metals",
"author": "Allen",
"doi-asserted-by": "crossref",
"first-page": "297",
"journal-title": "Thin Solid. Film.",
"key": "ref_78",
"volume": "144",
"year": "1986"
},
{
"DOI": "10.1016/j.actamat.2005.01.047",
"article-title": "Metal–Metal Bonding Process Using Ag Metallo-Organic Nanoparticles",
"author": "Ide",
"doi-asserted-by": "crossref",
"first-page": "2385",
"journal-title": "Acta Mater.",
"key": "ref_79",
"volume": "53",
"year": "2005"
},
{
"DOI": "10.1021/jp0475640",
"article-title": "Size-Controlled Synthesis of Nanoparticles. 2. Measurement of Extinction, Scattering, and Absorption Cross Sections",
"author": "Evanoff",
"doi-asserted-by": "crossref",
"first-page": "13957",
"journal-title": "J. Phys. Chem. B",
"key": "ref_80",
"volume": "108",
"year": "2004"
},
{
"DOI": "10.1002/pssc.200675903",
"article-title": "Optical Properties of Silver Nanoparticles",
"author": "Noguez",
"doi-asserted-by": "crossref",
"first-page": "4118",
"journal-title": "Phys. Status Solidi C",
"key": "ref_81",
"volume": "4",
"year": "2007"
},
{
"DOI": "10.1021/am3022569",
"article-title": "Enhanced Electrical Conductivity of Silver Nanoparticles for High Frequency Electronic Applications",
"author": "Alshehri",
"doi-asserted-by": "crossref",
"first-page": "7007",
"journal-title": "ACS Appl. Mater. Interfaces",
"key": "ref_82",
"volume": "4",
"year": "2012"
},
{
"DOI": "10.1007/s12034-015-1007-8",
"article-title": "Biological and Electrical Properties of Biosynthesized Silver Nanoparticles",
"author": "Bhagat",
"doi-asserted-by": "crossref",
"first-page": "1253",
"journal-title": "Bull. Mater. Sci.",
"key": "ref_83",
"volume": "38",
"year": "2015"
},
{
"DOI": "10.1007/s10854-019-00786-3",
"article-title": "Sangappa Structural, Thermal and Electrical Properties of Silk Fibroin–Silver Nanoparticles Composite Films",
"author": "Shivananda",
"doi-asserted-by": "crossref",
"first-page": "41",
"journal-title": "J. Mater. Sci. Mater. Electron.",
"key": "ref_84",
"volume": "31",
"year": "2020"
},
{
"DOI": "10.1016/j.sciaf.2023.e01754",
"doi-asserted-by": "crossref",
"key": "ref_85",
"unstructured": "Yamari, I., Abchir, O., Mali, S.N., Errougui, A., Talbi, M., Kouali, M.E., and Chtita, S. (2023). The Anti-SARS-CoV-2 Activity of Novel 9, 10-Dihydrophenanthrene Derivatives: An Insight into Molecular Docking, ADMET Analysis, and Molecular Dynamics Simulation. Sci. Afr., 21."
},
{
"DOI": "10.1007/s40097-021-00465-y",
"article-title": "Synthesis Approach-Dependent Antiviral Properties of Silver Nanoparticles and Nanocomposites",
"author": "Jeevanandam",
"doi-asserted-by": "crossref",
"first-page": "809",
"journal-title": "J. Nanostructure Chem.",
"key": "ref_86",
"volume": "12",
"year": "2022"
},
{
"DOI": "10.3390/microorganisms11030629",
"doi-asserted-by": "crossref",
"key": "ref_87",
"unstructured": "Luceri, A., Francese, R., Lembo, D., Ferraris, M., and Balagna, C. (2023). Silver Nanoparticles: Review of Antiviral Properties, Mechanism of Action and Applications. Microorganisms, 11."
},
{
"DOI": "10.1002/pi.6707",
"article-title": "Fabrication of Polylactide Composites with Silver Nanoparticles by Sputtering Deposition and Their Antimicrobial and Antiviral Applications",
"author": "Demchenko",
"doi-asserted-by": "crossref",
"first-page": "207",
"journal-title": "Polym. Int.",
"key": "ref_88",
"volume": "74",
"year": "2025"
},
{
"DOI": "10.1021/acsami.4c15289",
"doi-asserted-by": "crossref",
"key": "ref_89",
"unstructured": "de Souza, T.B., Rosa, A.S., Constantino-Teles, P., Ferreira, V.N.S., Archanjo, B.S., Soares, C.A.G., Picciani, P.H.S., Allão Cassaro, R.A., Miranda, M.D., and Poneti, G. (2025). Silver Nanoparticles-Functionalized Textile against SARS-CoV-2: Antiviral Activity of the Capping Oleylamine Molecule. ACS Appl. Mater. Interfaces, 17."
},
{
"DOI": "10.1016/j.biomaterials.2024.122721",
"doi-asserted-by": "crossref",
"key": "ref_90",
"unstructured": "Martín-Faivre, L., Prince, L., Cornu, C., Villeret, B., Sanchez-Guzman, D., Rouzet, F., Sallenave, J.M., and Garcia-Verdugo, I. (2025). Pulmonary Delivery of Silver Nanoparticles Prevents Influenza Infection by Recruiting and Activating Lymphoid Cells. Biomaterials, 312."
},
{
"DOI": "10.21608/ejvs.2024.309594.2289",
"doi-asserted-by": "crossref",
"key": "ref_91",
"unstructured": "EL Bagoury, G.F., Mahmoud, A.H., Kassem, S., and Elhabashy, R. (2025). Green Synthesis of Silver Nanoparticles Using Green Tea Extract and Evaluation of Their Antiviral Potential against Foot-and-Mouth Disease Virus Serotype O: An In-Vitro Study. Egypt. J. Vet. Sci., 1–11."
},
{
"DOI": "10.1016/j.ceramint.2025.01.151",
"article-title": "Tannic Acid-Assisted Green Functionalization of Clinoptilolite: A Step-by-Step Characterization of Silver Nanoparticles in Situ Reduction",
"author": "Gattucci",
"doi-asserted-by": "crossref",
"first-page": "13051",
"journal-title": "Ceram. Int.",
"key": "ref_92",
"volume": "51",
"year": "2025"
},
{
"DOI": "10.1016/j.crbiot.2025.100277",
"doi-asserted-by": "crossref",
"key": "ref_93",
"unstructured": "Amaral, M.V.M.V., Carraro, C.B., Antoniêto, A.C.C., Costa, M.N., Fraga-Silva, T.F.C., Cipriano, U.G., Abuná, R.P.F., Rodrigues, T.S., Martins, R.B., and Luzenti, A.M. (2025). Biogenic Silver Nanoparticles Produced by Trichoderma Reesei Inhibit SARS-CoV-2 Infection, Reduce Lung Viral Load and Ameliorate Acute Pulmonary Inflammation. Curr. Res. Biotechnol., 9."
},
{
"DOI": "10.1007/s00284-025-04101-8",
"doi-asserted-by": "crossref",
"key": "ref_94",
"unstructured": "Sahu, S.K., Sahoo, P.R., Dash, S., Mishra, S.R., and Behera, P.C. (2025). Antimicrobial Activity of Silver Nanoparticles Against Common Bovine Mastitis Pathogens: A Comparative Analysis. Curr. Microbiol., 82."
},
{
"DOI": "10.29333/ejosdr/15942",
"doi-asserted-by": "crossref",
"key": "ref_95",
"unstructured": "Obasi, D.E., Nebolisa, N.M., Akinwunmi, A.R., Abimbolu, A.K., Ezeorah, M.C., Areola, O.M., Donatus, U.D., Oladipupo, V.T., Ohiani, J.J., and Ayanleke, T.A. (2025). Eco-Friendly and Facile Production Method, Natural Products Chemistry, and Pharmacological Properties of Silver Nanoparticles Using Telfaria Occidentalis Leaf and Stem Extracts. Eur. J. Sustain. Dev. Res., 9."
},
{
"key": "ref_96",
"unstructured": "Fereydani, M., Jalalian, A., and Saber, N. (2019). Green Synthesis of Silver Nanoparticles from Cuscuta Epithymum Extract, Evaluation of Antibacterial, Antioxidant Activity, Cytotoxic Effect on MCF-7 Cell Line, Elsevier."
},
{
"DOI": "10.1016/j.envres.2024.120351",
"doi-asserted-by": "crossref",
"key": "ref_97",
"unstructured": "Długosz, O., Żebracka, A., Sochocka, M., Franz, D., Ochnik, M., Chmielowiec-Korzeniowska, A., and Banach, M. (2025). Selective and Complementary Antimicrobial and Antiviral Activity of Silver, Copper, and Selenium Nanoparticle Suspensions in Deep Eutectic Solvent. Env. Environ. Res., 264."
},
{
"DOI": "10.1007/s12668-024-01622-7",
"doi-asserted-by": "crossref",
"key": "ref_98",
"unstructured": "Barabadi, H., Vahidi, H., Karami, K., Kamali, M., Jounaki, K., Jahani, R., Hosseini, O., Amidi, S., and Ashouri, F. (2025). Cephalosporium Aphidicola-Derived Silver Nanoparticles: In Vitro Physicochemical, Antibacterial, Antifungal, Biofilm Inhibition, Biofilm Degradation, Antioxidant, Alpha-Amylase, and Urease Inhibitory Properties. Bionanoscience, 15."
},
{
"DOI": "10.1007/s00289-022-04530-6",
"article-title": "Green-Synthesized Silver Nanoparticle Coating on Paper for Antibacterial and Antiviral Applications",
"author": "Srikhao",
"doi-asserted-by": "crossref",
"first-page": "9651",
"journal-title": "Polym. Bull.",
"key": "ref_99",
"volume": "80",
"year": "2023"
},
{
"DOI": "10.1016/j.jve.2023.100330",
"doi-asserted-by": "crossref",
"key": "ref_100",
"unstructured": "Naumenko, K., Zahorodnia, S., Pop, C.V., and Rizun, N. (2023). Antiviral Activity of Silver Nanoparticles against the Influenza A Virus. J. Virus Erad., 9."
},
{
"article-title": "Antiviral and Antibacterial Properties of Synthesis Silver Nanoparticles with Nigella Arvensis Aqueous Extract",
"author": "Elnosary",
"first-page": "209",
"journal-title": "Egypt. J. Chem.",
"key": "ref_101",
"volume": "66",
"year": "2023"
},
{
"DOI": "10.3390/polym15132961",
"doi-asserted-by": "crossref",
"key": "ref_102",
"unstructured": "El-Ganainy, S.M., Soliman, A.M., Ismail, A.M., Sattar, M.N., Farroh, K.Y., and Shafie, R.M. (2023). Antiviral Activity of Chitosan Nanoparticles and Chitosan Silver Nanocomposites against Alfalfa Mosaic Virus. Polymers, 15."
},
{
"DOI": "10.3390/v15081689",
"doi-asserted-by": "crossref",
"key": "ref_103",
"unstructured": "Doszpoly, A., Shaalan, M., and El-Matbouli, M. (2023). Silver Nanoparticles Proved to Be Efficient Antivirals In Vitro against Three Highly Pathogenic Fish Viruses. Viruses, 15."
},
{
"DOI": "10.3390/plants12112103",
"doi-asserted-by": "crossref",
"key": "ref_104",
"unstructured": "Al-Askar, A.A., Aseel, D.G., El-Gendi, H., Sobhy, S., Samy, M.A., Hamdy, E., El-Messeiry, S., Behiry, S.I., Elbeaino, T., and Abdelkhalek, A. (2023). Antiviral Activity of Biosynthesized Silver Nanoparticles from Pomegranate (Punica Granatum L.) Peel Extract against Tobacco Mosaic Virus. Plants, 12."
},
{
"article-title": "Antiviral Activity of Mycosynthesized Silver Nanoparticles against Herpes Simplex Virus and Human Parainfluenza Virus Type 3",
"author": "Gaikwad",
"first-page": "4303",
"journal-title": "Int. J. Nanomed.",
"key": "ref_105",
"volume": "8",
"year": "2013"
},
{
"DOI": "10.21608/egyjs.2024.264183.1028",
"article-title": "Antiviral and Antioxidant Activity, Green Synthesis, and Optimization of Silver Nanoparticles Derived from Ulva Lactuca",
"author": "Makhlof",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "Egypt. J. Phycol.",
"key": "ref_106",
"volume": "25",
"year": "2024"
},
{
"DOI": "10.3389/fnano.2023.1270474",
"doi-asserted-by": "crossref",
"key": "ref_107",
"unstructured": "Butler, M.R., Hrncirova, J., Jacot, T.A., Dutta, S., Clark, M.R., Doncel, G.F., and Cooper, J.B. (2023). Detection and Quantification of Antiviral Drug Tenofovir Using Silver Nanoparticles and Surface Enhanced Raman Spectroscopy (SERS) with Spatially Resolved Hotspot Selection. Front. Nanotechnol., 5."
},
{
"article-title": "Green biosynthesis of silver nanoparticles from taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells",
"first-page": "361",
"journal-title": "J. Hyg. Eng. Des.",
"key": "ref_108",
"volume": "42",
"year": "2023"
},
{
"DOI": "10.1007/s00253-022-12298-y",
"article-title": "Alocasia Odora–Mediated Synthesis of Silver Nanoparticles, Their Cytotoxicity, and Virucidal Potential",
"author": "Khan",
"doi-asserted-by": "crossref",
"first-page": "111",
"journal-title": "Appl. Microbiol. Biotechnol.",
"key": "ref_109",
"volume": "107",
"year": "2023"
},
{
"DOI": "10.1088/1361-6528/acb558",
"doi-asserted-by": "crossref",
"key": "ref_110",
"unstructured": "Pilaquinga, F., Bosch, R., Morey, J., Bastidas-Caldes, C., Torres, M., Toscano, F., Debut, A., Pazmiño-Viteri, K., and de las Nieves Piña, M. (2023). High in Vitro Activity of Gold and Silver Nanoparticles from Solanum Mammosum L. against SARS-CoV-2 Surrogate Phi6 and Viral Model PhiX174. Nanotechnology, 34."
},
{
"DOI": "10.15407/microbiolj86.02.036",
"doi-asserted-by": "crossref",
"key": "ref_111",
"unstructured": "111. Rybalchenko, N.P., Artiukh, L.O., Naumenko, S., Zaremba, P.Y., Demchenko, V.L., Kokhtych, L.M., Iurzhenko, M.V., Rybalchenko, T.V., and Ovsyankina, V. (2024). Antimicrobial and Antiviral Activity of Nanocomposites Based on Polyelectrolyte Complexes with Silver Nanoparticles. Mikrobiolohichnyi Zhurnal, 86, 36–50."
},
{
"DOI": "10.1088/1361-6528/ac03d6",
"doi-asserted-by": "crossref",
"key": "ref_112",
"unstructured": "Sinclair, T.R., Van Den Hengel, S.K., Raza, B.G., Rutjes, S.A., De Roda Husman, A.M., Peijnenburg, W.J.G.M., Roesink, H.D.W., and De Vos, W.M. (2021). Surface Chemistry-Dependent Antiviral Activity of Silver Nanoparticles. Nanotechnology, 32."
},
{
"DOI": "10.1088/1361-6528/abe489",
"doi-asserted-by": "crossref",
"key": "ref_113",
"unstructured": "Bharti, S., Mukherji, S., and Mukherji, S. (2021). Antiviral Application of Colloidal and Immobilized Silver Nanoparticles. Nanotechnology, 32."
},
{
"DOI": "10.1002/ardp.202400943",
"doi-asserted-by": "crossref",
"key": "ref_114",
"unstructured": "Emam, M.H., Elezaby, R.S., Swidan, S.A., Loutfy, S.A., and Hathout, R.M. (2025). Enhancing Polyacrylonitrile Nanofibers Antiviral Activity Using Greenly Synthesized Silver Nanoparticles. Arch. Pharm., 358."
},
{
"DOI": "10.1016/j.msec.2020.110924",
"doi-asserted-by": "crossref",
"key": "ref_115",
"unstructured": "Chen, L., and Liang, J. (2020). An Overview of Functional Nanoparticles as Novel Emerging Antiviral Therapeutic Agents. Mater. Sci. Eng. C, 112."
},
{
"DOI": "10.1128/AEM.03427-13",
"article-title": "Antiviral Properties of Silver Nanoparticles on a Magnetic Hybrid Colloid",
"author": "Park",
"doi-asserted-by": "crossref",
"first-page": "2343",
"journal-title": "Appl. Env. Environ. Microbiol.",
"key": "ref_116",
"volume": "80",
"year": "2014"
},
{
"DOI": "10.1038/s43246-021-00153-y",
"doi-asserted-by": "crossref",
"key": "ref_117",
"unstructured": "Rakowska, P.D., Tiddia, M., Faruqui, N., Bankier, C., Pei, Y., Pollard, A.J., Zhang, J., and Gilmore, I.S. (2021). Antiviral Surfaces and Coatings and Their Mechanisms of Action. Commun. Mater., 2."
},
{
"DOI": "10.3390/molecules28227674",
"doi-asserted-by": "crossref",
"key": "ref_118",
"unstructured": "Sadiq, S., Khan, I., Shen, Z., Wang, M., Xu, T., Khan, S., Zhou, X., Bahadur, A., Rafiq, M., and Sohail, S. (2023). Recent Updates on Multifunctional Nanomaterials as Antipathogens in Humans and Livestock: Classification, Application, Mode of Action, and Challenges. Molecules, 28."
},
{
"DOI": "10.3390/nano10091645",
"doi-asserted-by": "crossref",
"key": "ref_119",
"unstructured": "Gurunathan, S., Qasim, M., Choi, Y., Do, J.T., Park, C., Hong, K., Kim, J.H., and Song, H. (2020). Antiviral Potential of Nanoparticles—Can Nanoparticles Fight against Coronaviruses?. Nanomaterials, 10."
},
{
"DOI": "10.1007/s42765-023-00275-7",
"article-title": "A Novel Vision of Reinforcing Nanofibrous Masks with Metal Nanoparticles: Antiviral Mechanisms Investigation",
"author": "Hadinejad",
"doi-asserted-by": "crossref",
"first-page": "1273",
"journal-title": "Adv. Fiber Mater.",
"key": "ref_120",
"volume": "5",
"year": "2023"
},
{
"DOI": "10.3390/molecules16108894",
"article-title": "Silver Nanoparticles as Potential Antiviral Agents",
"author": "Galdiero",
"doi-asserted-by": "crossref",
"first-page": "8894",
"journal-title": "Molecules",
"key": "ref_121",
"volume": "16",
"year": "2011"
},
{
"DOI": "10.1002/slct.202403772",
"doi-asserted-by": "crossref",
"key": "ref_122",
"unstructured": "Manisekaran, R., Chettiar, A.-D.R., Marasamy, L., Ibarra, V.C., Lopez-Ayuso, C.A., Chavez-Granados, P.A., Kandasamy, G., Acosta-Torres, L.S., and Arthikala, M.-K. (2024). Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update. ChemistrySelect, 9."
},
{
"DOI": "10.1021/acsomega.4c11045",
"article-title": "Silver Nanoparticles (AgNPs): Comprehensive Insights into Bio/Synthesis, Key Influencing Factors, Multifaceted Applications, and Toxicity─A 2024 Update",
"author": "Sati",
"doi-asserted-by": "crossref",
"first-page": "7549",
"journal-title": "ACS Omega",
"key": "ref_123",
"volume": "10",
"year": "2025"
},
{
"DOI": "10.3390/ijms19020387",
"doi-asserted-by": "crossref",
"key": "ref_124",
"unstructured": "Szymańska, E., Orłowski, P., Winnicka, K., Tomaszewska, E., Bąska, P., Celichowski, G., Grobełny, J., Basa, A., and Krzyżowska, M. (2018). Multifunctional Tannic Acid/Silver Nanoparticle-Based Mucoadhesive Hydrogel for Improved Local Treatment of HSV Infection: In Vitro and in Vivo Studies. Int. J. Mol. Sci., 19."
},
{
"DOI": "10.3390/nano15030202",
"doi-asserted-by": "crossref",
"key": "ref_125",
"unstructured": "Frippiat, T., Art, T., and Delguste, C. (2025). Silver Nanoparticles as Antimicrobial Agents in Veterinary Medicine: Current Applications and Future Perspectives. Nanomaterials, 15."
},
{
"DOI": "10.3390/biom14091152",
"doi-asserted-by": "crossref",
"key": "ref_126",
"unstructured": "Wang, D., Yin, C., Bai, Y., Zhou, M., Wang, N., Tong, C., Yang, Y., and Liu, B. (2024). Chitosan-Modified AgNPs Efficiently Inhibit Swine Coronavirus-Induced Host Cell Infections via Targeting the Spike Protein. Biomolecules, 14."
},
{
"DOI": "10.3390/nano12060990",
"doi-asserted-by": "crossref",
"key": "ref_127",
"unstructured": "He, Q., Lu, J., Liu, N., Lu, W., Li, Y., Shang, C., Li, X., Hu, L., and Jiang, G. (2022). Antiviral Properties of Silver Nanoparticles against SARS-CoV-2: Effects of Surface Coating and Particle Size. Nanomaterials, 12."
},
{
"DOI": "10.1016/j.jics.2021.100082",
"doi-asserted-by": "crossref",
"key": "ref_128",
"unstructured": "Mali, S.N., and Pandey, A. (2021). Multiple QSAR and Molecular Modelling for Identification of Potent Human Adenovirus Inhibitors. J. Indian. Chem. Soc., 98."
},
{
"DOI": "10.1186/1477-3155-8-15",
"doi-asserted-by": "crossref",
"key": "ref_129",
"unstructured": "Lara, H.H., Ixtepan-Turrent, L., Garza-Treviño, E.N., and Rodriguez-Padilla, C. (2010). PVP-Coated Silver Nanoparticles Block the Transmission of Cell-Free and Cell-Associated HIV-1 in Human Cervical Culture. J. Nanobiotechnology, 8."
},
{
"DOI": "10.1186/1477-3155-8-1",
"doi-asserted-by": "crossref",
"key": "ref_130",
"unstructured": "Lara, H.H., Ayala-Nuñez, N.V., Ixtepan-Turrent, L., and Rodriguez-Padilla, C. (2010). Mode of Antiviral Action of Silver Nanoparticles against HIV-1. J. Nanobiotechnology, 8."
},
{
"DOI": "10.1002/smll.200902384",
"article-title": "Inhibition of HSV-1 Attachment, Entry, and Cell-to-Cell Spread by Functionalized Multivalent Gold Nanoparticles",
"author": "Shukla",
"doi-asserted-by": "crossref",
"first-page": "1044",
"journal-title": "Small",
"key": "ref_131",
"volume": "6",
"year": "2010"
},
{
"DOI": "10.1166/jbn.2008.012",
"article-title": "Silver Nanoparticles Inhibit Replication of Respiratory Syncytial Virus",
"author": "Sun",
"doi-asserted-by": "crossref",
"first-page": "149",
"journal-title": "J. Biomed. Nanotechnol.",
"key": "ref_132",
"volume": "4",
"year": "2008"
},
{
"DOI": "10.1007/s11671-008-9128-2",
"doi-asserted-by": "crossref",
"key": "ref_133",
"unstructured": "Rogers, J.V., Parkinson, C.V., Choi, Y.W., Speshock, J.L., and Hussain, S.M. (2008). A Preliminary Assessment of Silver Nanoparticle Inhibition of Monkeypox Virus Plaque Formation. Nanoscale Res. Lett., 3."
},
{
"DOI": "10.1002/smll.201001349",
"article-title": "Inhibition of Influenza Virus Infection by Multivalent Sialic-Acid- Functionalized Gold Nanoparticles",
"author": "Papp",
"doi-asserted-by": "crossref",
"first-page": "2900",
"journal-title": "Small",
"key": "ref_134",
"volume": "6",
"year": "2010"
},
{
"article-title": "The Rise of New Coronavirus Infection (COVID-19): A Recent Update and Potential Therapeutic Candidates",
"author": "Mali",
"first-page": "35",
"journal-title": "Eurasian J. Med. Oncol.",
"key": "ref_135",
"volume": "4",
"year": "2020"
},
{
"DOI": "10.1134/S1070427222040036",
"article-title": "Application of Nanofibers in Virus and Bacteria Filtration",
"author": "Habibi",
"doi-asserted-by": "crossref",
"first-page": "486",
"journal-title": "Russ. J. Appl. Chem.",
"key": "ref_136",
"volume": "95",
"year": "2022"
},
{
"DOI": "10.3389/fmicb.2015.00453",
"doi-asserted-by": "crossref",
"key": "ref_137",
"unstructured": "Elbeshehy, E.K.F., Elazzazy, A.M., and Aggelis, G. (2015). Silver Nanoparticles Synthesis Mediated by New Isolates of Bacillus Spp., Nanoparticle Characterization and Their Activity against Bean Yellow Mosaic Virus and Human Pathogens. Front. Microbiol., 6."
},
{
"DOI": "10.1186/1477-3155-3-6",
"doi-asserted-by": "crossref",
"key": "ref_138",
"unstructured": "Elechiguerra, J.L., Burt, J.L., Morones, J.R., Camacho-Bragado, A., Gao, X., Lara, H.H., and Yacaman, M.J. (2005). Interaction of Silver Nanoparticles with HIV-1. J. Nanobiotechnology, 3."
},
{
"DOI": "10.1016/j.jviromet.2013.07.020",
"article-title": "Inhibitory Effects of Silver Nanoparticles against Adenovirus Type 3 in Vitro",
"author": "Chen",
"doi-asserted-by": "crossref",
"first-page": "470",
"journal-title": "J. Virol. Methods",
"key": "ref_139",
"volume": "193",
"year": "2013"
},
{
"DOI": "10.1080/10667857.2021.1908768",
"article-title": "Synthesis of Silver Nanoparticles Stabilised by PVP for Polymeric Membrane Application: A Comparative Study",
"author": "Kamarudin",
"doi-asserted-by": "crossref",
"first-page": "289",
"journal-title": "Mater. Technol.",
"key": "ref_140",
"volume": "37",
"year": "2022"
},
{
"DOI": "10.1016/j.ecoenv.2023.114636",
"doi-asserted-by": "crossref",
"key": "ref_141",
"unstructured": "Nie, P., Zhao, Y., and Xu, H. (2023). Synthesis, Applications, Toxicity and Toxicity Mechanisms of Silver Nanoparticles: A Review. Ecotoxicol. Env. Environ. Saf., 253."
},
{
"DOI": "10.1016/j.matpr.2021.04.266",
"article-title": "A Review on the Toxicity of Silver Nanoparticles on Human Health",
"author": "Jaswal",
"doi-asserted-by": "crossref",
"first-page": "859",
"journal-title": "Mater. Today Proc.",
"key": "ref_142",
"volume": "81",
"year": "2021"
},
{
"DOI": "10.3390/ijms24065133",
"doi-asserted-by": "crossref",
"key": "ref_143",
"unstructured": "Noga, M., Milan, J., Frydrych, A., and Jurowski, K. (2023). Toxicological Aspects, Safety Assessment, and Green Toxicology of Silver Nanoparticles (AgNPs)—Critical Review: State of the Art. Int. J. Mol. Sci., 24."
},
{
"DOI": "10.47419/bjbabs.v2i03.67",
"article-title": "Safety Assessment and Biochemical Evaluation of the Effect of Biogenic Silver Nanoparticles (Using Bark Extract of C. Zeylanicum) on Rattus Norvegicus Rats",
"author": "Alwan",
"doi-asserted-by": "crossref",
"first-page": "133",
"journal-title": "Baghdad J. Biochem. Appl. Biol. Sci.",
"key": "ref_144",
"volume": "2",
"year": "2021"
},
{
"DOI": "10.3390/nano10071390",
"doi-asserted-by": "crossref",
"key": "ref_145",
"unstructured": "Vuković, B., Milić, M., Dobrošević, B., Milić, M., Ilić, K., Pavičić, I., Šerić, V., and Vrček, I.V. (2020). Surface Stabilization Affects Toxicity of Silver Nanoparticles in Human Peripheral Blood Mononuclear Cells. Nanomaterials, 10."
},
{
"DOI": "10.1016/j.jhazmat.2019.121974",
"doi-asserted-by": "crossref",
"key": "ref_146",
"unstructured": "Tortella, G.R., Rubilar, O., Durán, N., Diez, M.C., Martínez, M., Parada, J., and Seabra, A.B. (2020). Silver Nanoparticles: Toxicity in Model Organisms as an Overview of Its Hazard for Human Health and the Environment. J. Hazard. Mater., 390."
},
{
"DOI": "10.1088/2053-1591/ac2c2f",
"doi-asserted-by": "crossref",
"key": "ref_147",
"unstructured": "Elyousfi, S., Dellali, M., Mezni, A., Ben Ali, M., Hedfi, A., Almalki, M., Mezni, A., Rohal-Lupher, M., Dervishi, A., and Boufahja, F. (2021). Toxicity of Silver Nanoparticles on the Clam Ruditapes Decussatus Assessed through Biomarkers and Clearance Rate. Mater. Res. Express, 8."
},
{
"DOI": "10.1016/j.chemosphere.2023.140673",
"doi-asserted-by": "crossref",
"key": "ref_148",
"unstructured": "Pinheiro, S.K.d.P., Lima, A.K.M., Miguel, T.B.A.R., Filho, A.G.S., Ferreira, O.P., Pontes, M.d.S., Grillo, R., and Miguel, E.d.C. (2024). Assessing Toxicity Mechanism of Silver Nanoparticles by Using Brine Shrimp (Artemia Salina) as Model. Chemosphere, 347."
},
{
"DOI": "10.2147/IJN.S451694",
"article-title": "Green Synthesis and Characterization of Silver Nanoparticles Using Moringa Peregrina and Their Toxicity on MCF-7 and Caco-2 Human Cancer Cells",
"author": "Senthilkumar",
"doi-asserted-by": "crossref",
"first-page": "3891",
"journal-title": "Int. J. Nanomed.",
"key": "ref_149",
"volume": "19",
"year": "2024"
},
{
"DOI": "10.1038/s41598-024-56337-2",
"doi-asserted-by": "crossref",
"key": "ref_150",
"unstructured": "Taha, N.M., Youssef, F.S., Auda, H.M., El-Bahy, M.M., and Ramadan, R.M. (2024). Efficacy of Silver Nanoparticles against Trichinella Spiralis in Mice and the Role of Multivitamin in Alleviating Its Toxicity. Sci. Rep., 14."
},
{
"DOI": "10.1016/j.rechem.2025.102092",
"doi-asserted-by": "crossref",
"key": "ref_151",
"unstructured": "Dinç, B. (2025). Comprehensive Toxicity Assessment of Silver Nanoparticles on Bacteria, Human Vein Endothelial Cells, and Caenorhabditis Elegans. Results Chem., 14."
},
{
"DOI": "10.1186/s12302-021-00453-7",
"doi-asserted-by": "crossref",
"key": "ref_152",
"unstructured": "Kakakhel, M.A., Wu, F., Sajjad, W., Zhang, Q., Khan, I., Ullah, K., and Wang, W. (2021). Long-Term Exposure to High-Concentration Silver Nanoparticles Induced Toxicity, Fatality, Bioaccumulation, and Histological Alteration in Fish (Cyprinus Carpio). Env. Environ. Sci. Eur., 33."
},
{
"DOI": "10.3390/molecules26082305",
"doi-asserted-by": "crossref",
"key": "ref_153",
"unstructured": "Thwala, M., Klaine, S., and Musee, N. (2021). Exposure Media and Nanoparticle Size Influence on the Fate, Bioaccumulation, and Toxicity of Silver Nanoparticles to Higher Plant Salvinia Minima. Molecules, 26."
},
{
"DOI": "10.3389/fmars.2023.1195125",
"doi-asserted-by": "crossref",
"key": "ref_154",
"unstructured": "Yan, Z., Zhou, Y., Zhu, P., Bao, X., and Su, P. (2023). Polystyrene Nanoplastics Mediated the Toxicity of Silver Nanoparticles in Zebrafish Embryos. Front. Mar. Sci., 10."
},
{
"DOI": "10.3390/nano12183195",
"doi-asserted-by": "crossref",
"key": "ref_155",
"unstructured": "Sredojević, D., Lazić, V., Pirković, A., Periša, J., Murafa, N., Spremo-Potparević, B., Živković, L., Topalović, D., Zarubica, A., and Jovanović Krivokuća, M. (2022). Toxicity of Silver Nanoparticles Supported by Surface-Modified Zirconium Dioxide with Dihydroquercetin. Nanomaterials, 12."
},
{
"DOI": "10.1155/2015/136765",
"doi-asserted-by": "crossref",
"key": "ref_156",
"unstructured": "Sambale, F., Wagner, S., Stahl, F., Khaydarov, R.R., Scheper, T., and Bahnemann, D. (2015). Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. J. Nanomater., 2015."
},
{
"DOI": "10.3390/antibiotics10070852",
"doi-asserted-by": "crossref",
"key": "ref_157",
"unstructured": "Santos, T.S., Silva, T.M., Cardoso, J.C., de Albuquerque-Júnior, R.L.C., Zielinska, A., Souto, E.B., Severino, P., and Mendonça, M.D.C. (2021). Biosynthesis of Silver Nanoparticles Mediated by Entomopathogenic Fungi: Antimicrobial Resistance, Nanopesticides, and Toxicity. Antibiotics, 10."
},
{
"DOI": "10.1039/c2ra20684f",
"article-title": "The Toxic Effect of Silver Ions and Silver Nanoparticles towards Bacteria and Human Cells Occurs in the Same Concentration Range",
"author": "Greulich",
"doi-asserted-by": "crossref",
"first-page": "6981",
"journal-title": "RSC Adv.",
"key": "ref_158",
"volume": "2",
"year": "2012"
},
{
"DOI": "10.1293/tox.2017-0043",
"article-title": "Size-Dependent Acute Toxicity of Silver Nanoparticles in Mice",
"author": "Cho",
"doi-asserted-by": "crossref",
"first-page": "73",
"journal-title": "J. Toxicol. Pathol.",
"key": "ref_159",
"volume": "31",
"year": "2018"
},
{
"DOI": "10.1016/j.jare.2021.09.006",
"article-title": "Toxicity and Action Mechanisms of Silver Nanoparticles against the Mycotoxin-Producing Fungus Fusarium Graminearum",
"author": "Jian",
"doi-asserted-by": "crossref",
"first-page": "1",
"journal-title": "J. Adv. Res.",
"key": "ref_160",
"volume": "38",
"year": "2022"
},
{
"DOI": "10.1007/s11356-020-11714-y",
"article-title": "Toxicity Mechanism of Silver Nanoparticles to Chlamydomonas Reinhardtii: Photosynthesis, Oxidative Stress, Membrane Permeability, and Ultrastructure Analysis",
"author": "Zhao",
"doi-asserted-by": "crossref",
"first-page": "15032",
"journal-title": "Environ. Sci. Pollut. Res.",
"key": "ref_161",
"volume": "28",
"year": "2020"
},
{
"DOI": "10.1007/s11356-020-11862-1",
"article-title": "The Effects of Solubility of Silver Nanoparticles, Accumulation, and Toxicity to the Aquatic Plant Lemna Minor",
"author": "Souza",
"doi-asserted-by": "crossref",
"first-page": "16720",
"journal-title": "Environ. Sci. Pollut. Res.",
"key": "ref_162",
"volume": "28",
"year": "2021"
},
{
"DOI": "10.1016/j.jhazmat.2019.121975",
"doi-asserted-by": "crossref",
"key": "ref_163",
"unstructured": "Ke, M., Li, Y., Qu, Q., Ye, Y., Peijnenburg, W.J.G.M., Zhang, Z., Xu, N., Lu, T., Sun, L., and Qian, H. (2020). Offspring Toxicity of Silver Nanoparticles to Arabidopsis Thaliana Flowering and Floral Development. J. Hazard. Mater., 386."
},
{
"DOI": "10.1007/s10695-020-00909-2",
"article-title": "Toxicity of Silver Nanoparticles on Different Tissues in Adult Danio Rerio",
"author": "Marinho",
"doi-asserted-by": "crossref",
"first-page": "239",
"journal-title": "Fish. Physiol. Biochem.",
"key": "ref_164",
"volume": "47",
"year": "2021"
},
{
"DOI": "10.2147/IJN.S250467",
"article-title": "Species-Specific in Vitro and in Vivo Evaluation of Toxicity of Silver Nanoparticles Stabilized with Gum Arabic Protein",
"author": "Maziero",
"doi-asserted-by": "crossref",
"first-page": "7359",
"journal-title": "Int. J. Nanomed.",
"key": "ref_165",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1186/s12989-020-00342-6",
"doi-asserted-by": "crossref",
"key": "ref_166",
"unstructured": "Abdelkhaliq, A., Van Der Zande, M., Peters, R.J.B., and Bouwmeester, H. (2020). Combination of the BeWo B30 Placental Transport Model and the Embryonic Stem Cell Test to Assess the Potential Developmental Toxicity of Silver Nanoparticles. Part. Fibre Toxicol., 17."
},
{
"DOI": "10.3390/ijms22052536",
"doi-asserted-by": "crossref",
"key": "ref_167",
"unstructured": "Chen, R.J., Huang, C.C., Pranata, R., Lee, Y.H., Chen, Y.Y., Wu, Y.H., and Wang, Y.J. (2021). Modulation of Innate Immune Toxicity by Silver Nanoparticle Exposure and the Preventive Effects of Pterostilbene. Int. J. Mol. Sci., 22."
},
{
"DOI": "10.3390/molecules30071521",
"doi-asserted-by": "crossref",
"key": "ref_168",
"unstructured": "Michalec, S., Nieckarz, W., Klimek, W., Lange, A., Matuszewski, A., Piotrowska, K., Hotowy, A., Kunowska-Slósarz, M., and Sosnowska, M. (2025). Green Synthesis of Silver Nanoparticles from Chlorella vulgaris Aqueous Extract and Their Effect on Salmonella enterica and Chicken Embryo Growth. Molecules, 30."
},
{
"DOI": "10.5897/AJB2020.17057",
"article-title": "Sub-Acute and Chronic Toxicity of Silver Nanoparticles Synthesized by Azadirachta Indica Extract",
"author": "Emma",
"doi-asserted-by": "crossref",
"first-page": "320",
"journal-title": "Afr. J. Biotechnol.",
"key": "ref_169",
"volume": "19",
"year": "2020"
},
{
"DOI": "10.1016/j.chemosphere.2020.127346",
"doi-asserted-by": "crossref",
"key": "ref_170",
"unstructured": "Khoshnamvand, M., Hao, Z., Fadare, O.O., Hanachi, P., Chen, Y., and Liu, J. (2020). Toxicity of Biosynthesized Silver Nanoparticles to Aquatic Organisms of Different Trophic Levels. Chemosphere, 258."
},
{
"DOI": "10.1038/s41598-024-80528-6",
"doi-asserted-by": "crossref",
"key": "ref_171",
"unstructured": "Somda, D., Bargul, J.L., Wesonga, J.M., and Wachira, S.W. (2024). Green Synthesis of Brassica Carinata Microgreen Silver Nanoparticles, Characterization, Safety Assessment, and Antimicrobial Activities. Sci. Rep., 14."
},
{
"DOI": "10.3390/coatings15040370",
"doi-asserted-by": "crossref",
"key": "ref_172",
"unstructured": "Sati, A., Nandiwdekar, O., Ratnaparkhi, A., Doke, R.B., Pinjari, D.V., Mali, S.N., and Pratap, A.P. (2025). Bio-Based Alkyd–Polyesteramide–Polyurethane Coatings from Castor, Neem, and Karanja Oils with Inherent Antimicrobial Properties for Enhanced Hygiene. Coatings, 15."
},
{
"DOI": "10.1016/j.chemosphere.2020.127805",
"doi-asserted-by": "crossref",
"key": "ref_173",
"unstructured": "Haghighat, F., Kim, Y., Sourinejad, I., Yu, I.J., and Johari, S.A. (2021). Titanium Dioxide Nanoparticles Affect the Toxicity of Silver Nanoparticles in Common Carp (Cyprinus Carpio). Chemosphere, 262."
},
{
"DOI": "10.1016/j.envpol.2022.119606",
"doi-asserted-by": "crossref",
"key": "ref_174",
"unstructured": "Chen, F., Aqeel, M., Maqsood, M.F., Khalid, N., Irshad, M.K., Ibrahim, M., Akhter, N., Afzaal, M., Ma, J., and Hashem, M. (2022). Mitigation of Lead Toxicity in Vigna Radiata Genotypes by Silver Nanoparticles. Environ. Pollut., 308."
},
{
"DOI": "10.1007/s11356-018-3217-2",
"article-title": "In vitro assessment of the toxicity of small silver nanoparticles and silver ions to the red blood cells",
"author": "Chi",
"doi-asserted-by": "crossref",
"first-page": "32373",
"journal-title": "Environ. Sci. Pollut. Res.",
"key": "ref_175",
"volume": "25",
"year": "2018"
},
{
"DOI": "10.1016/j.biomaterials.2011.03.039",
"article-title": "The Targeted Antibacterial and Antifungal Properties of Magnetic Nanocomposite of Iron Oxide and Silver Nanoparticles",
"author": "Prucek",
"doi-asserted-by": "crossref",
"first-page": "4704",
"journal-title": "Biomaterials",
"key": "ref_176",
"volume": "32",
"year": "2011"
},
{
"DOI": "10.1039/D2NR03902H",
"article-title": "Growth Suppression of Bacteria by Biofilm Deterioration Using Silver Nanoparticles with Magnetic Doping",
"author": "Nguyen",
"doi-asserted-by": "crossref",
"first-page": "18143",
"journal-title": "Nanoscale",
"key": "ref_177",
"volume": "14",
"year": "2022"
},
{
"DOI": "10.1016/j.colsurfa.2010.12.009",
"article-title": "Immobilizing Silver Nanoparticles onto the Surface of Magnetic Silica Composite to Prepare Magnetic Disinfectant with Enhanced Stability and Antibacterial Activity",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "186",
"journal-title": "Colloids Surf. A Physicochem. Eng. Asp.",
"key": "ref_178",
"volume": "375",
"year": "2011"
},
{
"DOI": "10.1007/s00339-016-9935-8",
"doi-asserted-by": "crossref",
"key": "ref_179",
"unstructured": "Ratti, M., Naddeo, J.J., Tan, Y., Griepenburg, J.C., Tomko, J., Trout, C., O’Malley, S.M., Bubb, D.M., and Klein, E.A. (2016). Irradiation with Visible Light Enhances the Antibacterial Toxicity of Silver Nanoparticles Produced by Laser Ablation. Appl. Phys. A Mater. Sci. Process, 122."
}
],
"reference-count": 179,
"references-count": 179,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/1420-3049/30/9/2004"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Silver Nanoparticles (AgNPs) as Potential Antiviral Agents: Synthesis, Biophysical Properties, Safety, Challenges and Future Directions─Update Review",
"type": "journal-article",
"volume": "30"
}