Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
Abstract
All miscellaneous studies
Meta analysis
 
Feedback
Home
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Recent:   

Fibrin drives thromboinflammation and neuropathology in COVID-19

Ryu et al., Nature, doi:10.1038/s41586-024-07873-4
Aug 2024  
  Post
  Facebook
Share
  Source   PDF  
In Vitro and mouse study showing that fibrin drives thromboinflammation and neuropathology in COVID-19. Fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that promote oxidative stress and macrophage activation in the lungs while suppressing natural killer cells. Fibrin also promotes neuroinflammation and neuronal loss after infection. A monoclonal antibody targeting the inflammatory fibrin domain provided protection from microglial activation, neuronal injury, and thromboinflammation in the lungs after infection in mice. Authors conclude that fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID.
Ryu et al., 28 Aug 2024, peer-reviewed, 44 authors.
This PaperMiscellaneousAll
Fibrin drives thromboinflammation and neuropathology in COVID-19
Jae Kyu Ryu, Zhaoqi Yan, Mauricio Montano, Elif G Sozmen, Karuna Dixit, Rahul K Suryawanshi, Yusuke Matsui, Ekram Helmy, Prashant Kaushal, Sara K Makanani, Thomas J Deerinck, Anke Meyer-Franke, Pamela E Rios Coronado, Troy N Trevino, Min-Gyoung Shin, Reshmi Tognatta, Yixin Liu, Renaud Schuck, Lucas Le, Hisao Miyajima, Andrew S Mendiola, Nikhita Arun, Brandon Guo, Taha Y Taha, Ayushi Agrawal, Eilidh Macdonald, Oliver Aries, Aaron Yan, Olivia Weaver, Mark A Petersen, Rosa Meza Acevedo, Maria Del Pilar S Alzamora, Reuben Thomas, Michela Traglia, Valentina L Kouznetsova, Igor F Tsigelny, Alexander R Pico, Kristy Red-Horse, Mark H Ellisman, Nevan J Krogan, Mehdi Bouhaddou, Melanie Ott, Warner C Greene, Katerina Akassoglou
Nature, doi:10.1038/s41586-024-07873-4
Life-threatening thrombotic events and neurological symptoms are prevalent in COVID-19 and are persistent in patients with long COVID experiencing post-acute sequelae of SARS-CoV-2 infection [1] [2] [3] [4] . Despite the clinical evidence 1, [5] [6] [7] , the underlying mechanisms of coagulopathy in COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and treatment options are insufficient. Fibrinogen, the central structural component of blood clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates with disease severity and is a predictive biomarker for post-COVID-19 cognitive deficits 1, 5, [8] [9] [10] . Here we show that fibrin binds to the SARS-CoV-2 spike protein, forming proinflammatory blood clots that drive systemic thromboinflammation and neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for oxidative stress and macrophage activation in the lungs, whereas it suppresses natural killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss after infection, as well as innate immune activation in the brain and lungs independently of active infection. A monoclonal antibody targeting the inflammatory fibrin domain provides protection from microglial activation and neuronal injury, as well a s from thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a therapeutic intervention for patients with acute COVID-19 and long COVID. Long COVID has emerged as a central public health issue that remains an unmet clinical need 4 . Coagulation and neurological complications in COVID-19 can occur during acute infection and persist in long COVID causing morbidity and mortality [1] [2] [3] [4] 11 . Notably, coagulopathy also occurs in young patients with COVID-19 with mild infections, breakthrough infections and long COVID, and is associated with neurological complications [3] [4] [5] [6] [7] 12 . Blood clots in patients with COVID-19 remain resistant to degradation despite adequate anticoagulation 1, 13, 14 . The prevalence and severity of coagulopathy and its correlations with the immune response and neurological complications in long COVID suggest as yet unknown mechanisms of COVID-19 pathogenesis. Hypercoagulability in COVID-19 is associated with extensive fibrin deposition in inflamed lung and brain [8] [9] [10] . Fibrin is derived from the soluble blood protein fibrinogen after activation of coagulation and forms the central structural component of blood clots 15, 16 . Fibrin is deposited at sites of vascular damage or blood-brain barrier (BBB) disruption, and is a key proinflammatory and prooxidant activator of the innate immune response in autoimmune, inflammatory and neurodegenerative diseases 15, [17] [18] [19] [20] [21] . Neurovascular injury and reactive microglia are..
RNA in situ hybridization with immunohistochemistry RNA in situ hybridization with immunohistochemistry was performed on brain sections from mice infected with Delta using RNAscope Multiplex Fluorescent Assay (ACD Bio) according to the manufacturer's protocol for FFPE tissue. In brief, tissue was deparaffinized and incubated in 3% hydrogen peroxide for 10 min, then subjected to antigen retrieval by boiling in RNAScope Target Retrieval Solution (ACD Bio) for 1 h. The samples were permeabilized with RNAScope Protease Plus reagent (ACD Bio) for 30 min at 40 °C. RNA probes were hybridized to tissue for 2 h at 40 °C. Oligonucleotide probes for mouse Trem2, Cst7 and Spp1 were designed by ACD Bio (498711-C3, and 435191-C3, respectively). Probe signals were amplified using the RNAScope Multiplex Fluorescent Reagent Kit v2 (ACD Bio) and detected with TSA Vivid Fluorophore 570 (Tocris, 7526). Tissue sections were stained for one RNA probe and counterstained for IBA1 (234 308, Synaptic Systems, 1:500) using the RNA-Protein Co-Detection Ancillary Kit (ACD Bio). The slides were imaged using the Zeiss Axioplan 2 epifluorescent microscope at ×20 and images were analysed using ImageJ (NIH). IBA1-postive microglia in each image were manually counted. Dense clusters of Trem2, Cst7 or Spp1 mRNA overlapping with IBA1 signal indicate microglia expressing disease-associated genes. Statistical analysis All values are reported as mean ± s.e.m. The Shapiro-Wilk normality test 79 was used to..
References
Akassoglou, The immunology of blood: connecting the dots at the neurovascular interface, Nat. Immunol
Al-Aly, Topol, Solving the puzzle of Long Covid, Science
Antonelli, Pujol, Spector, Ourselin, Steves, Risk of long COVID associated with delta versus omicron variants of SARS-CoV-2, Lancet
Bates, Mächler, Bolker, Walker, Fitting linear mixed-effects models using lme4, J. Stat. Softw
Bjorkstrom, Strunz, Ljunggren, Natural killer cells in antiviral immunity, Nat. Rev. Immunol
Bouhaddou, The global phosphorylation landscape of SARS-CoV-2 infection, Cell
Brown, Forsythe, Robust tests for the equality of variances, doi:10.2210/pdb6VSB/pdb
Burrack, Interleukin-15 complex treatment protects mice from cerebral malaria by inducing Interleukin-10-producing natural killer cells, Immunity
Cerwenka, Lanier, Natural killer cell memory in infection, inflammation and cancer, Nat. Rev. Immunol
Chen, In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains, Nature
Choi, MSstats: an R package for statistical analysis of quantitative mass spectrometry-based proteomic experiments, Bioinformatics
Chong, Nasally delivered interferon-λ protects mice against infection by SARS-CoV-2 variants including Omicron, Cell Rep
Conway, Understanding COVID-19-associated coagulopathy, Nat. Rev. Immunol
Davalos, Akassoglou, Fibrinogen as a key regulator of inflammation in disease, Semin. Immunopathol
Davalos, Fibrinogen-induced perivascular microglial clustering is required for the development of axonal damage in neuroinflammation, Nat. Commun
Doolittle, Yang, Mochalkin, Crystal structure studies on fibrinogen and fibrin, Ann. N. Y. Acad. Sci
Douaud, SARS-CoV-2 is associated with changes in brain structure in UK Biobank, Nature
Erturk, Three-dimensional imaging of solvent-cleared organs using 3DISCO, Nat. Protoc
Faksova, COVID-19 vaccines and adverse events of special interest: a multinational Global Vaccine Data Network (GVDN) cohort study of 99 million vaccinated individuals, Vaccine
Fernandez-Castaneda, Mild respiratory COVID can cause multi-lineage neural cell and myelin dysregulation, Cell
Flick, Leukocyte engagement of fibrin(ogen) via the integrin receptor α M β 2 / Mac-1 is critical for host inflammatory response in vivo, J. Clin. Invest
Fox, Pulmonary and cardiac pathology in African American patients with COVID-19: an autopsy series from New Orleans, Lancet Respir. Med
Greene, Blood-brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment, Nat. Neurosci
Grobbelaar, SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19, Biosci. Rep
Gudowska-Sawczuk, Mroczko, What is currently known about the role of CXCL10 in SARS-CoV-2 infection?, Int. J. Mol. Sci
Gunji, Lewis, Gorelik, Fibrin formation inhibits the in vitro cytotoxic activity of human natural and lymphokine-activated killer cells, Blood Coagul. Fibrinolysis
Holm, A simple sequentially rejective multiple test procedure, Scand. J. Stat
Hotaling, Bharti, Kriel, Simon, DiameterJ: a validated open source nanofiber diameter measurement tool, Biomaterials
Kantor, Akassoglou, Stavenhagen, Fibrin-targeting immunotherapy for dementia, J. Prev. Alzheimers Dis
Lee, Microvascular injury in the brains of patients with Covid-19, N. Engl. J. Med
Lee, Neurovascular injury with complement activation and inflammation in COVID-19, Brain
Lijnen, Elements of the fibrinolytic system, Ann. N. Y. Acad. Sci
Liu, Complement receptor 3 has negative impact on tumor surveillance through suppression of natural killer cell function, Front. Immunol
Liu, The N501Y spike substitution enhances SARS-CoV-2 infection and transmission, Nature
Long, Abnormal fibrinogen level as a prognostic indicator in coronavirus disease patients: a retrospective cohort study, Front. Med
Mendiola, Defining blood-induced microglia functions in neurodegeneration through multiomic profiling, Nat. Immunol
Mendiola, Transcriptional profiling and therapeutic targeting of oxidative stress in neuroinflammation, Nat. Immunol
Merad, Blish, Sallusto, Iwasaki, The immunology and immunopathology of COVID-19, Science
Mercade-Besora, The role of COVID-19 vaccines in preventing post-COVID-19 thromboembolic and cardiovascular complications, Heart
Merlini, Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer's disease model, Neuron
Monje, Iwasaki, The neurobiology of long COVID, Neuron
Muradashvili, Fibrinogen-induced increased pial venular permeability in mice, J. Cereb. Blood Flow Metab
Ols, Route of vaccine administration alters antigen trafficking but not innate or adaptive immunity, Cell Rep
Osman, Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19, Blood Adv
Petersen, Ryu, Akassoglou, Fibrinogen in neurological diseases: mechanisms, imaging and therapeutics, Nat. Rev. Neurosci
Pettersen, UCSF Chimera-a visualization system for exploratory research and analysis, J. Comput. Chem
Pollenus, Aspecific binding of anti-NK1.1 antibodies on myeloid cells in an experimental model for malaria-associated acute respiratory distress syndrome, Malar. J
Pretorius, Persistent clotting protein pathology in long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin, Cardiovasc. Diabetol
Radke, Proteomic and transcriptomic profiling of brainstem, cerebellum and olfactory tissues in early-and late-phase COVID-19, Nat. Neurosci
Rendeiro, The spatial landscape of lung pathology during COVID-19 progression, Nature
Robinson, Oshlack, A scaling normalization method for differential expression analysis of RNA-seq data, Genome Biol
Ryu, Blood coagulation protein fibrinogen promotes autoimmunity and demyelination via chemokine release and antigen presentation, Nat. Commun
Ryu, Fibrin-targeting immunotherapy protects against neuroinflammation and neurodegeneration, Nat. Immunol
Sachs, p75 neurotrophin receptor regulates tissue fibrosis through inhibition of plasminogen activation via a PDE4/cAMP/PKA pathway, J. Cell Biol
Schachtrup, Nuclear pore complex remodeling by p75 NTR cleavage controls TGF-β signaling and astrocyte functions, Nat. Neurosci
Scully, Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination, N. Engl. J. Med
Sefik, Inflammasome activation in infected macrophages drives COVID-19 pathology, Nature
Sevigny, The antibody aducanumab reduces Aβ plaques in Alzheimer's disease, Nature
Shannon, Cytoscape: a software environment for integrated models of biomolecular interaction networks, Genome Res
Shapiro, Wilk, An analysis of variance test for normality (complete samples), Biometrica
Silva, Fibrin is a critical regulator of neutrophil effector function at the oral mucosal barrier, Science
Song, Neuroinvasion of SARS-CoV-2 in human and mouse brain, J. Exp. Med
Soung, COVID-19 induces CNS cytokine expression and loss of hippocampal neurogenesis, Brain
Spudich, Nath, Nervous system consequences of COVID-19, Science
Stadlbauer, SARS-CoV-2 seroconversion in humans: a detailed protocol for a serological assay, antigen production, and test setup, Curr. Protoc. Microbiol
Starr, SARS-CoV-2 RBD antibodies that maximize breadth and resistance to escape, Nature
Stein, SARS-CoV-2 infection and persistence in the human body and brain at autopsy, Nature
Stopak, De Noronha, Yonemoto, Greene, HIV-1 Vif blocks the antiviral activity of APOBEC3G by impairing both its translation and intracellular stability, Mol. Cell
Suh, Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice, Genes Dev
Suryawanshi, Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination, Nature
Swank, Persistent circulating SARS-CoV-2 spike is associated with post-acute COVID-19 sequelae, Clin. Infect. Dis
Taquet, Acute blood biomarker profiles predict cognitive deficits 6 and 12 months after COVID-19 hospitalization, Nat. Med
Tarres-Freixas, Heterogeneous infectivity and pathogenesis of SARS-CoV-2 variants Beta, Delta and Omicron in transgenic K18-hACE2 and wildtype mice, Front. Microbiol
Tegally, Detection of a SARS-CoV-2 variant of concern in South Africa, Nature
Tognatta, In vivo two-photon microscopy protocol for imaging microglial responses and spine elimination at sites of fibrinogen deposition in mouse brain, STAR Protoc
Tu, Acute ischemic stroke during the convalescent phase of asymptomatic COVID-2019 infection in men, JAMA Netw. Open
Turei, Integrated intra-and intercellular signaling knowledge for multicellular omics analysis, Mol. Syst. Biol
Ugarova, Sequence γ377-395(P2), but not γ190-202(P1), is the binding site for the α M I-domain of integrin α M β 2 in the γC-domain of fibrinogen, Biochemistry
Violi, Nox2 activation in Covid-19, Redox Biol
Wensveen, NK cells link obesity-induced adipose stress to inflammation and insulin resistance, Nat. Immunol
{ 'indexed': {'date-parts': [[2024, 8, 29]], 'date-time': '2024-08-29T00:29:07Z', 'timestamp': 1724891347084}, 'reference-count': 80, 'publisher': 'Springer Science and Business Media LLC', 'license': [ { 'start': { 'date-parts': [[2024, 8, 28]], 'date-time': '2024-08-28T00:00:00Z', 'timestamp': 1724803200000}, 'content-version': 'tdm', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}, { 'start': { 'date-parts': [[2024, 8, 28]], 'date-time': '2024-08-28T00:00:00Z', 'timestamp': 1724803200000}, 'content-version': 'vor', 'delay-in-days': 0, 'URL': 'https://creativecommons.org/licenses/by/4.0'}], 'content-domain': {'domain': ['link.springer.com'], 'crossmark-restriction': False}, 'abstract': '<jats:title>Abstract</jats:title><jats:p>Life-threatening thrombotic events and neurological ' 'symptoms are prevalent in COVID-19 and are\xa0persistent in patients with long COVID ' 'experiencing post-acute sequelae of SARS-CoV-2 infection<jats:sup>1–4</jats:sup>. Despite the ' 'clinical evidence<jats:sup>1,5–7</jats:sup>, the underlying mechanisms of coagulopathy in ' 'COVID-19 and its consequences in inflammation and neuropathology remain poorly understood and ' 'treatment options are insufficient. Fibrinogen, the central structural component of blood ' 'clots, is abundantly deposited in the lungs and brains of patients with COVID-19, correlates ' 'with disease severity and is a predictive biomarker for post-COVID-19 cognitive ' 'deficits<jats:sup>1,5,8–10</jats:sup>. Here we show that fibrin binds to the SARS-CoV-2 spike ' 'protein, forming proinflammatory blood clots that drive systemic thromboinflammation and ' 'neuropathology in COVID-19. Fibrin, acting through its inflammatory domain, is required for ' 'oxidative stress and macrophage activation in the lungs, whereas it\xa0suppresses natural ' 'killer cells, after SARS-CoV-2 infection. Fibrin promotes neuroinflammation and neuronal loss ' 'after infection, as well as innate immune activation in the brain and lungs independently of ' 'active infection. A\xa0monoclonal antibody targeting the inflammatory fibrin domain ' 'provides\xa0protection from microglial activation and neuronal injury, as well as from ' 'thromboinflammation in the lung after infection. Thus, fibrin drives inflammation and ' 'neuropathology in SARS-CoV-2 infection, and fibrin-targeting immunotherapy may represent a ' 'therapeutic intervention for patients with acute COVID-19 and long COVID.</jats:p>', 'DOI': '10.1038/s41586-024-07873-4', 'type': 'journal-article', 'created': {'date-parts': [[2024, 8, 28]], 'date-time': '2024-08-28T16:02:48Z', 'timestamp': 1724860968000}, 'update-policy': 'http://dx.doi.org/10.1007/springer_crossmark_policy', 'source': 'Crossref', 'is-referenced-by-count': 0, 'title': 'Fibrin drives thromboinflammation and neuropathology in COVID-19', 'prefix': '10.1038', 'author': [ { 'ORCID': 'http://orcid.org/0000-0002-3992-4011', 'authenticated-orcid': False, 'given': 'Jae Kyu', 'family': 'Ryu', 'sequence': 'first', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-9326-2920', 'authenticated-orcid': False, 'given': 'Zhaoqi', 'family': 'Yan', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-0353-0037', 'authenticated-orcid': False, 'given': 'Mauricio', 'family': 'Montano', 'sequence': 'additional', 'affiliation': []}, {'given': 'Elif G.', 'family': 'Sozmen', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-3583-2512', 'authenticated-orcid': False, 'given': 'Karuna', 'family': 'Dixit', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8374-669X', 'authenticated-orcid': False, 'given': 'Rahul K.', 'family': 'Suryawanshi', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-6016-2867', 'authenticated-orcid': False, 'given': 'Yusuke', 'family': 'Matsui', 'sequence': 'additional', 'affiliation': []}, {'given': 'Ekram', 'family': 'Helmy', 'sequence': 'additional', 'affiliation': []}, {'given': 'Prashant', 'family': 'Kaushal', 'sequence': 'additional', 'affiliation': []}, {'given': 'Sara K.', 'family': 'Makanani', 'sequence': 'additional', 'affiliation': []}, {'given': 'Thomas J.', 'family': 'Deerinck', 'sequence': 'additional', 'affiliation': []}, {'given': 'Anke', 'family': 'Meyer-Franke', 'sequence': 'additional', 'affiliation': []}, {'given': 'Pamela E.', 'family': 'Rios Coronado', 'sequence': 'additional', 'affiliation': []}, {'given': 'Troy N.', 'family': 'Trevino', 'sequence': 'additional', 'affiliation': []}, {'given': 'Min-Gyoung', 'family': 'Shin', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-7460-1843', 'authenticated-orcid': False, 'given': 'Reshmi', 'family': 'Tognatta', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1135-2805', 'authenticated-orcid': False, 'given': 'Yixin', 'family': 'Liu', 'sequence': 'additional', 'affiliation': []}, {'given': 'Renaud', 'family': 'Schuck', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0009-0005-7794-5736', 'authenticated-orcid': False, 'given': 'Lucas', 'family': 'Le', 'sequence': 'additional', 'affiliation': []}, {'given': 'Hisao', 'family': 'Miyajima', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2897-3299', 'authenticated-orcid': False, 'given': 'Andrew S.', 'family': 'Mendiola', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nikhita', 'family': 'Arun', 'sequence': 'additional', 'affiliation': []}, {'given': 'Brandon', 'family': 'Guo', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-7344-7490', 'authenticated-orcid': False, 'given': 'Taha Y.', 'family': 'Taha', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-2940-8926', 'authenticated-orcid': False, 'given': 'Ayushi', 'family': 'Agrawal', 'sequence': 'additional', 'affiliation': []}, {'given': 'Eilidh', 'family': 'MacDonald', 'sequence': 'additional', 'affiliation': []}, {'given': 'Oliver', 'family': 'Aries', 'sequence': 'additional', 'affiliation': []}, {'given': 'Aaron', 'family': 'Yan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Olivia', 'family': 'Weaver', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1366-1353', 'authenticated-orcid': False, 'given': 'Mark A.', 'family': 'Petersen', 'sequence': 'additional', 'affiliation': []}, {'given': 'Rosa', 'family': 'Meza Acevedo', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8861-387X', 'authenticated-orcid': False, 'given': 'Maria del Pilar S.', 'family': 'Alzamora', 'sequence': 'additional', 'affiliation': []}, {'given': 'Reuben', 'family': 'Thomas', 'sequence': 'additional', 'affiliation': []}, {'given': 'Michela', 'family': 'Traglia', 'sequence': 'additional', 'affiliation': []}, {'given': 'Valentina L.', 'family': 'Kouznetsova', 'sequence': 'additional', 'affiliation': []}, {'given': 'Igor F.', 'family': 'Tsigelny', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-5706-2163', 'authenticated-orcid': False, 'given': 'Alexander R.', 'family': 'Pico', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0003-1541-601X', 'authenticated-orcid': False, 'given': 'Kristy', 'family': 'Red-Horse', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-8893-8455', 'authenticated-orcid': False, 'given': 'Mark H.', 'family': 'Ellisman', 'sequence': 'additional', 'affiliation': []}, {'given': 'Nevan J.', 'family': 'Krogan', 'sequence': 'additional', 'affiliation': []}, {'given': 'Mehdi', 'family': 'Bouhaddou', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-5697-1274', 'authenticated-orcid': False, 'given': 'Melanie', 'family': 'Ott', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0001-9896-8615', 'authenticated-orcid': False, 'given': 'Warner C.', 'family': 'Greene', 'sequence': 'additional', 'affiliation': []}, { 'ORCID': 'http://orcid.org/0000-0002-2632-1465', 'authenticated-orcid': False, 'given': 'Katerina', 'family': 'Akassoglou', 'sequence': 'additional', 'affiliation': []}], 'member': '297', 'published-online': {'date-parts': [[2024, 8, 28]]}, 'reference': [ { 'key': '7873_CR1', 'doi-asserted-by': 'publisher', 'first-page': '639', 'DOI': '10.1038/s41577-022-00762-9', 'volume': '22', 'author': 'EM Conway', 'year': '2022', 'unstructured': 'Conway, E. M. et al. Understanding COVID-19-associated coagulopathy. ' 'Nat. Rev. Immunol. 22, 639–649 (2022).', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '7873_CR2', 'doi-asserted-by': 'crossref', 'unstructured': 'Monje, M. & Iwasaki, A. The neurobiology of long COVID. Neuron 110, ' '3484–3496 (2022).', 'DOI': '10.1016/j.neuron.2022.10.006'}, { 'key': '7873_CR3', 'doi-asserted-by': 'publisher', 'first-page': '267', 'DOI': '10.1126/science.abm2052', 'volume': '375', 'author': 'S Spudich', 'year': '2022', 'unstructured': 'Spudich, S. & Nath, A. Nervous system consequences of COVID-19. Science ' '375, 267–269 (2022).', 'journal-title': 'Science'}, { 'key': '7873_CR4', 'doi-asserted-by': 'publisher', 'first-page': '830', 'DOI': '10.1126/science.adl0867', 'volume': '383', 'author': 'Z Al-Aly', 'year': '2024', 'unstructured': 'Al-Aly, Z. & Topol, E. Solving the puzzle of Long Covid. Science 383, ' '830–832 (2024).', 'journal-title': 'Science'}, { 'key': '7873_CR5', 'doi-asserted-by': 'publisher', 'first-page': '2498', 'DOI': '10.1038/s41591-023-02525-y', 'volume': '29', 'author': 'M Taquet', 'year': '2023', 'unstructured': 'Taquet, M. et al. Acute blood biomarker profiles predict cognitive ' 'deficits 6 and 12 months after COVID-19 hospitalization. Nat. Med. 29, ' '2498–2508 (2023).', 'journal-title': 'Nat. Med.'}, { 'key': '7873_CR6', 'doi-asserted-by': 'publisher', 'first-page': '421', 'DOI': '10.1038/s41593-024-01576-9', 'volume': '27', 'author': 'C Greene', 'year': '2024', 'unstructured': 'Greene, C. et al. Blood–brain barrier disruption and sustained systemic ' 'inflammation in individuals with long COVID-associated cognitive ' 'impairment. Nat. Neurosci. 27, 421–432 (2024).', 'journal-title': 'Nat. Neurosci.'}, { 'key': '7873_CR7', 'doi-asserted-by': 'publisher', 'first-page': '409', 'DOI': '10.1038/s41593-024-01573-y', 'volume': '27', 'author': 'J Radke', 'year': '2024', 'unstructured': 'Radke, J. et al. Proteomic and transcriptomic profiling of brainstem, ' 'cerebellum and olfactory tissues in early- and late-phase COVID-19. Nat. ' 'Neurosci. 27, 409–420 (2024).', 'journal-title': 'Nat. Neurosci.'}, { 'key': '7873_CR8', 'doi-asserted-by': 'publisher', 'first-page': '481', 'DOI': '10.1056/NEJMc2033369', 'volume': '384', 'author': 'MH Lee', 'year': '2021', 'unstructured': 'Lee, M. H. et al. Microvascular injury in the brains of patients with ' 'Covid-19. N. Engl. J. Med. 384, 481–483 (2021).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '7873_CR9', 'doi-asserted-by': 'publisher', 'first-page': '2555', 'DOI': '10.1093/brain/awac151', 'volume': '145', 'author': 'MH Lee', 'year': '2022', 'unstructured': 'Lee, M. H. et al. Neurovascular injury with complement activation and ' 'inflammation in COVID-19. Brain 145, 2555–2568 (2022).', 'journal-title': 'Brain'}, { 'key': '7873_CR10', 'doi-asserted-by': 'publisher', 'first-page': '681', 'DOI': '10.1016/S2213-2600(20)30243-5', 'volume': '8', 'author': 'SE Fox', 'year': '2020', 'unstructured': 'Fox, S. E. et al. Pulmonary and cardiac pathology in African American ' 'patients with COVID-19: an autopsy series from New Orleans. Lancet ' 'Respir. Med. 8, 681–686 (2020).', 'journal-title': 'Lancet Respir. Med.'}, { 'key': '7873_CR11', 'doi-asserted-by': 'publisher', 'first-page': '697', 'DOI': '10.1038/s41586-022-04569-5', 'volume': '604', 'author': 'G Douaud', 'year': '2022', 'unstructured': 'Douaud, G. et al. SARS-CoV-2 is associated with changes in brain ' 'structure in UK Biobank. Nature 604, 697–707 (2022).', 'journal-title': 'Nature'}, { 'key': '7873_CR12', 'doi-asserted-by': 'publisher', 'first-page': 'e217498', 'DOI': '10.1001/jamanetworkopen.2021.7498', 'volume': '4', 'author': 'TM Tu', 'year': '2021', 'unstructured': 'Tu, T. M. et al. Acute ischemic stroke during the convalescent phase of ' 'asymptomatic COVID-2019 infection in men. JAMA Netw. Open 4, e217498 ' '(2021).', 'journal-title': 'JAMA Netw. Open'}, { 'key': '7873_CR13', 'doi-asserted-by': 'publisher', 'first-page': 'BSR20210611', 'DOI': '10.1042/BSR20210611', 'volume': '41', 'author': 'LM Grobbelaar', 'year': '2021', 'unstructured': 'Grobbelaar, L. M. et al. SARS-CoV-2 spike protein S1 induces ' 'fibrin(ogen) resistant to fibrinolysis: implications for microclot ' 'formation in COVID-19. Biosci. Rep. 41, BSR20210611 (2021).', 'journal-title': 'Biosci. Rep.'}, { 'key': '7873_CR14', 'doi-asserted-by': 'publisher', 'first-page': '1122', 'DOI': '10.1126/science.abm8108', 'volume': '375', 'author': 'M Merad', 'year': '2022', 'unstructured': 'Merad, M., Blish, C. A., Sallusto, F. & Iwasaki, A. The immunology and ' 'immunopathology of COVID-19. Science 375, 1122–1127 (2022).', 'journal-title': 'Science'}, { 'key': '7873_CR15', 'doi-asserted-by': 'publisher', 'first-page': '43', 'DOI': '10.1007/s00281-011-0290-8', 'volume': '34', 'author': 'D Davalos', 'year': '2012', 'unstructured': 'Davalos, D. & Akassoglou, K. Fibrinogen as a key regulator of ' 'inflammation in disease. Semin. Immunopathol. 34, 43–62 (2012).', 'journal-title': 'Semin. Immunopathol.'}, { 'key': '7873_CR16', 'doi-asserted-by': 'publisher', 'first-page': '31', 'DOI': '10.1111/j.1749-6632.2001.tb03492.x', 'volume': '936', 'author': 'RF Doolittle', 'year': '2001', 'unstructured': 'Doolittle, R. F., Yang, Z. & Mochalkin, I. Crystal structure studies on ' 'fibrinogen and fibrin. Ann. N. Y. Acad. Sci. 936, 31–43 (2001).', 'journal-title': 'Ann. N. Y. Acad. Sci.'}, { 'key': '7873_CR17', 'doi-asserted-by': 'publisher', 'first-page': '1212', 'DOI': '10.1038/s41590-018-0232-x', 'volume': '19', 'author': 'JK Ryu', 'year': '2018', 'unstructured': 'Ryu, J. K. et al. Fibrin-targeting immunotherapy protects against ' 'neuroinflammation and neurodegeneration. Nat. Immunol. 19, 1212–1223 ' '(2018).', 'journal-title': 'Nat. Immunol.'}, { 'key': '7873_CR18', 'doi-asserted-by': 'publisher', 'first-page': '283', 'DOI': '10.1038/nrn.2018.13', 'volume': '19', 'author': 'MA Petersen', 'year': '2018', 'unstructured': 'Petersen, M. A., Ryu, J. K. & Akassoglou, K. Fibrinogen in neurological ' 'diseases: mechanisms, imaging and therapeutics. Nat. Rev. Neurosci. 19, ' '283–301 (2018).', 'journal-title': 'Nat. Rev. Neurosci.'}, { 'key': '7873_CR19', 'doi-asserted-by': 'publisher', 'first-page': 'eabl5450', 'DOI': '10.1126/science.abl5450', 'volume': '374', 'author': 'LM Silva', 'year': '2021', 'unstructured': 'Silva, L. M. et al. Fibrin is a critical regulator of neutrophil ' 'effector function at the oral mucosal barrier. Science 374, eabl5450 ' '(2021).', 'journal-title': 'Science'}, { 'key': '7873_CR20', 'doi-asserted-by': 'publisher', 'first-page': '1099', 'DOI': '10.1016/j.neuron.2019.01.014', 'volume': '101', 'author': 'M Merlini', 'year': '2019', 'unstructured': 'Merlini, M. et al. Fibrinogen induces microglia-mediated spine ' 'elimination and cognitive impairment in an Alzheimer’s disease model. ' 'Neuron 101, 1099–1108 (2019).', 'journal-title': 'Neuron'}, { 'key': '7873_CR21', 'doi-asserted-by': 'publisher', 'first-page': '1173', 'DOI': '10.1038/s41590-023-01522-0', 'volume': '24', 'author': 'AS Mendiola', 'year': '2023', 'unstructured': 'Mendiola, A. S. et al. Defining blood-induced microglia functions in ' 'neurodegeneration through multiomic profiling. Nat. Immunol. 24, ' '1173–1187 (2023).', 'journal-title': 'Nat. Immunol.'}, { 'key': '7873_CR22', 'doi-asserted-by': 'publisher', 'first-page': '687220', 'DOI': '10.3389/fmed.2021.687220', 'volume': '8', 'author': 'W Long', 'year': '2021', 'unstructured': 'Long, W. et al. Abnormal fibrinogen level as a prognostic indicator in ' 'coronavirus disease patients: a retrospective cohort study. Front. Med. ' '8, 687220 (2021).', 'journal-title': 'Front. Med.'}, { 'key': '7873_CR23', 'doi-asserted-by': 'publisher', 'first-page': '172', 'DOI': '10.1186/s12933-021-01359-7', 'volume': '20', 'author': 'E Pretorius', 'year': '2021', 'unstructured': 'Pretorius, E. et al. Persistent clotting protein pathology in long ' 'COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased ' 'levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).', 'journal-title': 'Cardiovasc. Diabetol.'}, { 'key': '7873_CR24', 'doi-asserted-by': 'publisher', 'first-page': '294', 'DOI': '10.1038/s41586-021-04245-0', 'volume': '602', 'author': 'Y Liu', 'year': '2022', 'unstructured': 'Liu, Y. et al. The N501Y spike substitution enhances SARS-CoV-2 ' 'infection and transmission. Nature 602, 294–299 (2022).', 'journal-title': 'Nature'}, { 'key': '7873_CR25', 'doi-asserted-by': 'publisher', 'first-page': '226', 'DOI': '10.1111/j.1749-6632.2001.tb03511.x', 'volume': '936', 'author': 'HR Lijnen', 'year': '2001', 'unstructured': 'Lijnen, H. R. Elements of the fibrinolytic system. Ann. N. Y. Acad. Sci. ' '936, 226–236 (2001).', 'journal-title': 'Ann. N. Y. Acad. Sci.'}, { 'key': '7873_CR26', 'doi-asserted-by': 'publisher', 'first-page': '9365', 'DOI': '10.1021/bi034057k', 'volume': '42', 'author': 'TP Ugarova', 'year': '2003', 'unstructured': 'Ugarova, T. P. et al. Sequence γ377-395(P2), but not γ190-202(P1), is ' 'the binding site for the αMI-domain of integrin αMβ2 in the γC-domain of ' 'fibrinogen. Biochemistry 42, 9365–9373 (2003).', 'journal-title': 'Biochemistry'}, { 'key': '7873_CR27', 'doi-asserted-by': 'publisher', 'first-page': '101655', 'DOI': '10.1016/j.redox.2020.101655', 'volume': '36', 'author': 'F Violi', 'year': '2020', 'unstructured': 'Violi, F. et al. Nox2 activation in Covid-19. Redox Biol. 36, 101655 ' '(2020).', 'journal-title': 'Redox Biol.'}, { 'key': '7873_CR28', 'doi-asserted-by': 'publisher', 'first-page': '564', 'DOI': '10.1038/s41586-021-03475-6', 'volume': '593', 'author': 'AF Rendeiro', 'year': '2021', 'unstructured': 'Rendeiro, A. F. et al. The spatial landscape of lung pathology during ' 'COVID-19 progression. Nature 593, 564–569 (2021).', 'journal-title': 'Nature'}, { 'key': '7873_CR29', 'doi-asserted-by': 'publisher', 'first-page': '3673', 'DOI': '10.3390/ijms23073673', 'volume': '23', 'author': 'M Gudowska-Sawczuk', 'year': '2022', 'unstructured': 'Gudowska-Sawczuk, M. & Mroczko, B. What is currently known about the ' 'role of CXCL10 in SARS-CoV-2 infection? Int. J. Mol. Sci. 23, 3673 ' '(2022).', 'journal-title': 'Int. J. Mol. Sci.'}, { 'key': '7873_CR30', 'doi-asserted-by': 'publisher', 'first-page': '5035', 'DOI': '10.1182/bloodadvances.2020002650', 'volume': '4', 'author': 'M Osman', 'year': '2020', 'unstructured': 'Osman, M. et al. Impaired natural killer cell counts and cytolytic ' 'activity in patients with severe COVID-19. Blood Adv. 4, 5035–5039 ' '(2020).', 'journal-title': 'Blood Adv.'}, { 'key': '7873_CR31', 'doi-asserted-by': 'publisher', 'first-page': '1602', 'DOI': '10.3389/fimmu.2017.01602', 'volume': '8', 'author': 'CF Liu', 'year': '2017', 'unstructured': 'Liu, C. F. et al. Complement receptor 3 has negative impact on tumor ' 'surveillance through suppression of natural killer cell function. Front. ' 'Immunol. 8, 1602 (2017).', 'journal-title': 'Front. Immunol.'}, { 'key': '7873_CR32', 'doi-asserted-by': 'publisher', 'first-page': '685', 'DOI': '10.1016/j.cell.2020.06.034', 'volume': '182', 'author': 'M Bouhaddou', 'year': '2020', 'unstructured': 'Bouhaddou, M. et al. The global phosphorylation landscape of SARS-CoV-2 ' 'infection. Cell 182, 685–712 (2020).', 'journal-title': 'Cell'}, { 'key': '7873_CR33', 'doi-asserted-by': 'publisher', 'first-page': '112', 'DOI': '10.1038/s41577-021-00558-3', 'volume': '22', 'author': 'NK Bjorkstrom', 'year': '2022', 'unstructured': 'Bjorkstrom, N. K., Strunz, B. & Ljunggren, H. G. Natural killer cells in ' 'antiviral immunity. Nat. Rev. Immunol. 22, 112–123 (2022).', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '7873_CR34', 'doi-asserted-by': 'publisher', 'first-page': 'e487', 'DOI': '10.1093/cid/ciac722', 'volume': '76', 'author': 'Z Swank', 'year': '2022', 'unstructured': 'Swank, Z. et al. Persistent circulating SARS-CoV-2 spike is associated ' 'with post-acute COVID-19 sequelae. Clin. Infect. Dis. 76, e487–e490 ' '(2022).', 'journal-title': 'Clin. Infect. Dis.'}, { 'key': '7873_CR35', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/ncomms9164', 'volume': '6', 'author': 'JK Ryu', 'year': '2015', 'unstructured': 'Ryu, J. K. et al. Blood coagulation protein fibrinogen promotes ' 'autoimmunity and demyelination via chemokine release and antigen ' 'presentation. Nat. Commun. 6, 8164 (2015).', 'journal-title': 'Nat. Commun.'}, { 'key': '7873_CR36', 'doi-asserted-by': 'publisher', 'first-page': '2202', 'DOI': '10.1056/NEJMoa2105385', 'volume': '384', 'author': 'M Scully', 'year': '2021', 'unstructured': 'Scully, M. et al. Pathologic antibodies to platelet factor 4 after ' 'ChAdOx1 nCoV-19 vaccination. N. Engl. J. Med. 384, 2202–2211 (2021).', 'journal-title': 'N. Engl. J. Med.'}, { 'key': '7873_CR37', 'doi-asserted-by': 'publisher', 'first-page': '3964', 'DOI': '10.1016/j.celrep.2020.02.111', 'volume': '30', 'author': 'S Ols', 'year': '2020', 'unstructured': 'Ols, S. et al. Route of vaccine administration alters antigen ' 'trafficking but not innate or adaptive immunity. Cell Rep. 30, 3964–3971 ' 'e3967 (2020).', 'journal-title': 'Cell Rep.'}, { 'key': '7873_CR38', 'first-page': '635', 'volume': '110', 'author': 'N Mercade-Besora', 'year': '2024', 'unstructured': 'Mercade-Besora, N. et al. The role of COVID-19 vaccines in preventing ' 'post-COVID-19 thromboembolic and cardiovascular complications. Heart ' '110, 635–643 (2024).', 'journal-title': 'Heart'}, { 'key': '7873_CR39', 'doi-asserted-by': 'publisher', 'first-page': '2200', 'DOI': '10.1016/j.vaccine.2024.01.100', 'volume': '42', 'author': 'K Faksova', 'year': '2024', 'unstructured': 'Faksova, K. et al. COVID-19 vaccines and adverse events of special ' 'interest: a multinational Global Vaccine Data Network (GVDN) cohort ' 'study of 99 million vaccinated individuals. Vaccine 42, 2200–2211 ' '(2024).', 'journal-title': 'Vaccine'}, { 'key': '7873_CR40', 'doi-asserted-by': 'publisher', 'first-page': '710', 'DOI': '10.1038/s41590-020-0671-z', 'volume': '21', 'author': 'K Akassoglou', 'year': '2020', 'unstructured': 'Akassoglou, K. The immunology of blood: connecting the dots at the ' 'neurovascular interface. Nat. Immunol. 21, 710–712 (2020).', 'journal-title': 'Nat. Immunol.'}, { 'key': '7873_CR41', 'doi-asserted-by': 'publisher', 'first-page': '758', 'DOI': '10.1038/s41586-022-05542-y', 'volume': '612', 'author': 'SR Stein', 'year': '2022', 'unstructured': 'Stein, S. R. et al. SARS-CoV-2 infection and persistence in the human ' 'body and brain at autopsy. Nature 612, 758–763 (2022).', 'journal-title': 'Nature'}, { 'key': '7873_CR42', 'doi-asserted-by': 'publisher', 'first-page': '840757', 'DOI': '10.3389/fmicb.2022.840757', 'volume': '13', 'author': 'F Tarres-Freixas', 'year': '2022', 'unstructured': 'Tarres-Freixas, F. et al. Heterogeneous infectivity and pathogenesis of ' 'SARS-CoV-2 variants Beta, Delta and Omicron in transgenic K18-hACE2 and ' 'wildtype mice. Front. Microbiol. 13, 840757 (2022).', 'journal-title': 'Front. Microbiol.'}, { 'key': '7873_CR43', 'doi-asserted-by': 'publisher', 'first-page': '4193', 'DOI': '10.1093/brain/awac270', 'volume': '145', 'author': 'AL Soung', 'year': '2022', 'unstructured': 'Soung, A. L. et al. COVID-19 induces CNS cytokine expression and loss of ' 'hippocampal neurogenesis. Brain 145, 4193–4201 (2022).', 'journal-title': 'Brain'}, { 'key': '7873_CR44', 'doi-asserted-by': 'publisher', 'first-page': '2452', 'DOI': '10.1016/j.cell.2022.06.008', 'volume': '185', 'author': 'A Fernandez-Castaneda', 'year': '2022', 'unstructured': 'Fernandez-Castaneda, A. et al. Mild respiratory COVID can cause ' 'multi-lineage neural cell and myelin dysregulation. Cell 185, 2452–2468 ' '(2022).', 'journal-title': 'Cell'}, { 'key': '7873_CR45', 'doi-asserted-by': 'publisher', 'first-page': 'e20202135', 'DOI': '10.1084/jem.20202135', 'volume': '218', 'author': 'E Song', 'year': '2021', 'unstructured': 'Song, E. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain. J. ' 'Exp. Med. 218, e20202135 (2021).', 'journal-title': 'J. Exp. Med.'}, { 'key': '7873_CR46', 'doi-asserted-by': 'publisher', 'first-page': '2263', 'DOI': '10.1016/S0140-6736(22)00941-2', 'volume': '399', 'author': 'M Antonelli', 'year': '2022', 'unstructured': 'Antonelli, M., Pujol, J. C., Spector, T. D., Ourselin, S. & Steves, C. ' 'J. Risk of long COVID associated with delta versus omicron variants of ' 'SARS-CoV-2. Lancet 399, 2263–2264 (2022).', 'journal-title': 'Lancet'}, { 'key': '7873_CR47', 'doi-asserted-by': 'publisher', 'first-page': '351', 'DOI': '10.1038/s41586-022-04865-0', 'volume': '607', 'author': 'RK Suryawanshi', 'year': '2022', 'unstructured': 'Suryawanshi, R. K. et al. Limited cross-variant immunity from SARS-CoV-2 ' 'Omicron without vaccination. Nature 607, 351–355 (2022).', 'journal-title': 'Nature'}, { 'key': '7873_CR48', 'first-page': '663', 'volume': '1', 'author': 'Y Gunji', 'year': '1990', 'unstructured': 'Gunji, Y., Lewis, J. & Gorelik, E. Fibrin formation inhibits the in ' 'vitro cytotoxic activity of human natural and lymphokine-activated ' 'killer cells. Blood Coagul. Fibrinolysis 1, 663–672 (1990).', 'journal-title': 'Blood Coagul. Fibrinolysis'}, { 'key': '7873_CR49', 'doi-asserted-by': 'publisher', 'first-page': '112', 'DOI': '10.1038/nri.2015.9', 'volume': '16', 'author': 'A Cerwenka', 'year': '2016', 'unstructured': 'Cerwenka, A. & Lanier, L. L. Natural killer cell memory in infection, ' 'inflammation and cancer. Nat. Rev. Immunol. 16, 112–123 (2016).', 'journal-title': 'Nat. Rev. Immunol.'}, { 'key': '7873_CR50', 'doi-asserted-by': 'publisher', 'first-page': '150', 'DOI': '10.1038/jcbfm.2011.144', 'volume': '32', 'author': 'N Muradashvili', 'year': '2012', 'unstructured': 'Muradashvili, N. et al. Fibrinogen-induced increased pial venular ' 'permeability in mice. J. Cereb. Blood Flow Metab. 32, 150–163 (2012).', 'journal-title': 'J. Cereb. Blood Flow Metab.'}, { 'key': '7873_CR51', 'first-page': '647', 'volume': '10', 'author': 'AB Kantor', 'year': '2023', 'unstructured': 'Kantor, A. B., Akassoglou, K. & Stavenhagen, J. B. Fibrin-targeting ' 'immunotherapy for dementia. J. Prev. Alzheimers Dis. 10, 647–660 (2023).', 'journal-title': 'J. Prev. Alzheimers Dis.'}, { 'key': '7873_CR52', 'doi-asserted-by': 'publisher', 'first-page': '2020', 'DOI': '10.1101/gad.9.16.2020', 'volume': '9', 'author': 'TT Suh', 'year': '1995', 'unstructured': 'Suh, T. T. et al. Resolution of spontaneous bleeding events but failure ' 'of pregnancy in fibrinogen-deficient mice. Genes Dev. 9, 2020–2033 ' '(1995).', 'journal-title': 'Genes Dev.'}, { 'key': '7873_CR53', 'doi-asserted-by': 'publisher', 'first-page': '1596', 'DOI': '10.1172/JCI20741', 'volume': '113', 'author': 'MJ Flick', 'year': '2004', 'unstructured': 'Flick, M. J. et al. Leukocyte engagement of fibrin(ogen) via the ' 'integrin receptor αMβ2/Mac-1 is critical for host inflammatory response ' 'in vivo. J. Clin. Invest. 113, 1596–1606 (2004).', 'journal-title': 'J. Clin. Invest.'}, { 'key': '7873_CR54', 'doi-asserted-by': 'publisher', 'first-page': 'e100', 'DOI': '10.1002/cpmc.100', 'volume': '57', 'author': 'D Stadlbauer', 'year': '2020', 'unstructured': 'Stadlbauer, D. et al. SARS-CoV-2 seroconversion in humans: a detailed ' 'protocol for a serological assay, antigen production, and test setup. ' 'Curr. Protoc. Microbiol. 57, e100 (2020).', 'journal-title': 'Curr. Protoc. Microbiol.'}, { 'key': '7873_CR55', 'doi-asserted-by': 'publisher', 'first-page': '327', 'DOI': '10.1016/j.biomaterials.2015.05.015', 'volume': '61', 'author': 'NA Hotaling', 'year': '2015', 'unstructured': 'Hotaling, N. A., Bharti, K., Kriel, H. & Simon, C. G. Jr. DiameterJ: a ' 'validated open source nanofiber diameter measurement tool. Biomaterials ' '61, 327–338 (2015).', 'journal-title': 'Biomaterials'}, { 'key': '7873_CR56', 'doi-asserted-by': 'publisher', 'first-page': '1', 'DOI': '10.18637/jss.v067.i01', 'volume': '67', 'author': 'D Bates', 'year': '2015', 'unstructured': 'Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear ' 'mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).', 'journal-title': 'J. Stat. Softw.'}, { 'key': '7873_CR57', 'first-page': '65', 'volume': '6', 'author': 'S Holm', 'year': '1979', 'unstructured': 'Holm, S. A simple sequentially rejective multiple test procedure. Scand. ' 'J. Stat. 6, 65–70 (1979).', 'journal-title': 'Scand. J. Stat.'}, { 'key': '7873_CR58', 'doi-asserted-by': 'publisher', 'first-page': '1605', 'DOI': '10.1002/jcc.20084', 'volume': '25', 'author': 'EF Pettersen', 'year': '2004', 'unstructured': 'Pettersen, E. F. et al. UCSF Chimera—a visualization system for ' 'exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 ' '(2004).', 'journal-title': 'J. Comput. Chem.'}, { 'key': '7873_CR59', 'doi-asserted-by': 'publisher', 'first-page': '1983', 'DOI': '10.1038/nprot.2012.119', 'volume': '7', 'author': 'A Erturk', 'year': '2012', 'unstructured': 'Erturk, A. et al. Three-dimensional imaging of solvent-cleared organs ' 'using 3DISCO. Nat. Protoc. 7, 1983–1995 (2012).', 'journal-title': 'Nat. Protoc.'}, { 'key': '7873_CR60', 'doi-asserted-by': 'publisher', 'first-page': '513', 'DOI': '10.1038/s41590-020-0654-0', 'volume': '21', 'author': 'AS Mendiola', 'year': '2020', 'unstructured': 'Mendiola, A. S. et al. Transcriptional profiling and therapeutic ' 'targeting of oxidative stress in neuroinflammation. Nat. Immunol. 21, ' '513–524 (2020).', 'journal-title': 'Nat. Immunol.'}, { 'key': '7873_CR61', 'doi-asserted-by': 'publisher', 'first-page': '591', 'DOI': '10.1016/S1097-2765(03)00353-8', 'volume': '12', 'author': 'K Stopak', 'year': '2003', 'unstructured': 'Stopak, K., de Noronha, C., Yonemoto, W. & Greene, W. C. HIV-1 Vif ' 'blocks the antiviral activity of APOBEC3G by impairing both its ' 'translation and intracellular stability. Mol. Cell 12, 591–601 (2003).', 'journal-title': 'Mol. Cell'}, { 'key': '7873_CR62', 'doi-asserted-by': 'publisher', 'first-page': '438', 'DOI': '10.1038/s41586-021-03402-9', 'volume': '592', 'author': 'H Tegally', 'year': '2021', 'unstructured': 'Tegally, H. et al. Detection of a SARS-CoV-2 variant of concern in South ' 'Africa. Nature 592, 438–443 (2021).', 'journal-title': 'Nature'}, { 'key': '7873_CR63', 'doi-asserted-by': 'publisher', 'first-page': '110799', 'DOI': '10.1016/j.celrep.2022.110799', 'volume': '39', 'author': 'Z Chong', 'year': '2022', 'unstructured': 'Chong, Z. et al. Nasally delivered interferon-λ protects mice against ' 'infection by SARS-CoV-2 variants including Omicron. Cell Rep. 39, 110799 ' '(2022).', 'journal-title': 'Cell Rep.'}, { 'key': '7873_CR64', 'doi-asserted-by': 'publisher', 'first-page': '103', 'DOI': '10.1038/s41586-021-03720-y', 'volume': '596', 'author': 'RE Chen', 'year': '2021', 'unstructured': 'Chen, R. E. et al. In vivo monoclonal antibody efficacy against ' 'SARS-CoV-2 variant strains. Nature 596, 103–108 (2021).', 'journal-title': 'Nature'}, { 'key': '7873_CR65', 'doi-asserted-by': 'publisher', 'first-page': '97', 'DOI': '10.1038/s41586-021-03807-6', 'volume': '597', 'author': 'TN Starr', 'year': '2021', 'unstructured': 'Starr, T. N. et al. SARS-CoV-2 RBD antibodies that maximize breadth and ' 'resistance to escape. Nature 597, 97–102 (2021).', 'journal-title': 'Nature'}, { 'key': '7873_CR66', 'doi-asserted-by': 'publisher', 'first-page': '50', 'DOI': '10.1038/nature19323', 'volume': '537', 'author': 'J Sevigny', 'year': '2016', 'unstructured': 'Sevigny, J. et al. The antibody aducanumab reduces Aβ plaques in ' 'Alzheimer’s disease. Nature 537, 50–56 (2016).', 'journal-title': 'Nature'}, { 'key': '7873_CR67', 'doi-asserted-by': 'publisher', 'first-page': '585', 'DOI': '10.1038/s41586-022-04802-1', 'volume': '606', 'author': 'E Sefik', 'year': '2022', 'unstructured': 'Sefik, E. et al. Inflammasome activation in infected macrophages drives ' 'COVID-19 pathology. Nature 606, 585–593 (2022).', 'journal-title': 'Nature'}, { 'key': '7873_CR68', 'doi-asserted-by': 'publisher', 'first-page': '1119', 'DOI': '10.1083/jcb.200701040', 'volume': '177', 'author': 'BD Sachs', 'year': '2007', 'unstructured': 'Sachs, B. D. et al. p75 neurotrophin receptor regulates tissue fibrosis ' 'through inhibition of plasminogen activation via a PDE4/cAMP/PKA ' 'pathway. J. Cell Biol. 177, 1119–1132 (2007).', 'journal-title': 'J. Cell Biol.'}, { 'key': '7873_CR69', 'doi-asserted-by': 'publisher', 'first-page': '1077', 'DOI': '10.1038/nn.4054', 'volume': '18', 'author': 'C Schachtrup', 'year': '2015', 'unstructured': 'Schachtrup, C. et al. Nuclear pore complex remodeling by p75NTR cleavage ' 'controls TGF-β signaling and astrocyte functions. Nat. Neurosci. 18, ' '1077–1080 (2015).', 'journal-title': 'Nat. Neurosci.'}, { 'key': '7873_CR70', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/ncomms2230', 'volume': '3', 'author': 'D Davalos', 'year': '2012', 'unstructured': 'Davalos, D. et al. Fibrinogen-induced perivascular microglial clustering ' 'is required for the development of axonal damage in neuroinflammation. ' 'Nat. Commun. 3, 1227 (2012).', 'journal-title': 'Nat. Commun.'}, { 'key': '7873_CR71', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/gb-2010-11-3-r25', 'volume': '11', 'author': 'MD Robinson', 'year': '2010', 'unstructured': 'Robinson, M. D. & Oshlack, A. A scaling normalization method for ' 'differential expression analysis of RNA-seq data. Genome Biol. 11, R25 ' '(2010).', 'journal-title': 'Genome Biol.'}, { 'key': '7873_CR72', 'doi-asserted-by': 'publisher', 'first-page': '2498', 'DOI': '10.1101/gr.1239303', 'volume': '13', 'author': 'P Shannon', 'year': '2003', 'unstructured': 'Shannon, P. et al. Cytoscape: a software environment for integrated ' 'models of biomolecular interaction networks. Genome Res. 13, 2498–2504 ' '(2003).', 'journal-title': 'Genome Res.'}, { 'key': '7873_CR73', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s12936-024-04944-9', 'volume': '23', 'author': 'E Pollenus', 'year': '2024', 'unstructured': 'Pollenus, E. et al. Aspecific binding of anti-NK1.1 antibodies on ' 'myeloid cells in an experimental model for malaria-associated acute ' 'respiratory distress syndrome. Malar. J. 23, 110 (2024).', 'journal-title': 'Malar. J.'}, { 'key': '7873_CR74', 'doi-asserted-by': 'publisher', 'first-page': '760', 'DOI': '10.1016/j.immuni.2018.03.012', 'volume': '48', 'author': 'KS Burrack', 'year': '2018', 'unstructured': 'Burrack, K. S. et al. Interleukin-15 complex treatment protects mice ' 'from cerebral malaria by inducing Interleukin-10-producing natural ' 'killer cells. Immunity 48, 760–772 (2018).', 'journal-title': 'Immunity'}, { 'key': '7873_CR75', 'doi-asserted-by': 'publisher', 'first-page': '376', 'DOI': '10.1038/ni.3120', 'volume': '16', 'author': 'FM Wensveen', 'year': '2015', 'unstructured': 'Wensveen, F. M. et al. NK cells link obesity-induced adipose stress to ' 'inflammation and insulin resistance. Nat. Immunol. 16, 376–385 (2015).', 'journal-title': 'Nat. Immunol.'}, { 'key': '7873_CR76', 'doi-asserted-by': 'publisher', 'first-page': '2524', 'DOI': '10.1093/bioinformatics/btu305', 'volume': '30', 'author': 'M Choi', 'year': '2014', 'unstructured': 'Choi, M. et al. MSstats: an R package for statistical analysis of ' 'quantitative mass spectrometry-based proteomic experiments. ' 'Bioinformatics 30, 2524–2526 (2014).', 'journal-title': 'Bioinformatics'}, { 'key': '7873_CR77', 'doi-asserted-by': 'publisher', 'first-page': 'e9923', 'DOI': '10.15252/msb.20209923', 'volume': '17', 'author': 'D Turei', 'year': '2021', 'unstructured': 'Turei, D. et al. Integrated intra- and intercellular signaling knowledge ' 'for multicellular omics analysis. Mol. Syst. Biol. 17, e9923 (2021).', 'journal-title': 'Mol. Syst. Biol.'}, { 'key': '7873_CR78', 'doi-asserted-by': 'publisher', 'first-page': '100638', 'DOI': '10.1016/j.xpro.2021.100638', 'volume': '2', 'author': 'R Tognatta', 'year': '2021', 'unstructured': 'Tognatta, R. et al. In vivo two-photon microscopy protocol for imaging ' 'microglial responses and spine elimination at sites of fibrinogen ' 'deposition in mouse brain. STAR Protoc. 2, 100638 (2021).', 'journal-title': 'STAR Protoc.'}, { 'key': '7873_CR79', 'doi-asserted-by': 'publisher', 'first-page': '591', 'DOI': '10.1093/biomet/52.3-4.591', 'volume': '52', 'author': 'SS Shapiro', 'year': '1965', 'unstructured': 'Shapiro, S. S. & Wilk, M. B. An analysis of variance test for normality ' '(complete samples). Biometrica 52, 591–611 (1965).', 'journal-title': 'Biometrica'}, { 'key': '7873_CR80', 'doi-asserted-by': 'publisher', 'first-page': '364', 'DOI': '10.1080/01621459.1974.10482955', 'volume': '69', 'author': 'MB Brown', 'year': '1974', 'unstructured': 'Brown, M. B. & Forsythe, A. B. Robust tests for the equality of ' 'variances. J. Am. Stat. Assoc. 69, 364–367 (1974).', 'journal-title': 'J. Am. Stat. Assoc.'}], 'container-title': 'Nature', 'original-title': [], 'language': 'en', 'link': [ { 'URL': 'https://www.nature.com/articles/s41586-024-07873-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41586-024-07873-4', 'content-type': 'text/html', 'content-version': 'vor', 'intended-application': 'text-mining'}, { 'URL': 'https://www.nature.com/articles/s41586-024-07873-4.pdf', 'content-type': 'application/pdf', 'content-version': 'vor', 'intended-application': 'similarity-checking'}], 'deposited': { 'date-parts': [[2024, 8, 28]], 'date-time': '2024-08-28T16:08:38Z', 'timestamp': 1724861318000}, 'score': 1, 'resource': {'primary': {'URL': 'https://www.nature.com/articles/s41586-024-07873-4'}}, 'subtitle': [], 'short-title': [], 'issued': {'date-parts': [[2024, 8, 28]]}, 'references-count': 80, 'alternative-id': ['7873'], 'URL': 'http://dx.doi.org/10.1038/s41586-024-07873-4', 'relation': {}, 'ISSN': ['0028-0836', '1476-4687'], 'subject': [], 'container-title-short': 'Nature', 'published': {'date-parts': [[2024, 8, 28]]}, 'assertion': [ { 'value': '13 February 2023', 'order': 1, 'name': 'received', 'label': 'Received', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '24 July 2024', 'order': 2, 'name': 'accepted', 'label': 'Accepted', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': '28 August 2024', 'order': 3, 'name': 'first_online', 'label': 'First Online', 'group': {'name': 'ArticleHistory', 'label': 'Article History'}}, { 'value': 'K.A. is listed as an inventor on US patents 7,807,645, 8,569,242, 8,877,195 and ' '8,980,836, covering fibrin antibodies, submitted by the University of ' 'California. K.A. and J.K.R. are listed as co-inventors on US patent 9,669,112 ' 'covering fibrin in vivo models, and US patents 10,451,611 and 11,573,222 ' 'covering in vitro fibrin assays submitted by Gladstone Institutes. K.A., ' 'J.K.R., M.M. and W.C.G. are listed as co-inventors on US patent 12,016,934 ' 'covering the COVID-induced thromboinflammation model and US patent application ' '18/267,710 for use of fibrin immunotherapy in COVID-19 submitted by Gladstone ' 'Institutes. K.A. is a co-founder and scientific advisor of Therini Bio. K.A. ' 'has served as a consultant for F. Hoffman-La Roche not related to this study. ' 'W.C.G. is a co-founder and shareholder in InvisiShield Technologies, but work ' 'in this company has no overlap with the topic or findings presented in this ' 'paper. M.O. is a founder of DirectBio and is on the scientific advisory board ' 'of InvisiShield, but both are scientifically unrelated to this study. The ' 'Krogan Laboratory has received research support from Vir Biotechnology, F. ' 'Hoffmann-La Roche and Rezo Therapeutics unrelated to this study. N.J.K. has a ' 'financially compensated consulting agreement with Maze Therapeutics, is\xa0the ' 'president and is on the board of directors of Rezo Therapeutics, and is a ' 'shareholder in Tenaya Therapeutics, Maze Therapeutics, Rezo Therapeutics, GEn1E ' 'Lifesciences and Interline Therapeutics, but all are unrelated to this study. ' 'Their interests are managed in accordance with their respective institutions’ ' 'conflict of interest policies. The other authors declare no competing ' 'interests.', 'order': 1, 'name': 'Ethics', 'group': {'name': 'EthicsHeading', 'label': 'Competing interests'}}]}
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit