Ensovibep, a novel trispecific DARPin candidate that protects against SARS-CoV-2 variants
Sylvia Rothenberger, Daniel L Hurdiss, Marcel Walser, Francesca Malvezzi, Jennifer Mayor, Sarah Ryter, Hector Moreno, Nicole Liechti, Andreas Bosshart, Chloe Iss, Valérie Calabro, Andreas Cornelius, Tanja Hospodarsch, Alexandra Neculcea, Thamar Looser, Anja Schlegel, Simon Fontaine, Denis Villemagne, Maria Paladino, Yvonne Kaufmann, Doris Schaible, Iris Schlegel, Dieter Schiegg, Christof Zitt, Gabriel Sigrist, Marcel Straumann, Feyza Sacarcelik, Julia Wolter, Marco Comby, Julia M Adler, Kathrin Eschke, Mariana Nascimento, Azza Abdelgawad, Achim D Gruber, Judith Bushe, Olivia Kershaw, Heyrhyoung Lyoo, Chunyan Wang, Wentao Li, Ieva Drulyte, Wenjuan Du, H Kaspar Binz, Rachel Herrup, Sabrina Lusvarghi, Sabari Nath Neerukonda, Russell Vassell, Wei Wang, Susanne Mangold, Christian Reichen, Filip Radom, Charles G Knutson, Kamal K Balavenkatraman, Krishnan Ramanathan, Seth Lewis, Randall Watson, Micha A Haeuptle, Alexander Zürcher, Keith M Dawson, Daniel Steiner, Carol D Weiss, Patrick Amstutz, Frank J M Van Kuppeveld, Michael T Stumpp, Berend-Jan Bosch, Olivier Engler, Jakob Trimpert
doi:10.1101/2021.02.03.429164
SARS-CoV-2 has infected millions of people globally and continues to undergo evolution. Emerging variants can be partially resistant to vaccine induced and therapeutic antibodies, emphasizing the urgent need for accessible, broad-spectrum therapeutics. Here, we report a comprehensive study of ensovibep, the first trispecific clinical DARPin candidate, that can simultaneously engage all three units of the spike protein trimer to potently inhibit ACE2 interaction, as revealed by structural analyses. The cooperative binding of the individual modules enables ensovibep to retain inhibitory potency against all frequent SARS-CoV-2 variants, including Omicron, as of December 2021. Moreover, viral passaging experiments show that ensovibep, when used as a single agent, can prevent development of escape mutations comparably to a cocktail of monoclonal antibodies (mAb). Finally, we demonstrate that the very high in vitro antiviral potency also translates into significant therapeutic protection and reduction of pathogenesis in Roborovski dwarf hamsters infected with either the SARS-CoV-2 wild-type or the Alpha variant. In this model, ensovibep prevents fatality and provides substantial protection equivalent to the standard of care mAb cocktail. These results support further clinical evaluation and indicate that ensovibep could be a valuable alternative to mAb cocktails and other treatments for COVID-19.
Supplementary Materials for Ensovibep Supplementary Figure 1: A-C
Supplementary Figure 4: Titration curves for ensovibep (MP0420) and its RBD-binding domains (i.e. R1, R2 and R3), REGN10933 and REGN10987 to determine IC50 neutralization potencies on multiple spike mutants or only for ensovibep (MP0420) on the variants, which are summarized in Figure 2. Reported is the mean +/− SEM (standard error of the mean).
Supplementary Figure 5: Overview of the experimental protocol for viral passaging: A patient SARS-CoV-2 isolate from early 2020 (1.5 ×10 6 pfu) was incubated in presence of increasing concentrations of DARPin candidate or antibody for 4 days on Vero E6 cells and virus-induced cytopathic effects (CPE) were determined by microscopy. For each DARPin and antibody condition, cultures showing significant cytopathic effect (≥20%) under the greatest selective pressure were selected and virus-containing supernatant collected to start a new culture passage on Vero E6 cells (bold circle), again under increasing concentrations of the corresponding DARPin candidate or antibody condition. Passaging of virus containing supernatant was continued in the same manner for a total of 4 passages.
References
Baum, Antibody cocktail to SARS-CoV-2 spike protein prevents rapid mutational escape seen with individual antibodies, Science,
doi:10.1126/science.abd0831
Berger Rentsch, Zimmer, A vesicular stomatitis virus replicon-based bioassay for the rapid and sensitive determination of multi-species type I interferon, PLoS One,
doi:10.1371/journal.pone.0025858
Binz, High-affinity binders selected from designed ankyrin repeat protein libraries, Nat Biotechnol,
doi:10.1038/nbt962
Cathcart, The dual function monoclonal antibodies VIR-7831 and VIR-7832 demonstrate potent in vitro and in vivo activity against SARS-CoV-2, bioRxiv,
doi:10.1101/2021.03.09.434607v1
Cele, SARS-CoV-2 Omicron has extensive but incomplete escape of Pfizer BNT162b2 elicited neutralization and requires ACE2 for infection, medRxiv,
doi:10.1101/2021.12.08.21267417
Choi, Proceedings of the ACM Conference on Bioinformatics, Computational Biology and Biomedicine
Cianfrocco, Wong, Youn, Wagner, The Practice and Experience in Advanced Research Computing
Cingolani, A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3, Fly (Austin),
doi:10.4161/fly.19695
Copin, In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans,
doi:10.1101/2021.03.10.434834
Copin, In vitro and in vivo preclinical studies predict REGEN-COV protection against emergence of viral escape in humans, bioRxiv,
doi:10.1101/2021.03.10.434834v3
Copin, The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies, Cell,
doi:10.1016/j.cell.2021.06.002
Duvaud, the Swiss Bioinformatics Resource Portal, as designed by its users, Nucleic Acids Res,
doi:10.1093/nar/gkab225
Fiedler, MP0250, a VEGF and HGF neutralizing DARPin((R)) molecule shows high anti-tumor efficacy in mouse xenograft and patient-derived tumor models, Oncotarget,
doi:10.18632/oncotarget.21738
Friedrich, Preclinical characterization of AMG 330, a CD3/CD33-bispecific T-cell-engaging antibody with potential for treatment of acute myelogenous leukemia, Mol Cancer Ther,
doi:10.1158/1535-7163.MCT-13-0956
Gobeil, Effect of natural mutations of SARS-CoV-2 on spike structure, conformation, and antigenicity, Science,
doi:10.1126/science.abi6226
Goddard, UCSF ChimeraX: Meeting modern challenges in visualization and analysis, Protein Sci,
doi:10.1002/pro.3235
Greaney, Complete Mapping of Mutations to the SARS-CoV-2 Spike Receptor-Binding Domain that Escape Antibody Recognition, Cell host & microbe,
doi:10.1016/j.chom.2020.11.007
Gruber, Standardization of Reporting Criteria for Lung Pathology in SARS-CoV-2-infected Hamsters: What Matters?, Am J Respir Cell Mol Biol,
doi:10.1165/rcmb.2020-0280LE
Hoffmann, SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor, Cell,
doi:10.1016/j.cell.2020.02.052
Jones, LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection, bioRxiv,
doi:10.1101/2020.09.30.318972
Kumari, Neuroinvasion and Encephalitis Following Intranasal Inoculation of SARS-CoV-2 in K18-hACE2 Mice, Viruses,
doi:10.3390/v13010132
Laffeber, De Koning, Kanaar, Lebbink, Experimental Evidence for Enhanced Receptor Binding by Rapidly Spreading SARS-CoV-2 Variants, Journal of Molecular Biology,
doi:10.1016/j.jmb.2021.167058
Laskowski, Swindells, LigPlot+: multiple ligand-protein interaction diagrams for drug discovery, J Chem Inf Model,
doi:10.1021/ci200227u
Letko, Marzi, Munster, Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses, Nat Microbiol,
doi:10.1038/s41564-020-0688-y
Liu, Identification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralization, Cell host & microbe,
doi:10.1016/j.chom.2021.01.014
Lu3, Peng1, Sterling4, Walsh, Structural impact on SARS SoV-2 spike protein by D614G substitution
Lusvarghi, Key substitutions in the spike protein of SARS-CoV-2 variants can predict resistance to monoclonal antibodies, but other substitutions can modify the effects, bioRxiv,
doi:10.1101/2021.07.16.452748
Neerukonda, Establishment of a well-characterized SARS-CoV-2 lentiviral pseudovirus neutralization assay using 293T cells with stable expression of ACE2 and TMPRSS2, PLoS One,
doi:10.1371/journal.pone.0248348
Nouailles, Temporal omics analysis in Syrian hamsters unravel cellular effector responses to moderate COVID-19, Nat Commun,
doi:10.1038/s41467-021-25030-7
Osterrieder, Age-Dependent Progression of SARS-CoV-2 Infection in Syrian Hamsters, Viruses,
doi:10.3390/v12070779
Pettersen, UCSF Chimera--a visualization system for exploratory research and analysis, J Comput Chem,
doi:10.1002/jcc.20084
Pulliam, Increased risk of SARS-CoV-2 reinfection associated with emergence of the Omicron variant in South Africa, medRxiv,
doi:10.1101/2021.11.11.21266068
Sim, SIFT web server: predicting effects of amino acid substitutions on proteins, Nucleic Acids Res,
doi:10.1093/nar/gks539
Starr, Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding, Cell,
doi:10.1016/j.cell.2020.08.012
Starr, Deep Mutational Scanning of SARS-CoV-2 Receptor Binding Domain Reveals Constraints on Folding and ACE2 Binding, Cell,
doi:10.1016/j.cell.2020.08.012
Tegally, Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa, medRxiv,
doi:10.1101/2020.12.21.20248640
Thomson, The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity, bioRxiv,
doi:10.1101/2020.11.04.355842
Torriani, Identification of Clotrimazole Derivatives as Specific Inhibitors of Arenavirus Fusion, J Virol,
doi:10.1128/JVI.01744-18
Trimpert, The Roborovski Dwarf Hamster Is A Highly Susceptible Model for a Rapid and Fatal Course of SARS-CoV-2 Infection, Cell reports,
doi:10.1016/j.celrep.2020.108488
Walls, Cryo-electron microscopy structure of a coronavirus spike glycoprotein trimer, Nature,
doi:10.1038/nature16988
Walls, Tectonic conformational changes of a coronavirus spike glycoprotein promote membrane fusion, Proc Natl Acad Sci U S A,
doi:10.1073/pnas.1708727114
Walser, Highly potent anti-SARS-CoV-2 multivalent DARPin therapeutic candidates
Walter, Hutter, Garaeva, Scherer, Zimmermann, Highly potent bispecific sybodies neutralize SARS-CoV-2
Wilm, LoFreq: a sequence-quality aware, ultra-sensitive variant caller for uncovering cellpopulation heterogeneity from high-throughput sequencing datasets, Nucleic Acids Res,
doi:10.1093/nar/gks918
Wollscheid, Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins, Nat Biotechnol,
doi:10.1038/nbt.1532
Yi, Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies, Cell Mol Immunol,
doi:10.1038/s41423-020-0458-z
Zahradnik, SARS-CoV-2 RBD in vitro evolution follows contagious mutation spread, yet generates an able infection inhibitor, bioRxiv,
doi:10.1101/2021.01.06.425392v3
Zheng, MotionCor2: anisotropic correction of beam-induced motion for improved cryoelectron microscopy, Nat Methods,
doi:10.1038/nmeth.4193
Zivanov, New tools for automated high-resolution cryo-EM structure determination in RELION-3, Elife,
doi:10.7554/eLife.42166
{ 'institution': [{'name': 'bioRxiv'}],
'indexed': { 'date-parts': [[2021, 12, 22]],
'date-time': '2021-12-22T06:02:51Z',
'timestamp': 1640152971123},
'posted': {'date-parts': [[2021, 2, 3]]},
'group-title': 'Immunology',
'reference-count': 94,
'publisher': 'Cold Spring Harbor Laboratory',
'content-domain': {'domain': [], 'crossmark-restriction': False},
'short-container-title': [],
'accepted': {'date-parts': [[2021, 12, 17]]},
'abstract': '<jats:title>Abstract</jats:title><jats:p>SARS-CoV-2 has infected millions of people globally '
'and continues to undergo evolution. Emerging variants can be partially resistant to vaccine '
'induced and therapeutic antibodies, emphasizing the urgent need for accessible, '
'broad-spectrum therapeutics. Here, we report a comprehensive study of ensovibep, the first '
'trispecific clinical DARPin candidate, that can simultaneously engage all three units of the '
'spike protein trimer to potently inhibit ACE2 interaction, as revealed by structural '
'analyses. The cooperative binding of the individual modules enables ensovibep to retain '
'inhibitory potency against all frequent SARS-CoV-2 variants, including Omicron, as of '
'December 2021. Moreover, viral passaging experiments show that ensovibep, when used as a '
'single agent, can prevent development of escape mutations comparably to a cocktail of '
'monoclonal antibodies (mAb). Finally, we demonstrate that the very high in vitro antiviral '
'potency also translates into significant therapeutic protection and reduction of pathogenesis '
'in Roborovski dwarf hamsters infected with either the SARS-CoV-2 wild-type or the Alpha '
'variant. In this model, ensovibep prevents fatality and provides substantial protection '
'equivalent to the standard of care mAb cocktail. These results support further clinical '
'evaluation and indicate that ensovibep could be a valuable alternative to mAb cocktails and '
'other treatments for COVID-19.</jats:p>',
'DOI': '10.1101/2021.02.03.429164',
'type': 'posted-content',
'created': {'date-parts': [[2021, 2, 4]], 'date-time': '2021-02-04T02:20:54Z', 'timestamp': 1612405254000},
'source': 'Crossref',
'is-referenced-by-count': 3,
'title': ['Ensovibep, a novel trispecific DARPin candidate that protects against SARS-CoV-2 variants'],
'prefix': '10.1101',
'author': [ {'given': 'Sylvia', 'family': 'Rothenberger', 'sequence': 'first', 'affiliation': []},
{'given': 'Daniel L.', 'family': 'Hurdiss', 'sequence': 'additional', 'affiliation': []},
{'given': 'Marcel', 'family': 'Walser', 'sequence': 'additional', 'affiliation': []},
{'given': 'Francesca', 'family': 'Malvezzi', 'sequence': 'additional', 'affiliation': []},
{'given': 'Jennifer', 'family': 'Mayor', 'sequence': 'additional', 'affiliation': []},
{'given': 'Sarah', 'family': 'Ryter', 'sequence': 'additional', 'affiliation': []},
{'given': 'Hector', 'family': 'Moreno', 'sequence': 'additional', 'affiliation': []},
{'given': 'Nicole', 'family': 'Liechti', 'sequence': 'additional', 'affiliation': []},
{'given': 'Andreas', 'family': 'Bosshart', 'sequence': 'additional', 'affiliation': []},
{'given': 'Chloe', 'family': 'Iss', 'sequence': 'additional', 'affiliation': []},
{'given': 'Valérie', 'family': 'Calabro', 'sequence': 'additional', 'affiliation': []},
{'given': 'Andreas', 'family': 'Cornelius', 'sequence': 'additional', 'affiliation': []},
{'given': 'Tanja', 'family': 'Hospodarsch', 'sequence': 'additional', 'affiliation': []},
{'given': 'Alexandra', 'family': 'Neculcea', 'sequence': 'additional', 'affiliation': []},
{'given': 'Thamar', 'family': 'Looser', 'sequence': 'additional', 'affiliation': []},
{'given': 'Anja', 'family': 'Schlegel', 'sequence': 'additional', 'affiliation': []},
{'given': 'Simon', 'family': 'Fontaine', 'sequence': 'additional', 'affiliation': []},
{'given': 'Denis', 'family': 'Villemagne', 'sequence': 'additional', 'affiliation': []},
{'given': 'Maria', 'family': 'Paladino', 'sequence': 'additional', 'affiliation': []},
{'given': 'Yvonne', 'family': 'Kaufmann', 'sequence': 'additional', 'affiliation': []},
{'given': 'Doris', 'family': 'Schaible', 'sequence': 'additional', 'affiliation': []},
{'given': 'Iris', 'family': 'Schlegel', 'sequence': 'additional', 'affiliation': []},
{'given': 'Dieter', 'family': 'Schiegg', 'sequence': 'additional', 'affiliation': []},
{'given': 'Christof', 'family': 'Zitt', 'sequence': 'additional', 'affiliation': []},
{'given': 'Gabriel', 'family': 'Sigrist', 'sequence': 'additional', 'affiliation': []},
{'given': 'Marcel', 'family': 'Straumann', 'sequence': 'additional', 'affiliation': []},
{'given': 'Julia', 'family': 'Wolter', 'sequence': 'additional', 'affiliation': []},
{'given': 'Marco', 'family': 'Comby', 'sequence': 'additional', 'affiliation': []},
{'given': 'Julia M.', 'family': 'Adler', 'sequence': 'additional', 'affiliation': []},
{'given': 'Kathrin', 'family': 'Eschke', 'sequence': 'additional', 'affiliation': []},
{'given': 'Mariana', 'family': 'Nascimento', 'sequence': 'additional', 'affiliation': []},
{'given': 'Azza', 'family': 'Abdelgawad', 'sequence': 'additional', 'affiliation': []},
{'given': 'Achim D.', 'family': 'Gruber', 'sequence': 'additional', 'affiliation': []},
{'given': 'Judith', 'family': 'Bushe', 'sequence': 'additional', 'affiliation': []},
{'given': 'Olivia', 'family': 'Kershaw', 'sequence': 'additional', 'affiliation': []},
{'given': 'Heyrhyoung', 'family': 'Lyoo', 'sequence': 'additional', 'affiliation': []},
{'given': 'Chunyan', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []},
{'given': 'Wentao', 'family': 'Li', 'sequence': 'additional', 'affiliation': []},
{'given': 'Ieva', 'family': 'Drulyte', 'sequence': 'additional', 'affiliation': []},
{'given': 'Wenjuan', 'family': 'Du', 'sequence': 'additional', 'affiliation': []},
{'given': 'H.', 'family': 'Kaspar Binz', 'sequence': 'additional', 'affiliation': []},
{'given': 'Rachel', 'family': 'Herrup', 'sequence': 'additional', 'affiliation': []},
{'given': 'Sabrina', 'family': 'Lusvarghi', 'sequence': 'additional', 'affiliation': []},
{'given': 'Sabari Nath', 'family': 'Neerukonda', 'sequence': 'additional', 'affiliation': []},
{'given': 'Russell', 'family': 'Vassell', 'sequence': 'additional', 'affiliation': []},
{'given': 'Wei', 'family': 'Wang', 'sequence': 'additional', 'affiliation': []},
{'given': 'Susanne', 'family': 'Mangold', 'sequence': 'additional', 'affiliation': []},
{'given': 'Christian', 'family': 'Reichen', 'sequence': 'additional', 'affiliation': []},
{'given': 'Filip', 'family': 'Radom', 'sequence': 'additional', 'affiliation': []},
{'given': 'Charles G.', 'family': 'Knutson', 'sequence': 'additional', 'affiliation': []},
{'given': 'Kamal K.', 'family': 'Balavenkatraman', 'sequence': 'additional', 'affiliation': []},
{'given': 'Krishnan', 'family': 'Ramanathan', 'sequence': 'additional', 'affiliation': []},
{'given': 'Seth', 'family': 'Lewis', 'sequence': 'additional', 'affiliation': []},
{'given': 'Randall', 'family': 'Watson', 'sequence': 'additional', 'affiliation': []},
{'given': 'Micha A.', 'family': 'Haeuptle', 'sequence': 'additional', 'affiliation': []},
{'given': 'Alexander', 'family': 'Zürcher', 'sequence': 'additional', 'affiliation': []},
{'given': 'Keith M.', 'family': 'Dawson', 'sequence': 'additional', 'affiliation': []},
{'given': 'Daniel', 'family': 'Steiner', 'sequence': 'additional', 'affiliation': []},
{'given': 'Carol D.', 'family': 'Weiss', 'sequence': 'additional', 'affiliation': []},
{'given': 'Patrick', 'family': 'Amstutz', 'sequence': 'additional', 'affiliation': []},
{'given': 'Frank J.M.', 'family': 'van Kuppeveld', 'sequence': 'additional', 'affiliation': []},
{'given': 'Michael T.', 'family': 'Stumpp', 'sequence': 'additional', 'affiliation': []},
{'given': 'Berend-Jan', 'family': 'Bosch', 'sequence': 'additional', 'affiliation': []},
{'given': 'Olivier', 'family': 'Engler', 'sequence': 'additional', 'affiliation': []},
{'given': 'Jakob', 'family': 'Trimpert', 'sequence': 'additional', 'affiliation': []}],
'member': '246',
'reference': [ { 'key': '2021122101550814000_2021.02.03.429164v3.1',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-020-2012-7'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.2',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-020-2179-y'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.3',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/bs.aivir.2019.08.002'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.4',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41564-020-0688-y'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.5',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2020.02.058'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.6',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nature16988'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.7',
'doi-asserted-by': 'publisher',
'DOI': '10.1073/pnas.1708727114'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.8',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2020.02.052'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.9',
'unstructured': 'Jun Zhang 1, Yongfei Cai 1,2†, Tianshu Xiao 1,2, Jianming Lu 3, Hanqin '
'Peng 1, Sarah M. Sterling 4,5, Richard M. Walsh Jr.4,5, Sophia '
'Rits-Volloch 1, Haisun Zhu 6, Alec N. Woosley 6, Wei Yang 6, Piotr Sliz '
'1,2,5, Bing Chen 1,2*. Structural impact on SARS SoV-2 spike protein by '
'D614G substitution. Science (2021).'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.10',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2021.03.013'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.11',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.chom.2020.11.007'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.12',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.07.16.452748'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.13',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2020.08.012'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.14',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2021.01.037'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.15',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.01.25.428137'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.16',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41423-020-0458-z'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.17',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.chom.2021.01.014'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.18',
'doi-asserted-by': 'crossref',
'first-page': '2348',
'DOI': '10.1016/j.cell.2021.02.037',
'article-title': 'Evidence of escape of SARS-CoV-2 variant B.1.351 from natural and '
'vaccine-induced sera',
'volume': '184',
'year': '2021',
'journal-title': 'Cell'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.19',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abi6226'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.20',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.12.21.20248640'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.21',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.12.23.20248598'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.22',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.12.08.21267417'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.23',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.11.04.355842'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.24',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.jmb.2021.167058'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.25',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-021-03777-9'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.26',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/d41586-020-02965-3'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.27',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abd0831'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.28',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2021.06.002'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.29',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-020-20789-7'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.30',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nbt962'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.31',
'doi-asserted-by': 'crossref',
'unstructured': 'Walser, M. , et al. Highly potent anti-SARS-CoV-2 multivalent DARPin '
'therapeutic candidates. bioRxiv (2020).',
'DOI': '10.1101/2020.08.25.256339'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.32',
'doi-asserted-by': 'publisher',
'DOI': '10.1007/s40259-020-00429-8'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.33',
'doi-asserted-by': 'publisher',
'DOI': '10.1080/19420862.2017.1305529'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.34',
'doi-asserted-by': 'publisher',
'DOI': '10.18632/oncotarget.21738'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.35',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/protein/gzx022'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.36',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.03.10.434834v3'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.37',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.03.09.434607v1'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.38',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.celrep.2020.108488'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.39',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2018.12.028'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.40',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2021.05.005'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.41',
'doi-asserted-by': 'publisher',
'DOI': '10.1056/NEJMc2113468'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.42',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2021.03.036'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.43',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.11.11.21266068'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.44',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/acscentsci.0c01056'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.45',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.12.28.424451'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.46',
'doi-asserted-by': 'publisher',
'DOI': '10.3390/v12070779'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.47',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41467-021-25030-7'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.48',
'doi-asserted-by': 'publisher',
'DOI': '10.3390/v13010132'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.49',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abe3255'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.50',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abd9909'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.51',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abe0075'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.52',
'unstructured': 'Walter, J. D. , Hutter, C. A. J. , Garaeva, A. A. , Scherer, M. & '
'Zimmermann, I . Highly potent bispecific sybodies neutralize SARS-CoV-2. '
'bioRxiv (2020).'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.53',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.07.07.451375'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.54',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.09.30.318972'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.55',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-020-2349-y'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.56',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/s41586-020-2381-y'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.57',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.cell.2020.08.012'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.58',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.01.06.425392v3'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.59',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.12.07.470392'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.60',
'doi-asserted-by': 'publisher',
'DOI': '10.7554/eLife.42166'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.61',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nmeth.4193'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.62',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.jsb.2015.11.003'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.63',
'doi-asserted-by': 'publisher',
'DOI': '10.1002/jcc.20084'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.64',
'doi-asserted-by': 'publisher',
'DOI': '10.1126/science.abb2507'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.65',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2020.06.12.148296'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.66',
'unstructured': 'Cianfrocco, M. A. , Wong, M. , Youn, C. & Wagner, R . in The Practice '
'and Experience in Advanced Research Computing (New Orleans, LA 2017).'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.67',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0022477'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.68',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0024109'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.69',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/B978-0-12-381270-4.00019-6'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.70',
'doi-asserted-by': 'publisher',
'DOI': '10.1021/ci200227u'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.71',
'doi-asserted-by': 'publisher',
'DOI': '10.1002/pro.3235'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.72',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0025858'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.73',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.virol.2019.02.013'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.74',
'doi-asserted-by': 'publisher',
'DOI': '10.1128/JVI.01744-18'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.75',
'doi-asserted-by': 'publisher',
'DOI': '10.1073/pnas.2002589117'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.76',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0215822'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.77',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0248348'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.78',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nbt.1532'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.79',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/bioinformatics/btp352'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.80',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/bioinformatics/btu170'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.81',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/bioinformatics/btp324'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.82',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/nar/gks918'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.83',
'doi-asserted-by': 'publisher',
'DOI': '10.4161/fly.19695'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.84',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/bioinformatics/btw313'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.85',
'doi-asserted-by': 'publisher',
'DOI': '10.1101/2021.03.10.434834'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.86',
'doi-asserted-by': 'publisher',
'DOI': '10.2807/1560-7917.ES.2020.25.3.2000045'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.87',
'doi-asserted-by': 'publisher',
'DOI': '10.1165/rcmb.2020-0280LE'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.88',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/gigascience/giab008'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.89',
'doi-asserted-by': 'publisher',
'DOI': '10.1038/nbt.1754'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.90',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/nar/gkab225'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.91',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0046688'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.92',
'unstructured': 'Choi, Y . in Proceedings of the ACM Conference on Bioinformatics, '
'Computational Biology and Biomedicine 414–417 (Association for Computing '
'Machinery, Orlando, Florida, 2012).'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.93',
'doi-asserted-by': 'publisher',
'DOI': '10.1093/nar/gks539'},
{ 'key': '2021122101550814000_2021.02.03.429164v3.94',
'doi-asserted-by': 'publisher',
'DOI': '10.1158/1535-7163.MCT-13-0956'}],
'container-title': [],
'original-title': [],
'link': [ { 'URL': 'https://syndication.highwire.org/content/doi/10.1101/2021.02.03.429164',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2021, 12, 21]],
'date-time': '2021-12-21T09:55:26Z',
'timestamp': 1640080526000},
'score': 1,
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2021, 2, 3]]},
'references-count': 94,
'URL': 'http://dx.doi.org/10.1101/2021.02.03.429164',
'relation': {},
'published': {'date-parts': [[2021, 2, 3]]},
'subtype': 'preprint'}