Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation

Pastey et al., Microorganisms, doi:10.3390/microorganisms14010159, Jan 2026
In vitro study showing that SARS-CoV-Like virus-like particles (VLPs) preferentially bud from cholesterol-rich lipid raft microdomains in HEK-293T cells. The study provides evidence that SARS-CoV exploits lipid rafts not only for spatial organization but also for inducing supportive host cellular responses, suggesting raft-targeting therapeutics as potential antiviral strategies.
Pastey et al., 10 Jan 2026, USA, peer-reviewed, 3 authors. Contact: manoj.pastey@oregonstate.edu (corresponding author).
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation
Manoj K Pastey, Yue Huang, Barney Graham
Microorganisms, doi:10.3390/microorganisms14010159
Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in HEK-293T cells is sufficient to generate genomefree SARS-CoV-like virus-like particles (VLPs), which preferentially bud from glycolipidenriched membrane lipid raft microdomains. Immunofluorescence microscopy using raft-selective dyes (DiIC16) and spike-specific antibodies revealed strong co-localization of VLPs with lipid rafts. Detergent-resistant membrane analysis and sucrose gradient centrifugation further confirmed the presence of S protein in buoyant, raft-associated fractions alongside the raft marker CD44. Importantly, pharmacological disruption of rafts with methyl-β-cyclodextrin reduced VLP budding and S protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. Additionally, our data support lipid raft-associated proteins' (e.g., FNRA, VIM, CD59, RHOA) roles in modulating cellular responses conducive to viral replication and assembly. These findings highlight lipid rafts as crucial platforms for SARS-CoV morphogenesis and suggest new avenues for vaccine and antiviral development using VLPs and raft-targeting therapeutics.
Supplementary Materials: The following supporting information can be downloaded at: https:// www.mdpi.com/article/10.3390/microorganisms14010159/s1 , Figure S1 . Formation of coronaviruslike particles by inclusion of S glycoprotein expression vector. Electron micrograph of virus particles in HEK-293T cells transfected by the calcium phosphate method (total of 8 µg of DNA per transfection), with plasmids encoding SARS-CoV S, M, and N proteins. Panel (A) shows a high-magnification view of VLPs forming in the cytoplasm adjacent to the nuclear membrane (×30,000). Panel (B) shows a VLP with a corona-like structure emerging from an intracellular membrane (×200,000). (Adapted with permission from co-author [12] ; doi: 10.1128/JVI.78.22.12557-12565); Figure S2 . Comparison of microarray and quantitative real-time PCR (qPCR) fold-change values for host genes significantly upregulated in HEK-293T cells co-transfected with SARS-CoV S, M, and N structural protein expression vectors. Bars represent mean fold-change ± standard deviation (SD) from three independent experiments (p < 0.01). Microarray data (yellow) and qPCR data (orange) show strong concordance, with key raft-associated genes-VIM, RHOA, FNRA, and CD59-exhibiting marked induction. These genes encode proteins involved in membrane dynamics, cytoskeletal anchoring, and immune modulation, consistent with lipid raft-mediated viral assembly; Table S1 . Microarray and quantitative real-time PCR (qPCR) fold-change values for..
References
Bavari, Bosio, Wiegand, Ruthel, Will et al., Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses, J. Exp. Med, doi:10.1084/jem.20011500
Brown, Rose, Sorting of glycosylphosphatidylinositol-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, doi:10.1016/0092-8674(92)90189-J
Chakrabarti, Kong, Wu, Yang, Friborg et al., Modifications of the human immunodeficiency virus envelope glycoprotein enhance immunogenicity for genetic immunization, J. Virol, doi:10.1128/JVI.76.11.5357-5368.2002
Chen, Okayama, High-efficiency transformation of mammalian cells by plasmid DNA, Mol. Cell. Biol, doi:10.1128/mcb.7.8.2745-2752.1987
El Khoury, Naim, Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells, Front. Microbiol, doi:10.3389/fmicb.2023.1335458
Garofalo, ER Lipid Raft-Associated Protein|Encyclopedia
Garofalo, Giammarioli, Misasi, Tinari, Manganelli et al., Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells, Cell Death Differ, doi:10.1038/sj.cdd.4401672
Hoffmann, Yang, Huey-Tubman, Cohen, Gnanapragasam et al., ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines, Cell, doi:10.1016/j.cell.2023.04.024
Huang, Kong, Nabel, Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of Gag and Pol expression, J. Virol, doi:10.1128/JVI.75.10.4947-4951.2001
Huang, Yang, Kong, Nabel, Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production, J. Virol, doi:10.1128/JVI.78.22.12557-12565.2004
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med, doi:10.1056/NEJMoa030781
Li, Li, Yamate, Li, Ikuta, Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle, Microbes Infect, doi:10.1016/j.micinf.2006.10.015
Li, Zhu, Fan, Zhang, Peng et al., Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2021.04.001
Liao, Cimakasky, Hampton, Nguyen, Hildreth, Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1, AIDS Res. Hum. Retroviruses, doi:10.1089/088922201300343690
Manie, Debreyne, Vincent, Gerlier, Measles virus structural components are enriched into lipid raft microdomains: A potential cellular location for virus assembly, J. Virol, doi:10.1128/JVI.74.1.305-311.2000
Mccurdy, Graham, Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation, J. Virol, doi:10.1128/JVI.77.3.1747-1756.2003
Mesquita, Abrami, Sergeeva, Turelli, Qing et al., S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity, Dev. Cell, doi:10.1016/j.devcel.2021.09.016
Nguyen, Hildreth, Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipidenriched membrane lipid rafts, J. Virol, doi:10.1128/JVI.74.7.3264-3272.2000
Palacios-Rápalo, De Jesús-González, Cordero-Rivera, Farfan-Morales, Osuna-Ramos et al., Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry, Front. Immunol, doi:10.3389/fimmu.2021.796855
Rota, Oberste, Monroe, Nix, Campagnoli et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, doi:10.1126/science.1085952
Sapo Ń, Ma Ńka, Janas, Janas, The role of lipid rafts in vesicle formation, J. Cell Sci, doi:10.1242/jcs.260887
Scheiffele, Rietveld, Wilk, Simons, Influenza viruses select ordered lipid domains during budding from the plasma membrane, J. Biol. Chem, doi:10.1074/jbc.274.4.2038
Simons, Ikonen, Functional rafts in cell membranes, Nature, doi:10.1038/42408
Sorice, Misasi, Riitano, Manganelli, Martellucci et al., Targeting Lipid Rafts as a Strategy Against Coronavirus, Front. Cell Dev. Biol, doi:10.3389/fcell.2020.618296
Spink, Yeager, Feigenson, Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes, Biochim. Biophys. Acta, doi:10.1016/0005-2736(90)90005-9
Stalder, Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol, doi:10.1016/j.semcdb.2020.04.001
Von Blume, Hausser, Lipid-dependent coupling of secretorycargo sorting and trafficking at the trans-Golgi network, FEBS Lett, doi:10.1002/1873-3468.13552
Wang, Bharti, Levental, Membrane heterogeneity beyond the plasma membrane, Front. Cell Dev. Biol, doi:10.3389/fcell.2020.580814
Wang, Yang, Liu, Guo, Zhang et al., SARS coronavirus entry into host cells through a novel clathrinand caveolae-independent endocytic pathway, Cell Res
Wessel, Flügge, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids, Anal. Biochem, doi:10.1016/0003-2697(84)90782-6
Zhu, Zhang, Wang, Li, Yang et al., A Novel Coronavirus from Patients with Pneumonia in China, N. Engl. J. Med, doi:10.1056/NEJMoa2001017
DOI record: { "DOI": "10.3390/microorganisms14010159", "ISSN": [ "2076-2607" ], "URL": "http://dx.doi.org/10.3390/microorganisms14010159", "abstract": "<jats:p>Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in HEK-293T cells is sufficient to generate genome-free SARS-CoV-like virus-like particles (VLPs), which preferentially bud from glycolipid-enriched membrane lipid raft microdomains. Immunofluorescence microscopy using raft-selective dyes (DiIC16) and spike-specific antibodies revealed strong co-localization of VLPs with lipid rafts. Detergent-resistant membrane analysis and sucrose gradient centrifugation further confirmed the presence of S protein in buoyant, raft-associated fractions alongside the raft marker CD44. Importantly, pharmacological disruption of rafts with methyl-β-cyclodextrin reduced VLP budding and S protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. Additionally, our data support lipid raft-associated proteins’ (e.g., FNRA, VIM, CD59, RHOA) roles in modulating cellular responses conducive to viral replication and assembly. These findings highlight lipid rafts as crucial platforms for SARS-CoV morphogenesis and suggest new avenues for vaccine and antiviral development using VLPs and raft-targeting therapeutics.</jats:p>", "alternative-id": [ "microorganisms14010159" ], "author": [ { "affiliation": [ { "name": "Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, OR 97330, USA" } ], "family": "Pastey", "given": "Manoj K.", "sequence": "first" }, { "affiliation": [ { "name": "Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA" } ], "family": "Huang", "given": "Yue", "sequence": "additional" }, { "affiliation": [ { "name": "Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA" } ], "family": "Graham", "given": "Barney", "sequence": "additional" } ], "container-title": "Microorganisms", "container-title-short": "Microorganisms", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2026, 1, 12 ] ], "date-time": "2026-01-12T07:30:34Z", "timestamp": 1768203034000 }, "deposited": { "date-parts": [ [ 2026, 1, 14 ] ], "date-time": "2026-01-14T05:16:02Z", "timestamp": 1768367762000 }, "funder": [ { "DOI": "10.13039/100018634", "award": [ "2501" ], "award-info": [ { "award-number": [ "2501" ] } ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/100018634", "id-type": "DOI" } ], "name": "Carlson College of Veterinary Medicine" } ], "indexed": { "date-parts": [ [ 2026, 1, 15 ] ], "date-time": "2026-01-15T02:26:08Z", "timestamp": 1768443968373, "version": "3.49.0" }, "is-referenced-by-count": 0, "issue": "1", "issued": { "date-parts": [ [ 2026, 1, 10 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2026, 1 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2026, 1, 10 ] ], "date-time": "2026-01-10T00:00:00Z", "timestamp": 1768003200000 } } ], "link": [ { "URL": "https://www.mdpi.com/2076-2607/14/1/159/pdf", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "1968", "original-title": [], "page": "159", "prefix": "10.3390", "published": { "date-parts": [ [ 2026, 1, 10 ] ] }, "published-online": { "date-parts": [ [ 2026, 1, 10 ] ] }, "publisher": "MDPI AG", "reference": [ { "DOI": "10.1038/42408", "article-title": "Functional rafts in cell membranes", "author": "Simons", "doi-asserted-by": "crossref", "first-page": "569", "journal-title": "Nature", "key": "ref_1", "volume": "387", "year": "1997" }, { "DOI": "10.1074/jbc.274.4.2038", "article-title": "Influenza viruses select ordered lipid domains during budding from the plasma membrane", "author": "Scheiffele", "doi-asserted-by": "crossref", "first-page": "2038", "journal-title": "J. Biol. Chem.", "key": "ref_2", "volume": "274", "year": "1999" }, { "DOI": "10.1128/JVI.74.7.3264-3272.2000", "article-title": "Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts", "author": "Nguyen", "doi-asserted-by": "crossref", "first-page": "3264", "journal-title": "J. Virol.", "key": "ref_3", "volume": "74", "year": "2000" }, { "DOI": "10.1128/JVI.74.1.305-311.2000", "article-title": "Measles virus structural components are enriched into lipid raft microdomains: A potential cellular location for virus assembly", "author": "Manie", "doi-asserted-by": "crossref", "first-page": "305", "journal-title": "J. Virol.", "key": "ref_4", "volume": "74", "year": "2000" }, { "DOI": "10.1089/088922201300343690", "article-title": "Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1", "author": "Liao", "doi-asserted-by": "crossref", "first-page": "1009", "journal-title": "AIDS Res. Hum. Retroviruses", "key": "ref_5", "volume": "17", "year": "2001" }, { "DOI": "10.1128/JVI.77.3.1747-1756.2003", "article-title": "Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation", "author": "McCurdy", "doi-asserted-by": "crossref", "first-page": "1747", "journal-title": "J. Virol.", "key": "ref_6", "volume": "77", "year": "2002" }, { "DOI": "10.1084/jem.20011500", "article-title": "Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses", "author": "Bavari", "doi-asserted-by": "crossref", "first-page": "593", "journal-title": "J. Exp. Med.", "key": "ref_7", "volume": "195", "year": "2002" }, { "DOI": "10.3389/fcell.2020.618296", "doi-asserted-by": "crossref", "key": "ref_8", "unstructured": "Sorice, M., Misasi, R., Riitano, G., Manganelli, V., Martellucci, S., Longo, A., Garofalo, T., and Mattei, V. (2021). Targeting Lipid Rafts as a Strategy Against Coronavirus. Front. Cell Dev. Biol., 8." }, { "DOI": "10.3389/fmicb.2023.1335458", "doi-asserted-by": "crossref", "key": "ref_9", "unstructured": "El Khoury, M., and Naim, H.Y. (2024). Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front. Microbiol., 14." }, { "DOI": "10.1056/NEJMoa030781", "article-title": "A novel coronavirus associated with severe acute respiratory syndrome", "author": "Ksiazek", "doi-asserted-by": "crossref", "first-page": "1953", "journal-title": "N. Engl. J. Med.", "key": "ref_10", "volume": "348", "year": "2003" }, { "DOI": "10.1056/NEJMoa2001017", "article-title": "A Novel Coronavirus from Patients with Pneumonia in China, 2019", "author": "Zhu", "doi-asserted-by": "crossref", "first-page": "727", "journal-title": "N. Engl. J. Med.", "key": "ref_11", "volume": "382", "year": "2020" }, { "DOI": "10.1128/JVI.78.22.12557-12565.2004", "article-title": "Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production", "author": "Huang", "doi-asserted-by": "crossref", "first-page": "12557", "journal-title": "J. Virol.", "key": "ref_12", "volume": "78", "year": "2004" }, { "DOI": "10.1126/science.1085952", "article-title": "Characterization of a novel coronavirus associated with severe acute respiratory syndrome", "author": "Rota", "doi-asserted-by": "crossref", "first-page": "1394", "journal-title": "Science", "key": "ref_13", "volume": "300", "year": "2003" }, { "DOI": "10.1016/j.micinf.2006.10.015", "article-title": "Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle", "author": "Li", "doi-asserted-by": "crossref", "first-page": "96", "journal-title": "Microbes Infect.", "key": "ref_14", "volume": "9", "year": "2007" }, { "DOI": "10.1016/j.csbj.2021.04.001", "article-title": "Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification", "author": "Li", "doi-asserted-by": "crossref", "first-page": "1933", "journal-title": "Comput. Struct. Biotechnol. J.", "key": "ref_15", "volume": "19", "year": "2021" }, { "DOI": "10.1038/cr.2008.15", "article-title": "SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "290", "journal-title": "Cell Res.", "key": "ref_16", "volume": "18", "year": "2008" }, { "DOI": "10.3389/fimmu.2021.796855", "doi-asserted-by": "crossref", "key": "ref_17", "unstructured": "Palacios-Rápalo, S.N., De Jesús-González, L.A., Cordero-Rivera, C.D., Farfan-Morales, C.N., Osuna-Ramos, J.F., Martínez-Mier, G., Quistián-Galván, J., Muñoz-Pérez, A., Bernal-Dolores, V., and del Ángel, R.M. (2021). Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front. Immunol., 12." }, { "DOI": "10.1016/j.devcel.2021.09.016", "article-title": "S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity", "author": "Mesquita", "doi-asserted-by": "crossref", "first-page": "2790", "journal-title": "Dev. Cell", "key": "ref_18", "volume": "56", "year": "2021" }, { "DOI": "10.1128/JVI.76.11.5357-5368.2002", "article-title": "Modifications of the human immunodeficiency virus envelope glycoprotein enhance immunogenicity for genetic immunization", "author": "Chakrabarti", "doi-asserted-by": "crossref", "first-page": "5357", "journal-title": "J. Virol.", "key": "ref_19", "volume": "76", "year": "2002" }, { "DOI": "10.1128/JVI.75.10.4947-4951.2001", "article-title": "Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of Gag and Pol expression", "author": "Huang", "doi-asserted-by": "crossref", "first-page": "4947", "journal-title": "J. Virol.", "key": "ref_20", "volume": "75", "year": "2001" }, { "article-title": "High-efficiency transformation of mammalian cells by plasmid DNA", "author": "Chen", "first-page": "2745", "journal-title": "Mol. Cell. Biol.", "key": "ref_21", "volume": "7", "year": "1987" }, { "DOI": "10.1016/0005-2736(90)90005-9", "article-title": "Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes", "author": "Spink", "doi-asserted-by": "crossref", "first-page": "25", "journal-title": "Biochim. Biophys. Acta", "key": "ref_22", "volume": "1023", "year": "1990" }, { "DOI": "10.1016/0003-2697(84)90782-6", "article-title": "A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids", "author": "Wessel", "doi-asserted-by": "crossref", "first-page": "141", "journal-title": "Anal. Biochem.", "key": "ref_23", "volume": "138", "year": "1984" }, { "DOI": "10.1016/0092-8674(92)90189-J", "article-title": "Sorting of glycosylphosphatidylinositol-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface", "author": "Brown", "doi-asserted-by": "crossref", "first-page": "533", "journal-title": "Cell", "key": "ref_24", "volume": "68", "year": "1992" }, { "DOI": "10.1038/sj.cdd.4401672", "article-title": "Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells", "author": "Garofalo", "doi-asserted-by": "crossref", "first-page": "1378", "journal-title": "Cell Death Differ.", "key": "ref_25", "volume": "12", "year": "2005" }, { "key": "ref_26", "unstructured": "Garofalo, T. (2025, May 08). ER Lipid Raft-Associated Protein|Encyclopedia.Pub. Available online: https://encyclopedia.pub/entry/14980." }, { "DOI": "10.3389/fcell.2020.580814", "doi-asserted-by": "crossref", "key": "ref_27", "unstructured": "Wang, H.-Y., Bharti, D., and Levental, I. (2020). Membrane heterogeneity beyond the plasma membrane. Front. Cell Dev. Biol., 8." }, { "DOI": "10.1002/1873-3468.13552", "article-title": "Lipid-dependent coupling of secretorycargo sorting and trafficking at the trans-Golgi network", "author": "Hausser", "doi-asserted-by": "crossref", "first-page": "2412", "journal-title": "FEBS Lett.", "key": "ref_28", "volume": "593", "year": "2019" }, { "DOI": "10.1016/j.semcdb.2020.04.001", "article-title": "Direct trafficking pathways from the Golgi apparatus to the plasma membrane", "author": "Stalder", "doi-asserted-by": "crossref", "first-page": "112", "journal-title": "Semin. Cell Dev. Biol.", "key": "ref_29", "volume": "107", "year": "2020" }, { "DOI": "10.1242/jcs.260887", "article-title": "The role of lipid rafts in vesicle formation", "author": "Janas", "doi-asserted-by": "crossref", "first-page": "Jcs260887", "journal-title": "J. Cell Sci.", "key": "ref_30", "volume": "136", "year": "2023" }, { "DOI": "10.1016/j.cell.2023.04.024", "article-title": "ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines", "author": "Hoffmann", "doi-asserted-by": "crossref", "first-page": "2380", "journal-title": "Cell", "key": "ref_31", "volume": "186", "year": "2023" } ], "reference-count": 31, "references-count": 31, "relation": {}, "resource": { "primary": { "URL": "https://www.mdpi.com/2076-2607/14/1/159" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation", "type": "journal-article", "update-policy": "https://doi.org/10.3390/mdpi_crossmark_policy", "volume": "14" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit