Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation
et al., Microorganisms, doi:10.3390/microorganisms14010159, Jan 2026
In vitro study showing that SARS-CoV-Like virus-like particles (VLPs) preferentially bud from cholesterol-rich lipid raft microdomains in HEK-293T cells. The study provides evidence that SARS-CoV exploits lipid rafts not only for spatial organization but also for inducing supportive host cellular responses, suggesting raft-targeting therapeutics as potential antiviral strategies.
Pastey et al., 10 Jan 2026, USA, peer-reviewed, 3 authors.
Contact: manoj.pastey@oregonstate.edu (corresponding author).
In vitro studies are an important part of preclinical research, however results may be very different in vivo.
Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation
Microorganisms, doi:10.3390/microorganisms14010159
Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in HEK-293T cells is sufficient to generate genomefree SARS-CoV-like virus-like particles (VLPs), which preferentially bud from glycolipidenriched membrane lipid raft microdomains. Immunofluorescence microscopy using raft-selective dyes (DiIC16) and spike-specific antibodies revealed strong co-localization of VLPs with lipid rafts. Detergent-resistant membrane analysis and sucrose gradient centrifugation further confirmed the presence of S protein in buoyant, raft-associated fractions alongside the raft marker CD44. Importantly, pharmacological disruption of rafts with methyl-β-cyclodextrin reduced VLP budding and S protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. Additionally, our data support lipid raft-associated proteins' (e.g., FNRA, VIM, CD59, RHOA) roles in modulating cellular responses conducive to viral replication and assembly. These findings highlight lipid rafts as crucial platforms for SARS-CoV morphogenesis and suggest new avenues for vaccine and antiviral development using VLPs and raft-targeting therapeutics.
Supplementary Materials: The following supporting information can be downloaded at: https:// www.mdpi.com/article/10.3390/microorganisms14010159/s1 , Figure S1 . Formation of coronaviruslike particles by inclusion of S glycoprotein expression vector. Electron micrograph of virus particles in HEK-293T cells transfected by the calcium phosphate method (total of 8 µg of DNA per transfection), with plasmids encoding SARS-CoV S, M, and N proteins. Panel (A) shows a high-magnification view of VLPs forming in the cytoplasm adjacent to the nuclear membrane (×30,000). Panel (B) shows a VLP with a corona-like structure emerging from an intracellular membrane (×200,000). (Adapted with permission from co-author [12] ; doi: 10.1128/JVI.78.22.12557-12565); Figure S2 . Comparison of microarray and quantitative real-time PCR (qPCR) fold-change values for host genes significantly upregulated in HEK-293T cells co-transfected with SARS-CoV S, M, and N structural protein expression vectors. Bars represent mean fold-change ± standard deviation (SD) from three independent experiments (p < 0.01). Microarray data (yellow) and qPCR data (orange) show strong concordance, with key raft-associated genes-VIM, RHOA, FNRA, and CD59-exhibiting marked induction. These genes encode proteins involved in membrane dynamics, cytoskeletal anchoring, and immune modulation, consistent with lipid raft-mediated viral assembly; Table S1 . Microarray and quantitative real-time PCR (qPCR) fold-change values for..
References
Bavari, Bosio, Wiegand, Ruthel, Will et al., Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses, J. Exp. Med, doi:10.1084/jem.20011500
Brown, Rose, Sorting of glycosylphosphatidylinositol-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface, Cell, doi:10.1016/0092-8674(92)90189-J
Chakrabarti, Kong, Wu, Yang, Friborg et al., Modifications of the human immunodeficiency virus envelope glycoprotein enhance immunogenicity for genetic immunization, J. Virol, doi:10.1128/JVI.76.11.5357-5368.2002
Chen, Okayama, High-efficiency transformation of mammalian cells by plasmid DNA, Mol. Cell. Biol, doi:10.1128/mcb.7.8.2745-2752.1987
El Khoury, Naim, Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells, Front. Microbiol, doi:10.3389/fmicb.2023.1335458
Garofalo, ER Lipid Raft-Associated Protein|Encyclopedia
Garofalo, Giammarioli, Misasi, Tinari, Manganelli et al., Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells, Cell Death Differ, doi:10.1038/sj.cdd.4401672
Hoffmann, Yang, Huey-Tubman, Cohen, Gnanapragasam et al., ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines, Cell, doi:10.1016/j.cell.2023.04.024
Huang, Kong, Nabel, Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of Gag and Pol expression, J. Virol, doi:10.1128/JVI.75.10.4947-4951.2001
Huang, Yang, Kong, Nabel, Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production, J. Virol, doi:10.1128/JVI.78.22.12557-12565.2004
Ksiazek, Erdman, Goldsmith, Zaki, Peret et al., A novel coronavirus associated with severe acute respiratory syndrome, N. Engl. J. Med, doi:10.1056/NEJMoa030781
Li, Li, Yamate, Li, Ikuta, Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle, Microbes Infect, doi:10.1016/j.micinf.2006.10.015
Li, Zhu, Fan, Zhang, Peng et al., Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification, Comput. Struct. Biotechnol. J, doi:10.1016/j.csbj.2021.04.001
Liao, Cimakasky, Hampton, Nguyen, Hildreth, Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1, AIDS Res. Hum. Retroviruses, doi:10.1089/088922201300343690
Manie, Debreyne, Vincent, Gerlier, Measles virus structural components are enriched into lipid raft microdomains: A potential cellular location for virus assembly, J. Virol, doi:10.1128/JVI.74.1.305-311.2000
Mccurdy, Graham, Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation, J. Virol, doi:10.1128/JVI.77.3.1747-1756.2003
Mesquita, Abrami, Sergeeva, Turelli, Qing et al., S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity, Dev. Cell, doi:10.1016/j.devcel.2021.09.016
Nguyen, Hildreth, Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipidenriched membrane lipid rafts, J. Virol, doi:10.1128/JVI.74.7.3264-3272.2000
Palacios-Rápalo, De Jesús-González, Cordero-Rivera, Farfan-Morales, Osuna-Ramos et al., Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry, Front. Immunol, doi:10.3389/fimmu.2021.796855
Rota, Oberste, Monroe, Nix, Campagnoli et al., Characterization of a novel coronavirus associated with severe acute respiratory syndrome, Science, doi:10.1126/science.1085952
Sapo Ń, Ma Ńka, Janas, Janas, The role of lipid rafts in vesicle formation, J. Cell Sci, doi:10.1242/jcs.260887
Scheiffele, Rietveld, Wilk, Simons, Influenza viruses select ordered lipid domains during budding from the plasma membrane, J. Biol. Chem, doi:10.1074/jbc.274.4.2038
Simons, Ikonen, Functional rafts in cell membranes, Nature, doi:10.1038/42408
Sorice, Misasi, Riitano, Manganelli, Martellucci et al., Targeting Lipid Rafts as a Strategy Against Coronavirus, Front. Cell Dev. Biol, doi:10.3389/fcell.2020.618296
Spink, Yeager, Feigenson, Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes, Biochim. Biophys. Acta, doi:10.1016/0005-2736(90)90005-9
Stalder, Gershlick, Direct trafficking pathways from the Golgi apparatus to the plasma membrane, Semin. Cell Dev. Biol, doi:10.1016/j.semcdb.2020.04.001
Von Blume, Hausser, Lipid-dependent coupling of secretorycargo sorting and trafficking at the trans-Golgi network, FEBS Lett, doi:10.1002/1873-3468.13552
Wang, Bharti, Levental, Membrane heterogeneity beyond the plasma membrane, Front. Cell Dev. Biol, doi:10.3389/fcell.2020.580814
Wang, Yang, Liu, Guo, Zhang et al., SARS coronavirus entry into host cells through a novel clathrinand caveolae-independent endocytic pathway, Cell Res
Wessel, Flügge, A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids, Anal. Biochem, doi:10.1016/0003-2697(84)90782-6
Zhu, Zhang, Wang, Li, Yang et al., A Novel Coronavirus from Patients with Pneumonia in China, N. Engl. J. Med, doi:10.1056/NEJMoa2001017
DOI record:
{
"DOI": "10.3390/microorganisms14010159",
"ISSN": [
"2076-2607"
],
"URL": "http://dx.doi.org/10.3390/microorganisms14010159",
"abstract": "<jats:p>Severe acute respiratory syndrome coronavirus (SARS-CoV) assembles and buds from the Golgi apparatus or the ER membrane, but the specific membrane microdomains utilized during this process remain underexplored. Here, we show that co-expression of the SARS-CoV structural proteins S, M, and N in HEK-293T cells is sufficient to generate genome-free SARS-CoV-like virus-like particles (VLPs), which preferentially bud from glycolipid-enriched membrane lipid raft microdomains. Immunofluorescence microscopy using raft-selective dyes (DiIC16) and spike-specific antibodies revealed strong co-localization of VLPs with lipid rafts. Detergent-resistant membrane analysis and sucrose gradient centrifugation further confirmed the presence of S protein in buoyant, raft-associated fractions alongside the raft marker CD44. Importantly, pharmacological disruption of rafts with methyl-β-cyclodextrin reduced VLP budding and S protein partitioning into raft domains, underscoring the requirement for intact lipid rafts in assembly. Additionally, our data support lipid raft-associated proteins’ (e.g., FNRA, VIM, CD59, RHOA) roles in modulating cellular responses conducive to viral replication and assembly. These findings highlight lipid rafts as crucial platforms for SARS-CoV morphogenesis and suggest new avenues for vaccine and antiviral development using VLPs and raft-targeting therapeutics.</jats:p>",
"alternative-id": [
"microorganisms14010159"
],
"author": [
{
"affiliation": [
{
"name": "Department of Veterinary Biomedical Sciences, Oregon State University, Corvallis, OR 97330, USA"
}
],
"family": "Pastey",
"given": "Manoj K.",
"sequence": "first"
},
{
"affiliation": [
{
"name": "Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA"
}
],
"family": "Huang",
"given": "Yue",
"sequence": "additional"
},
{
"affiliation": [
{
"name": "Vaccine Research Center, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA"
}
],
"family": "Graham",
"given": "Barney",
"sequence": "additional"
}
],
"container-title": "Microorganisms",
"container-title-short": "Microorganisms",
"content-domain": {
"crossmark-restriction": false,
"domain": []
},
"created": {
"date-parts": [
[
2026,
1,
12
]
],
"date-time": "2026-01-12T07:30:34Z",
"timestamp": 1768203034000
},
"deposited": {
"date-parts": [
[
2026,
1,
14
]
],
"date-time": "2026-01-14T05:16:02Z",
"timestamp": 1768367762000
},
"funder": [
{
"DOI": "10.13039/100018634",
"award": [
"2501"
],
"award-info": [
{
"award-number": [
"2501"
]
}
],
"doi-asserted-by": "publisher",
"id": [
{
"asserted-by": "publisher",
"id": "10.13039/100018634",
"id-type": "DOI"
}
],
"name": "Carlson College of Veterinary Medicine"
}
],
"indexed": {
"date-parts": [
[
2026,
1,
15
]
],
"date-time": "2026-01-15T02:26:08Z",
"timestamp": 1768443968373,
"version": "3.49.0"
},
"is-referenced-by-count": 0,
"issue": "1",
"issued": {
"date-parts": [
[
2026,
1,
10
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2026,
1
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2026,
1,
10
]
],
"date-time": "2026-01-10T00:00:00Z",
"timestamp": 1768003200000
}
}
],
"link": [
{
"URL": "https://www.mdpi.com/2076-2607/14/1/159/pdf",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1968",
"original-title": [],
"page": "159",
"prefix": "10.3390",
"published": {
"date-parts": [
[
2026,
1,
10
]
]
},
"published-online": {
"date-parts": [
[
2026,
1,
10
]
]
},
"publisher": "MDPI AG",
"reference": [
{
"DOI": "10.1038/42408",
"article-title": "Functional rafts in cell membranes",
"author": "Simons",
"doi-asserted-by": "crossref",
"first-page": "569",
"journal-title": "Nature",
"key": "ref_1",
"volume": "387",
"year": "1997"
},
{
"DOI": "10.1074/jbc.274.4.2038",
"article-title": "Influenza viruses select ordered lipid domains during budding from the plasma membrane",
"author": "Scheiffele",
"doi-asserted-by": "crossref",
"first-page": "2038",
"journal-title": "J. Biol. Chem.",
"key": "ref_2",
"volume": "274",
"year": "1999"
},
{
"DOI": "10.1128/JVI.74.7.3264-3272.2000",
"article-title": "Evidence for budding of human immunodeficiency virus type 1 selectively from glycolipid-enriched membrane lipid rafts",
"author": "Nguyen",
"doi-asserted-by": "crossref",
"first-page": "3264",
"journal-title": "J. Virol.",
"key": "ref_3",
"volume": "74",
"year": "2000"
},
{
"DOI": "10.1128/JVI.74.1.305-311.2000",
"article-title": "Measles virus structural components are enriched into lipid raft microdomains: A potential cellular location for virus assembly",
"author": "Manie",
"doi-asserted-by": "crossref",
"first-page": "305",
"journal-title": "J. Virol.",
"key": "ref_4",
"volume": "74",
"year": "2000"
},
{
"DOI": "10.1089/088922201300343690",
"article-title": "Lipid rafts and HIV pathogenesis: Host membrane cholesterol is required for infection by HIV type 1",
"author": "Liao",
"doi-asserted-by": "crossref",
"first-page": "1009",
"journal-title": "AIDS Res. Hum. Retroviruses",
"key": "ref_5",
"volume": "17",
"year": "2001"
},
{
"DOI": "10.1128/JVI.77.3.1747-1756.2003",
"article-title": "Role of plasma membrane lipid microdomains in respiratory syncytial virus filament formation",
"author": "McCurdy",
"doi-asserted-by": "crossref",
"first-page": "1747",
"journal-title": "J. Virol.",
"key": "ref_6",
"volume": "77",
"year": "2002"
},
{
"DOI": "10.1084/jem.20011500",
"article-title": "Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses",
"author": "Bavari",
"doi-asserted-by": "crossref",
"first-page": "593",
"journal-title": "J. Exp. Med.",
"key": "ref_7",
"volume": "195",
"year": "2002"
},
{
"DOI": "10.3389/fcell.2020.618296",
"doi-asserted-by": "crossref",
"key": "ref_8",
"unstructured": "Sorice, M., Misasi, R., Riitano, G., Manganelli, V., Martellucci, S., Longo, A., Garofalo, T., and Mattei, V. (2021). Targeting Lipid Rafts as a Strategy Against Coronavirus. Front. Cell Dev. Biol., 8."
},
{
"DOI": "10.3389/fmicb.2023.1335458",
"doi-asserted-by": "crossref",
"key": "ref_9",
"unstructured": "El Khoury, M., and Naim, H.Y. (2024). Lipid rafts disruption by statins negatively impacts the interaction between SARS-CoV-2 S1 subunit and ACE2 in intestinal epithelial cells. Front. Microbiol., 14."
},
{
"DOI": "10.1056/NEJMoa030781",
"article-title": "A novel coronavirus associated with severe acute respiratory syndrome",
"author": "Ksiazek",
"doi-asserted-by": "crossref",
"first-page": "1953",
"journal-title": "N. Engl. J. Med.",
"key": "ref_10",
"volume": "348",
"year": "2003"
},
{
"DOI": "10.1056/NEJMoa2001017",
"article-title": "A Novel Coronavirus from Patients with Pneumonia in China, 2019",
"author": "Zhu",
"doi-asserted-by": "crossref",
"first-page": "727",
"journal-title": "N. Engl. J. Med.",
"key": "ref_11",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1128/JVI.78.22.12557-12565.2004",
"article-title": "Generation of synthetic severe acute respiratory syndrome coronavirus pseudoparticles: Implications for assembly and vaccine production",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "12557",
"journal-title": "J. Virol.",
"key": "ref_12",
"volume": "78",
"year": "2004"
},
{
"DOI": "10.1126/science.1085952",
"article-title": "Characterization of a novel coronavirus associated with severe acute respiratory syndrome",
"author": "Rota",
"doi-asserted-by": "crossref",
"first-page": "1394",
"journal-title": "Science",
"key": "ref_13",
"volume": "300",
"year": "2003"
},
{
"DOI": "10.1016/j.micinf.2006.10.015",
"article-title": "Lipid rafts play an important role in the early stage of severe acute respiratory syndrome-coronavirus life cycle",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "96",
"journal-title": "Microbes Infect.",
"key": "ref_14",
"volume": "9",
"year": "2007"
},
{
"DOI": "10.1016/j.csbj.2021.04.001",
"article-title": "Dependence of SARS-CoV-2 infection on cholesterol-rich lipid raft and endosomal acidification",
"author": "Li",
"doi-asserted-by": "crossref",
"first-page": "1933",
"journal-title": "Comput. Struct. Biotechnol. J.",
"key": "ref_15",
"volume": "19",
"year": "2021"
},
{
"DOI": "10.1038/cr.2008.15",
"article-title": "SARS coronavirus entry into host cells through a novel clathrin- and caveolae-independent endocytic pathway",
"author": "Wang",
"doi-asserted-by": "crossref",
"first-page": "290",
"journal-title": "Cell Res.",
"key": "ref_16",
"volume": "18",
"year": "2008"
},
{
"DOI": "10.3389/fimmu.2021.796855",
"doi-asserted-by": "crossref",
"key": "ref_17",
"unstructured": "Palacios-Rápalo, S.N., De Jesús-González, L.A., Cordero-Rivera, C.D., Farfan-Morales, C.N., Osuna-Ramos, J.F., Martínez-Mier, G., Quistián-Galván, J., Muñoz-Pérez, A., Bernal-Dolores, V., and del Ángel, R.M. (2021). Cholesterol-Rich Lipid Rafts as Platforms for SARS-CoV-2 Entry. Front. Immunol., 12."
},
{
"DOI": "10.1016/j.devcel.2021.09.016",
"article-title": "S-acylation controls SARS-CoV-2 membrane lipid organization and enhances infectivity",
"author": "Mesquita",
"doi-asserted-by": "crossref",
"first-page": "2790",
"journal-title": "Dev. Cell",
"key": "ref_18",
"volume": "56",
"year": "2021"
},
{
"DOI": "10.1128/JVI.76.11.5357-5368.2002",
"article-title": "Modifications of the human immunodeficiency virus envelope glycoprotein enhance immunogenicity for genetic immunization",
"author": "Chakrabarti",
"doi-asserted-by": "crossref",
"first-page": "5357",
"journal-title": "J. Virol.",
"key": "ref_19",
"volume": "76",
"year": "2002"
},
{
"DOI": "10.1128/JVI.75.10.4947-4951.2001",
"article-title": "Human immunodeficiency virus type 1-specific immunity after genetic immunization is enhanced by modification of Gag and Pol expression",
"author": "Huang",
"doi-asserted-by": "crossref",
"first-page": "4947",
"journal-title": "J. Virol.",
"key": "ref_20",
"volume": "75",
"year": "2001"
},
{
"article-title": "High-efficiency transformation of mammalian cells by plasmid DNA",
"author": "Chen",
"first-page": "2745",
"journal-title": "Mol. Cell. Biol.",
"key": "ref_21",
"volume": "7",
"year": "1987"
},
{
"DOI": "10.1016/0005-2736(90)90005-9",
"article-title": "Partitioning behavior of indocarbocyanine probes between coexisting gel and fluid phases in model membranes",
"author": "Spink",
"doi-asserted-by": "crossref",
"first-page": "25",
"journal-title": "Biochim. Biophys. Acta",
"key": "ref_22",
"volume": "1023",
"year": "1990"
},
{
"DOI": "10.1016/0003-2697(84)90782-6",
"article-title": "A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids",
"author": "Wessel",
"doi-asserted-by": "crossref",
"first-page": "141",
"journal-title": "Anal. Biochem.",
"key": "ref_23",
"volume": "138",
"year": "1984"
},
{
"DOI": "10.1016/0092-8674(92)90189-J",
"article-title": "Sorting of glycosylphosphatidylinositol-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface",
"author": "Brown",
"doi-asserted-by": "crossref",
"first-page": "533",
"journal-title": "Cell",
"key": "ref_24",
"volume": "68",
"year": "1992"
},
{
"DOI": "10.1038/sj.cdd.4401672",
"article-title": "Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells",
"author": "Garofalo",
"doi-asserted-by": "crossref",
"first-page": "1378",
"journal-title": "Cell Death Differ.",
"key": "ref_25",
"volume": "12",
"year": "2005"
},
{
"key": "ref_26",
"unstructured": "Garofalo, T. (2025, May 08). ER Lipid Raft-Associated Protein|Encyclopedia.Pub. Available online: https://encyclopedia.pub/entry/14980."
},
{
"DOI": "10.3389/fcell.2020.580814",
"doi-asserted-by": "crossref",
"key": "ref_27",
"unstructured": "Wang, H.-Y., Bharti, D., and Levental, I. (2020). Membrane heterogeneity beyond the plasma membrane. Front. Cell Dev. Biol., 8."
},
{
"DOI": "10.1002/1873-3468.13552",
"article-title": "Lipid-dependent coupling of secretorycargo sorting and trafficking at the trans-Golgi network",
"author": "Hausser",
"doi-asserted-by": "crossref",
"first-page": "2412",
"journal-title": "FEBS Lett.",
"key": "ref_28",
"volume": "593",
"year": "2019"
},
{
"DOI": "10.1016/j.semcdb.2020.04.001",
"article-title": "Direct trafficking pathways from the Golgi apparatus to the plasma membrane",
"author": "Stalder",
"doi-asserted-by": "crossref",
"first-page": "112",
"journal-title": "Semin. Cell Dev. Biol.",
"key": "ref_29",
"volume": "107",
"year": "2020"
},
{
"DOI": "10.1242/jcs.260887",
"article-title": "The role of lipid rafts in vesicle formation",
"author": "Janas",
"doi-asserted-by": "crossref",
"first-page": "Jcs260887",
"journal-title": "J. Cell Sci.",
"key": "ref_30",
"volume": "136",
"year": "2023"
},
{
"DOI": "10.1016/j.cell.2023.04.024",
"article-title": "ESCRT recruitment to SARS-CoV-2 spike induces virus-like particles that improve mRNA vaccines",
"author": "Hoffmann",
"doi-asserted-by": "crossref",
"first-page": "2380",
"journal-title": "Cell",
"key": "ref_31",
"volume": "186",
"year": "2023"
}
],
"reference-count": 31,
"references-count": 31,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.mdpi.com/2076-2607/14/1/159"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Selective Budding of SARS-CoV-Like Particles from Glycolipid-Enriched Membrane Lipid Rafts and Host Gene Modulation",
"type": "journal-article",
"update-policy": "https://doi.org/10.3390/mdpi_crossmark_policy",
"volume": "14"
}