Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Angiotensin Converting Enzyme 2 is a molecular decoy for targeted photodynamic SARS-CoV-2 inactivation

Mussini et al., International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2025.146128, Jul 2025
https://c19early.org/mussini.html
In vitro study showing that recombinant soluble human ACE2 (rshACE2) conjugated with photosensitizers effectively inactivates SARS-CoV-2 through both photodynamic action and receptor decoy mechanisms.
Mussini et al., 22 Jul 2025, Italy, peer-reviewed, 9 authors. Contact: pietro.delcanale@unipr.it, stefania.abbruzzetti@unipr.it, cristiano.viappiani@unipr.it.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
Angiotensin Converting Enzyme 2 is a molecular decoy for targeted photodynamic SARS-CoV-2 inactivation
Andrea Mussini, Matteo Mariangeli, Pietro Delcanale, Stefania Abbruzzetti, Paolo Bianchini, Alberto Diaspro, Davide Lelli, Ana Moreno, Cristiano Viappiani
International Journal of Biological Macromolecules, doi:10.1016/j.ijbiomac.2025.146128
The Angiotensin Converting Enzyme 2 (ACE2) is the obligate receptor for the entry of SARS-CoV-2 into host cells, through high affinity interaction with the viral protein Spike. In this work, ACE2 is exploited to devise a supramolecular construct, able to deliver photoactive molecules to the viral surface. Using a modular approach, we propose a self-assembled photoactive supramolecular structure, where a biotinylated recombinant soluble human ACE2 (rshACE2) acts as a molecular decoy, to detract the viral particles from binding to the host cell receptors. The photoactive unit of the compound is streptavidin, functionalized with either a fluorophore or a photosensitizer, that spontaneously binds biotinylated rshACE2. Using STimulated Emission Depletion (STED) microscopy, direct STochastic Optical Reconstruction Microscopy (dSTORM), and Fluorescence Correlation Spectroscopy (FCS) we demonstrate binding of the supramolecular construct to the viral particles. We show that the presence of a photosensitizing unit in the assembly warrants photoinactivation of SARS-CoV-2. A > 1000-fold reduction in viral titer is observed, when the viral suspension is exposed to the supramolecular construct (100 nM, light fluence 20 J/cm 2 ). Importantly, inactivation is observed also in the dark (>1000-fold reduction of viral titer at 300 nM), through inhibition of binding of viral particles to the host cell receptors. Table of contents entry: The Angiotensin Converting Enzyme 2 acts as a molecular decoy able to deliver photoactive compounds for photodynamic inactivation of SARS-CoV-2.
Appendix A. Supplementary data Supplementary data to this article can be found online at https://doi. org/10.1016/j.ijbiomac.2025.146128 .
References
Almeida, Faustino, Neves, Antimicrobial photodynamic therapy in the control of COVID-19, Antibiotics
Arentz, Der, Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection, Photodiagnosis Photodyn. Ther
Barnes, Jette, Abernathy, Dam, Esswein et al., SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies, Nature
Bryce, Wong, Forrester, Masri, Jeske et al., Nasal photodisinfection and chlorhexidine wipes decrease surgical site infections: a historical control study and propensity analysis, J. Hosp. Infect
Cai, Zhang, Xiao, Peng, Sterling et al., Distinct conformational states of SARS-CoV-2 spike protein, Science
Carpenter, Situ, Scholle, Bartelmess, Weare et al., Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer, Molecules
Chan, Tan, Narayanan, Procko, An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants, Sci. Adv
Chen, Zhao, Zhou, Zhu, Jiang et al., Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses, Nat. Rev. Immunol
Conrado, Sakita, Arita, Galinari, Gonçalves et al., A systematic review of photodynamic therapy as an antiviral treatment: potential guidance for dealing with SARS-CoV-2, Photodiagnosis Photodyn. Ther
Da Silva, Pedersen, Breitenbach, Toftegaard, Kuimova et al., Irradiation-and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process, J. Phys. Chem. B
Delcanale, Abbruzzetti, Viappiani, Photodynamic treatment of pathogens, Riv. Nuovo Cimento
Delcanale, Uriati, Mariangeli, Mussini, Moreno et al., The interaction of Hypericin with SARS-CoV-2 reveals a multimodal antiviral activity, ACS Appl. Mater. Interfaces
Descloux, Grußmayer, Radenovic, Parameter-free image resolution estimation based on decorrelation analysis, Nat. Methods
Diaspro, Bianchini, Optical nanoscopy, La Rivista del Nuovo Cimento
Eddins, Bassit, Chandler, Haddad, Musall et al., Inactivation of SARS-CoV-2 and COVID-19 patient samples for contemporary immunology and metabolomics studies, ImmunoHorizons
Fehr, Perlman, Coronaviruses: An overview of their replication and pathogenesis
Fernandez-Fuentes, Molina, Oliva, A collection of designed peptides to target SARS-CoV-2 spike RBD-ACE2 interaction, Int. J. Mol. Sci
Fernandez-Montero, Zuaznabar, Pina-Sanchez, Maestro, Martin-Navarro et al., Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-cell responses, Front. Cell. Infect. Microbiol
Fernández-Pérez, Marbán, Visible light spectroscopic analysis of methylene blue in water; what comes after dimer?, ACS Omega
Florence, Naorem, Dimerization of methylene blue in aqueous and mixed aqueous organic solvent: a spectroscopic study, J. Mol. Liq
Gill, Hippel, Calculation of protein extinction coefficients from amino acid sequence data, Anal. Biochem
Giron, Laaksonen, Barroso Da Silva, Up state of the SARS-COV-2 spike homotrimer favors an increased virulence for new variants, Front. Med. Technol
Hansen, Baum, Pascal, Russo, Giordano et al., Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail, Science
Hatz, Poulsen, Ogilby, Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration, Photochem. Photobiol
Havranek, Lindsey, Higuchi, Itoh, Suzuki et al., A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo, Commun. Biol
Hu, Cheng, Daniel Ou-Yang, Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy, Biomed. Opt. Express
Jackson, Farzan, Chen, Choe, Mechanisms of SARS-CoV-2 entry into cells, Nat. Rev. Mol. Cell Biol
Junqueira, Severino, Dias, Gugliotti, Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces, Phys. Chem. Chem. Phys
Ke, Oton, Qu, Cortese, Zila et al., Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature
Ke, Oton, Qu, Cortese, Zila et al., Structures and distributions of SARS-CoV-2 spike proteins on intact virions, Nature
Kegler, Drewitz, Arndt, Daglar, Rodrigues Loureiro et al., A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells, Front. Immunol
Köchl, Schopper, Durmaz, Parigger, Singh et al., Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deeplearning-guided molecular dynamics simulations, Sci. Rep
Lan, Ge, Yu, Shan, Zhou et al., Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor, Nature
Lanzanò, Coto, Hernández, Castello, Gratton et al., Encoding and decoding spatio-temporal information for super-resolution microscopy, Nat. Commun
Law, Leung, Xu, Photodynamic action of curcumin and methylene blue against bacteria and SARS-CoV-2-a review, Pharmaceuticals
Law, Lo, Han, Leung, Xu, Photodynamic therapy with curcumin for combating SARS-CoV-2, Photodiagnosis Photodyn. Ther
Lei, Yang, Hu, Sun, On the calculation of TCID50 for quantitation of virus infectivity, Virol. Sin
Lelek, Gyparaki, Beliu, Schueder, Griffié et al., Single-molecule localization microscopy, Nat. Rev. Methods Prim
Li, Moore, Vasilieva, Sui, Wong et al., Angiotensinconverting enzyme 2 is a functional receptor for the SARS coronavirus, Nature
Lobo, Rodrigues-Santos, Pereira, Núñez, Trêpa et al., Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation, Photochem. Photobiol. Sci
Lu, Uchil, Li, Zheng, Terry et al., Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles, Cell Host Microbe
Lu, Zhao, Li, Niu, Yang et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet
Marasini, Leanse, Dai, Can microorganisms develop resistance against light based anti-infective agents?, Adv. Drug Deliv. Rev
Mariangeli, Moreno, Delcanale, Abbruzzetti, Diaspro et al., Insights on the mechanical properties of SARS-CoV-2 particles and the effects of the photosensitizer hypericin, Int. J. Mol. Sci
Mcmahon, Andrews, Groves, Ghani, Cordes et al., High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization, PLoS Pathog
Monteil, Kwon, Prado, Hagelkrüys, Wimmer et al., Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2, Cell
Mussini, Delcanale, Berni, Pongolini, Jordà-Redondo et al., Concanavalin A delivers a photoactive protein to the bacterial wall, Int. J. Mol. Sci
Mussini, Uriati, Hally, Nonell, Bianchini et al., Versatile supramolecular complex for targeted antimicrobial photodynamic inactivation, Bioconjug. Chem
Ogilby, Singlet oxygen: there is indeed something new under the sun, Chem. Soc. Rev
Ogilby, Singlet oxygen: there is still something new under the sun, and it is better than ever, Photochem. Photobiol. Sci
Olmsted, Calorimetric determinations of absolute fluorescence quantum yields, J. Phys. Chem
Pires, Wilson, Bremner, Lang, Larouche et al., Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2, Sci. Rep
Pourmand, Zareei, Shahlaei, Moradi, Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region, Comput. Biol. Med
Praena, Mascaraque, Andreu, Bello-Morales, Abarca-Lachen et al., Potent Virucidal activity in vitro of photodynamic therapy with hypericum extract as photosensitizer and white light against human coronavirus HCoV-229E, Pharmaceutics
Renzi, Seamann, Ganguly, Pandey, Byrareddy et al., Engineering an ACE2-derived fragment as a decoy for novel SARS-CoV-2 virus, ACS Pharmacol. Transl. Sci
Richert, Humbert, Larquet, Girerd-Chambaz, Manin et al., Fluorescence correlation spectroscopy as a sensitive and useful tool for revealing potential overlaps between the epitopes of monoclonal antibodies on viral particles, MAbs
Robb, Virus morphology: insights from super-resolution fluorescence microscopy, Biochim. Biophys. Acta (BBA) -Mol. Basis Dis
Robbiani, Gaebler, Muecksch, Lorenzi, Wang et al., Convergent antibody responses to SARS-CoV-2 in convalescent individuals, Nature
Rudenko, Kühn, Lunt, Deamer, Hawkins et al., Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip, Biosens. Bioelectron
Shang, Ye, Shi, Wan, Luo et al., Structural basis of receptor recognition by SARS-CoV-2, Nature
Sharshov, Solomatina, Kurskaya, Kovalenko, Kholina et al., The photosensitizer Octakis(cholinyl) zinc phthalocyanine with ability to bind to a model spike protein leads to a loss of SARS-CoV-2 infectivity in vitro when exposed to far-red LED, Viruses
Shekunov, Efimova, Yudintceva, Muryleva, Zarubaev et al., Plant alkaloids inhibit membrane fusion mediated by calcium and fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides, Biomedicines
Sims, Lian, Meggersee, Kasimsetty, Wilson, High activity of an affinity-matured ACE2 decoy against omicron SARS-CoV-2 and pre-emergent coronaviruses, PloS One
Svyatchenko, Nikonov, Mayorov, Gelfond, Loktev, Antiviral photodynamic therapy: inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin, Photodiagnosis Photodyn. Ther
Tada, Minnee, Landau, Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model, Proc. Natl. Acad. Sci. U. S. A
Tanaka, Nelson, Olson, Buzko, Higashide et al., An ACE2 triple decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants, Sci. Rep
Tardivo, Del Giglio, De Oliveira, Gabrielli, Junqueira et al., Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications, Photodiagnosis Photodyn. Ther
Toelzer, Gupta, Yadav, Borucu, Davidson et al., Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein, Science
Turoňová, Sikora, Schürmann, Hagen, Welsch et al., In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges, Science
Villa, Brunialti, Dellavedova, Meda, Rebecchi et al., DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic, Pharmacol. Res
Wainwright, Anti-infective dyes in the time of COVID, Dyes Pigments
Walls, Park, Tortorici, Wall, Mcguire et al., Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein, Cell
Wang, Zhang, Wu, Niu, Song et al., Structural and functional basis of SARS-CoV-2 entry by using human ACE2, Cell
Wang, Zhao, Liu, Feng, Luo et al., ACE2 decoy receptor generated by highthroughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants, Emerg. Microbes Infect
Westberg, Bregnhøj, Etzerodt, Ogilby, No photon wasted: an efficient and selective singlet oxygen photosensitizing protein, J. Phys. Chem. B
Wiehe, O'brien, Senge, Trends and targets in antiviral phototherapy, Photochem. Photobiol. Sci
World_Health_Organization, Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It
Wrobel, Benton, Xu, Roustan, Martin et al., SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects, Nat. Struct. Mol. Biol
Xiao, Lu, Zhang, Johnson, Mckay et al., A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent, Nat. Struct. Mol. Biol
Yan, Zhang, Li, Xia, Guo et al., Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2, Science
Yao, Hou, Zhang, Li, Lai et al., Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen, Photochem. Photobiol. Sci
Zhang, Cai, Xiao, Lu, Peng et al., Structural impact on SARS-CoV-2 spike protein by D614G substitution, Science
Zhang, Narayanan, Cooper, Chan, Skeeters et al., An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2, EMBO Mol. Med
Zhao, Qiu, Huang, Mao, Wang et al., Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination, Cell Discovery
Ziganshyna, Szczepankiewicz, Kuehnert, Schulze, Liebert et al., Photodynamic inactivation of SARS-CoV-2 infectivity and antiviral treatment effects in vitro, Viruses
DOI record: { "DOI": "10.1016/j.ijbiomac.2025.146128", "ISSN": [ "0141-8130" ], "URL": "http://dx.doi.org/10.1016/j.ijbiomac.2025.146128", "alternative-id": [ "S0141813025066851" ], "article-number": "146128", "assertion": [ { "label": "This article is maintained by", "name": "publisher", "value": "Elsevier" }, { "label": "Article Title", "name": "articletitle", "value": "Angiotensin Converting Enzyme 2 is a molecular decoy for targeted photodynamic SARS-CoV-2 inactivation" }, { "label": "Journal Title", "name": "journaltitle", "value": "International Journal of Biological Macromolecules" }, { "label": "CrossRef DOI link to publisher maintained version", "name": "articlelink", "value": "https://doi.org/10.1016/j.ijbiomac.2025.146128" }, { "label": "Content Type", "name": "content_type", "value": "article" }, { "label": "Copyright", "name": "copyright", "value": "© 2025 The Authors. Published by Elsevier B.V." } ], "author": [ { "affiliation": [], "family": "Mussini", "given": "Andrea", "sequence": "first" }, { "affiliation": [], "family": "Mariangeli", "given": "Matteo", "sequence": "additional" }, { "affiliation": [], "family": "Delcanale", "given": "Pietro", "sequence": "additional" }, { "affiliation": [], "family": "Abbruzzetti", "given": "Stefania", "sequence": "additional" }, { "affiliation": [], "family": "Bianchini", "given": "Paolo", "sequence": "additional" }, { "affiliation": [], "family": "Diaspro", "given": "Alberto", "sequence": "additional" }, { "affiliation": [], "family": "Lelli", "given": "Davide", "sequence": "additional" }, { "affiliation": [], "family": "Moreno", "given": "Ana", "sequence": "additional" }, { "affiliation": [], "family": "Viappiani", "given": "Cristiano", "sequence": "additional" } ], "container-title": "International Journal of Biological Macromolecules", "container-title-short": "International Journal of Biological Macromolecules", "content-domain": { "crossmark-restriction": true, "domain": [ "elsevier.com", "sciencedirect.com" ] }, "created": { "date-parts": [ [ 2025, 7, 17 ] ], "date-time": "2025-07-17T23:03:18Z", "timestamp": 1752793398000 }, "deposited": { "date-parts": [ [ 2025, 7, 23 ] ], "date-time": "2025-07-23T08:36:18Z", "timestamp": 1753259778000 }, "indexed": { "date-parts": [ [ 2025, 8, 2 ] ], "date-time": "2025-08-02T16:53:57Z", "timestamp": 1754153637485, "version": "3.41.2" }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2025, 8 ] ] }, "language": "en", "license": [ { "URL": "https://www.elsevier.com/tdm/userlicense/1.0/", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 8, 1 ] ], "date-time": "2025-08-01T00:00:00Z", "timestamp": 1754006400000 } }, { "URL": "https://www.elsevier.com/legal/tdmrep-license", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 8, 1 ] ], "date-time": "2025-08-01T00:00:00Z", "timestamp": 1754006400000 } }, { "URL": "http://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 7, 18 ] ], "date-time": "2025-07-18T00:00:00Z", "timestamp": 1752796800000 } } ], "link": [ { "URL": "https://api.elsevier.com/content/article/PII:S0141813025066851?httpAccept=text/xml", "content-type": "text/xml", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://api.elsevier.com/content/article/PII:S0141813025066851?httpAccept=text/plain", "content-type": "text/plain", "content-version": "vor", "intended-application": "text-mining" } ], "member": "78", "original-title": [], "page": "146128", "prefix": "10.1016", "published": { "date-parts": [ [ 2025, 8 ] ] }, "published-print": { "date-parts": [ [ 2025, 8 ] ] }, "publisher": "Elsevier BV", "reference": [ { "article-title": "Photodynamic therapy with curcumin for combating SARS-CoV-2", "author": "Law", "journal-title": "Photodiagnosis Photodyn. Ther.", "key": "10.1016/j.ijbiomac.2025.146128_bb0005", "volume": "34", "year": "2021" }, { "DOI": "10.3390/biomedicines9101434", "article-title": "Plant alkaloids inhibit membrane fusion mediated by calcium and fragments of MERS-CoV and SARS-CoV/SARS-CoV-2 fusion peptides", "author": "Shekunov", "doi-asserted-by": "crossref", "issue": "10", "journal-title": "Biomedicines", "key": "10.1016/j.ijbiomac.2025.146128_bb0010", "volume": "9", "year": "2021" }, { "DOI": "10.3390/antibiotics9060320", "article-title": "Antimicrobial photodynamic therapy in the control of COVID-19", "author": "Almeida", "doi-asserted-by": "crossref", "issue": "6", "journal-title": "Antibiotics", "key": "10.1016/j.ijbiomac.2025.146128_bb0015", "volume": "9", "year": "2020" }, { "DOI": "10.1016/j.pdpdt.2021.102221", "article-title": "A systematic review of photodynamic therapy as an antiviral treatment: potential guidance for dealing with SARS-CoV-2", "author": "Conrado", "doi-asserted-by": "crossref", "journal-title": "Photodiagnosis Photodyn. Ther.", "key": "10.1016/j.ijbiomac.2025.146128_bb0020", "volume": "34", "year": "2021" }, { "DOI": "10.1016/j.dyepig.2021.109813", "article-title": "Anti-infective dyes in the time of COVID", "author": "Wainwright", "doi-asserted-by": "crossref", "journal-title": "Dyes Pigments", "key": "10.1016/j.ijbiomac.2025.146128_bb0025", "volume": "196", "year": "2021" }, { "DOI": "10.1016/j.pdpdt.2020.102112", "article-title": "Antiviral photodynamic therapy: inactivation and inhibition of SARS-CoV-2 in vitro using methylene blue and Radachlorin", "author": "Svyatchenko", "doi-asserted-by": "crossref", "journal-title": "Photodiagnosis Photodyn. Ther.", "key": "10.1016/j.ijbiomac.2025.146128_bb0030", "volume": "33", "year": "2021" }, { "DOI": "10.1016/j.pdpdt.2021.102642", "article-title": "Evaluation of methylene blue based photodynamic inactivation (PDI) against intracellular B-CoV and SARS-CoV2 viruses under different light sources in vitro as a basis for new local treatment strategies in the early phase of a Covid19 infection", "author": "Arentz", "doi-asserted-by": "crossref", "journal-title": "Photodiagnosis Photodyn. Ther.", "key": "10.1016/j.ijbiomac.2025.146128_bb0035", "volume": "37", "year": "2022" }, { "DOI": "10.1007/s43630-022-00202-6", "article-title": "Photodynamic disinfection of SARS-CoV-2 clinical samples using a methylene blue formulation", "author": "Lobo", "doi-asserted-by": "crossref", "first-page": "1101", "issue": "6", "journal-title": "Photochem. Photobiol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0040", "volume": "21", "year": "2022" }, { "DOI": "10.3390/v14061301", "article-title": "Photodynamic inactivation of SARS-CoV-2 infectivity and antiviral treatment effects in vitro", "author": "Ziganshyna", "doi-asserted-by": "crossref", "first-page": "1301", "issue": "6", "journal-title": "Viruses", "key": "10.1016/j.ijbiomac.2025.146128_bb0045", "volume": "14", "year": "2022" }, { "DOI": "10.3390/v13040643", "article-title": "The photosensitizer Octakis(cholinyl)zinc phthalocyanine with ability to bind to a model spike protein leads to a loss of SARS-CoV-2 infectivity in vitro when exposed to far-red LED", "author": "Sharshov", "doi-asserted-by": "crossref", "first-page": "643", "issue": "4", "journal-title": "Viruses", "key": "10.1016/j.ijbiomac.2025.146128_bb0050", "volume": "13", "year": "2021" }, { "DOI": "10.1021/acsami.1c22439", "article-title": "The interaction of Hypericin with SARS-CoV-2 reveals a multimodal antiviral activity", "author": "Delcanale", "doi-asserted-by": "crossref", "first-page": "14025", "issue": "12", "journal-title": "ACS Appl. Mater. Interfaces", "key": "10.1016/j.ijbiomac.2025.146128_bb0055", "volume": "14", "year": "2022" }, { "DOI": "10.3390/pharmaceutics14112364", "article-title": "Potent Virucidal activity in vitro of photodynamic therapy with hypericum extract as photosensitizer and white light against human coronavirus HCoV-229E", "author": "Praena", "doi-asserted-by": "crossref", "first-page": "2364", "issue": "11", "journal-title": "Pharmaceutics", "key": "10.1016/j.ijbiomac.2025.146128_bb0060", "volume": "14", "year": "2022" }, { "DOI": "10.3390/ph17010034", "article-title": "Photodynamic action of curcumin and methylene blue against bacteria and SARS-CoV-2–a review", "author": "Law", "doi-asserted-by": "crossref", "first-page": "34", "issue": "1", "journal-title": "Pharmaceuticals", "key": "10.1016/j.ijbiomac.2025.146128_bb0065", "volume": "17", "year": "2024" }, { "DOI": "10.3390/ijms25168724", "article-title": "Insights on the mechanical properties of SARS-CoV-2 particles and the effects of the photosensitizer hypericin", "author": "Mariangeli", "doi-asserted-by": "crossref", "first-page": "8724", "issue": "16", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0070", "volume": "25", "year": "2024" }, { "DOI": "10.3389/fcimb.2023.1110467", "article-title": "Photodynamic nasal SARS-CoV-2 decolonization shortens infectivity and influences specific T-cell responses", "author": "Fernandez-Montero", "doi-asserted-by": "crossref", "journal-title": "Front. Cell. Infect. Microbiol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0075", "volume": "13", "year": "2023" }, { "DOI": "10.1038/s41598-022-18513-0", "article-title": "Translational feasibility and efficacy of nasal photodynamic disinfection of SARS-CoV-2", "author": "Pires", "doi-asserted-by": "crossref", "first-page": "14438", "issue": "1", "journal-title": "Sci. Rep.", "key": "10.1016/j.ijbiomac.2025.146128_bb0080", "volume": "12", "year": "2022" }, { "DOI": "10.1016/j.jhin.2014.06.017", "article-title": "Nasal photodisinfection and chlorhexidine wipes decrease surgical site infections: a historical control study and propensity analysis", "author": "Bryce", "doi-asserted-by": "crossref", "first-page": "89", "issue": "2", "journal-title": "J. Hosp. Infect.", "key": "10.1016/j.ijbiomac.2025.146128_bb0085", "volume": "88", "year": "2014" }, { "DOI": "10.1007/s43630-023-00381-w", "article-title": "Targeted photodynamic neutralization of SARS-CoV-2 mediated by singlet oxygen", "author": "Yao", "doi-asserted-by": "crossref", "first-page": "1323", "issue": "6", "journal-title": "Photochem. Photobiol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0090", "volume": "22", "year": "2023" }, { "DOI": "10.1021/acs.jpcb.7b07831", "article-title": "No photon wasted: an efficient and selective singlet oxygen photosensitizing protein", "author": "Westberg", "doi-asserted-by": "crossref", "first-page": "9366", "issue": "40", "journal-title": "J. Phys. Chem. B", "key": "10.1016/j.ijbiomac.2025.146128_bb0095", "volume": "121", "year": "2017" }, { "author": "World_Health_Organization", "key": "10.1016/j.ijbiomac.2025.146128_bb0100", "series-title": "Naming the Coronavirus Disease (COVID-19) and the Virus That Causes It", "year": "2020" }, { "DOI": "10.1016/S0140-6736(20)30251-8", "article-title": "Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding", "author": "Lu", "doi-asserted-by": "crossref", "first-page": "565", "issue": "10224", "journal-title": "Lancet", "key": "10.1016/j.ijbiomac.2025.146128_bb0105", "volume": "395", "year": "2020" }, { "DOI": "10.1038/s41586-020-2179-y", "article-title": "Structural basis of receptor recognition by SARS-CoV-2", "author": "Shang", "doi-asserted-by": "crossref", "first-page": "221", "issue": "7807", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0110", "volume": "581", "year": "2020" }, { "DOI": "10.1038/s41586-020-2180-5", "article-title": "Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor", "author": "Lan", "doi-asserted-by": "crossref", "first-page": "215", "issue": "7807", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0115", "volume": "581", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.02.058", "article-title": "Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein", "author": "Walls", "doi-asserted-by": "crossref", "first-page": "281", "issue": "2", "journal-title": "Cell", "key": "10.1016/j.ijbiomac.2025.146128_bb0120", "volume": "181", "year": "2020" }, { "DOI": "10.1038/nature02145", "article-title": "Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus", "author": "Li", "doi-asserted-by": "crossref", "first-page": "450", "issue": "6965", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0125", "volume": "426", "year": "2003" }, { "DOI": "10.1038/s41580-021-00418-x", "article-title": "Mechanisms of SARS-CoV-2 entry into cells", "author": "Jackson", "doi-asserted-by": "crossref", "first-page": "3", "issue": "1", "journal-title": "Nat. Rev. Mol. Cell Biol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0130", "volume": "23", "year": "2022" }, { "article-title": "Coronaviruses: An overview of their replication and pathogenesis", "author": "Fehr", "first-page": "1", "key": "10.1016/j.ijbiomac.2025.146128_bb0135", "series-title": "Coronaviruses: Methods and Protocols", "year": "2015" }, { "DOI": "10.1126/science.abb2762", "article-title": "Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2", "author": "Yan", "doi-asserted-by": "crossref", "first-page": "1444", "issue": "6485", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0140", "volume": "367", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.03.045", "article-title": "Structural and functional basis of SARS-CoV-2 entry by using human ACE2", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "894", "issue": "4", "journal-title": "Cell", "key": "10.1016/j.ijbiomac.2025.146128_bb0145", "volume": "181", "year": "2020" }, { "DOI": "10.1126/science.abf2303", "article-title": "Structural impact on SARS-CoV-2 spike protein by D614G substitution", "author": "Zhang", "doi-asserted-by": "crossref", "first-page": "525", "issue": "6541", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0150", "volume": "372", "year": "2021" }, { "DOI": "10.1126/science.abd3255", "article-title": "Free fatty acid binding pocket in the locked structure of SARS-CoV-2 spike protein", "author": "Toelzer", "doi-asserted-by": "crossref", "first-page": "725", "issue": "6517", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0155", "volume": "370", "year": "2020" }, { "DOI": "10.1038/s41594-020-0468-7", "article-title": "SARS-CoV-2 and bat RaTG13 spike glycoprotein structures inform on virus evolution and furin-cleavage effects", "author": "Wrobel", "doi-asserted-by": "crossref", "first-page": "763", "issue": "8", "journal-title": "Nat. Struct. Mol. Biol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0160", "volume": "27", "year": "2020" }, { "DOI": "10.1016/j.chom.2020.11.001", "article-title": "Real-time conformational dynamics of SARS-CoV-2 spikes on virus particles", "author": "Lu", "doi-asserted-by": "crossref", "first-page": "880", "issue": "6", "journal-title": "Cell Host Microbe", "key": "10.1016/j.ijbiomac.2025.146128_bb0165", "volume": "28", "year": "2020" }, { "DOI": "10.1038/s41586-020-2456-9", "article-title": "Convergent antibody responses to SARS-CoV-2 in convalescent individuals", "author": "Robbiani", "doi-asserted-by": "crossref", "first-page": "437", "issue": "7821", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0170", "volume": "584", "year": "2020" }, { "DOI": "10.1126/science.abd0827", "article-title": "Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail", "author": "Hansen", "doi-asserted-by": "crossref", "first-page": "1010", "issue": "6506", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0175", "volume": "369", "year": "2020" }, { "DOI": "10.1038/s41586-020-2852-1", "article-title": "SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies", "author": "Barnes", "doi-asserted-by": "crossref", "first-page": "682", "issue": "7839", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0180", "volume": "588", "year": "2020" }, { "DOI": "10.1038/s41421-024-00648-1", "article-title": "Potent and broadly neutralizing antibodies against sarbecoviruses induced by sequential COVID-19 vaccination", "author": "Zhao", "doi-asserted-by": "crossref", "first-page": "14", "issue": "1", "journal-title": "Cell Discovery", "key": "10.1016/j.ijbiomac.2025.146128_bb0185", "volume": "10", "year": "2024" }, { "DOI": "10.1038/s41577-022-00784-3", "article-title": "Broadly neutralizing antibodies to SARS-CoV-2 and other human coronaviruses", "author": "Chen", "doi-asserted-by": "crossref", "first-page": "189", "issue": "3", "journal-title": "Nat. Rev. Immunol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0190", "volume": "23", "year": "2023" }, { "DOI": "10.3390/ijms222111627", "article-title": "A collection of designed peptides to target SARS-CoV-2 spike RBD—ACE2 interaction", "author": "Fernandez-Fuentes", "doi-asserted-by": "crossref", "first-page": "11627", "issue": "21", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0195", "volume": "22", "year": "2021" }, { "DOI": "10.1016/j.compbiomed.2022.105625", "article-title": "Inhibition of SARS-CoV-2 pathogenesis by potent peptides designed by the mutation of ACE2 binding region", "author": "Pourmand", "doi-asserted-by": "crossref", "journal-title": "Comput. Biol. Med.", "key": "10.1016/j.ijbiomac.2025.146128_bb0200", "volume": "146", "year": "2022" }, { "article-title": "DNA aptamers masking angiotensin converting enzyme 2 as an innovative way to treat SARS-CoV-2 pandemic", "author": "Villa", "journal-title": "Pharmacol. Res.", "key": "10.1016/j.ijbiomac.2025.146128_bb0205", "volume": "175", "year": "2022" }, { "DOI": "10.1016/j.cell.2020.04.004", "article-title": "Inhibition of SARS-CoV-2 infections in engineered human tissues using clinical-grade soluble human ACE2", "author": "Monteil", "doi-asserted-by": "crossref", "first-page": "905", "issue": "4", "journal-title": "Cell", "key": "10.1016/j.ijbiomac.2025.146128_bb0210", "volume": "181", "year": "2020" }, { "DOI": "10.1038/s41594-020-00549-3", "article-title": "A trimeric human angiotensin-converting enzyme 2 as an anti-SARS-CoV-2 agent", "author": "Xiao", "doi-asserted-by": "crossref", "first-page": "202", "issue": "2", "journal-title": "Nat. Struct. Mol. Biol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0215", "volume": "28", "year": "2021" }, { "DOI": "10.1371/journal.pone.0271359", "article-title": "High activity of an affinity-matured ACE2 decoy against omicron SARS-CoV-2 and pre-emergent coronaviruses", "author": "Sims", "doi-asserted-by": "crossref", "issue": "8", "journal-title": "PloS One", "key": "10.1016/j.ijbiomac.2025.146128_bb0220", "volume": "17", "year": "2022" }, { "DOI": "10.1038/s41598-021-91809-9", "article-title": "An ACE2 triple decoy that neutralizes SARS-CoV-2 shows enhanced affinity for virus variants", "author": "Tanaka", "doi-asserted-by": "crossref", "first-page": "12740", "issue": "1", "journal-title": "Sci. Rep.", "key": "10.1016/j.ijbiomac.2025.146128_bb0225", "volume": "11", "year": "2021" }, { "DOI": "10.1021/acsptsci.2c00180", "article-title": "Engineering an ACE2-derived fragment as a decoy for novel SARS-CoV-2 virus", "author": "Renzi", "doi-asserted-by": "crossref", "first-page": "857", "issue": "6", "journal-title": "ACS Pharmacol. Transl. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0230", "volume": "6", "year": "2023" }, { "DOI": "10.15252/emmm.202216109", "article-title": "An ACE2 decoy can be administered by inhalation and potently targets omicron variants of SARS-CoV-2", "author": "Zhang", "doi-asserted-by": "crossref", "issue": "11", "journal-title": "EMBO Mol. Med.", "key": "10.1016/j.ijbiomac.2025.146128_bb0235", "volume": "14", "year": "2022" }, { "DOI": "10.3389/fimmu.2023.1204543", "article-title": "A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells", "author": "Kegler", "doi-asserted-by": "crossref", "journal-title": "Front. Immunol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0240", "volume": "14", "year": "2023" }, { "DOI": "10.1080/22221751.2022.2079426", "article-title": "ACE2 decoy receptor generated by high-throughput saturation mutagenesis efficiently neutralizes SARS-CoV-2 and its prevalent variants", "author": "Wang", "doi-asserted-by": "crossref", "first-page": "1488", "issue": "1", "journal-title": "Emerg. Microbes Infect.", "key": "10.1016/j.ijbiomac.2025.146128_bb0245", "volume": "11", "year": "2022" }, { "DOI": "10.1073/pnas.2303509120", "article-title": "Vectored immunoprophylaxis and treatment of SARS-CoV-2 infection in a preclinical model", "author": "Tada", "doi-asserted-by": "crossref", "issue": "23", "journal-title": "Proc. Natl. Acad. Sci. U. S. A.", "key": "10.1016/j.ijbiomac.2025.146128_bb0250", "volume": "120", "year": "2023" }, { "DOI": "10.1126/sciadv.abf1738", "article-title": "An engineered decoy receptor for SARS-CoV-2 broadly binds protein S sequence variants", "author": "Chan", "doi-asserted-by": "crossref", "issue": "8", "journal-title": "Sci. Adv.", "key": "10.1016/j.ijbiomac.2025.146128_bb0255", "volume": "7", "year": "2021" }, { "DOI": "10.1038/s42003-023-04860-9", "article-title": "A computationally designed ACE2 decoy has broad efficacy against SARS-CoV-2 omicron variants and related viruses in vitro and in vivo", "author": "Havranek", "doi-asserted-by": "crossref", "first-page": "513", "issue": "1", "journal-title": "Commun. Biol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0260", "volume": "6", "year": "2023" }, { "DOI": "10.1038/s41598-023-27636-x", "article-title": "Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations", "author": "Köchl", "doi-asserted-by": "crossref", "first-page": "774", "issue": "1", "journal-title": "Sci. Rep.", "key": "10.1016/j.ijbiomac.2025.146128_bb0265", "volume": "13", "year": "2023" }, { "DOI": "10.1021/acs.bioconjchem.2c00067", "article-title": "Versatile supramolecular complex for targeted antimicrobial photodynamic inactivation", "author": "Mussini", "doi-asserted-by": "crossref", "first-page": "666", "issue": "4", "journal-title": "Bioconjug. Chem.", "key": "10.1016/j.ijbiomac.2025.146128_bb0270", "volume": "33", "year": "2022" }, { "DOI": "10.3390/ijms25115751", "article-title": "Concanavalin A delivers a photoactive protein to the bacterial wall", "author": "Mussini", "doi-asserted-by": "crossref", "first-page": "5751", "issue": "11", "journal-title": "Int. J. Mol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0275", "volume": "25", "year": "2024" }, { "DOI": "10.1007/s40766-022-00031-4", "article-title": "Photodynamic treatment of pathogens", "author": "Delcanale", "doi-asserted-by": "crossref", "first-page": "407", "journal-title": "Riv. Nuovo Cimento", "key": "10.1016/j.ijbiomac.2025.146128_bb0280", "volume": "405", "year": "2022" }, { "DOI": "10.3390/molecules200610604", "article-title": "Antiviral, antifungal and antibacterial activities of a BODIPY-based photosensitizer", "author": "Carpenter", "doi-asserted-by": "crossref", "first-page": "10604", "issue": "6", "journal-title": "Molecules", "key": "10.1016/j.ijbiomac.2025.146128_bb0285", "volume": "20", "year": "2015" }, { "DOI": "10.1039/c9pp00211a", "article-title": "Trends and targets in antiviral phototherapy", "author": "Wiehe", "doi-asserted-by": "crossref", "first-page": "2565", "issue": "11", "journal-title": "Photochem. Photobiol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0290", "volume": "18", "year": "2019" }, { "DOI": "10.1016/j.addr.2021.05.032", "article-title": "Can microorganisms develop resistance against light based anti-infective agents?", "author": "Marasini", "doi-asserted-by": "crossref", "journal-title": "Adv. Drug Deliv. Rev.", "key": "10.1016/j.ijbiomac.2025.146128_bb0295", "volume": "175", "year": "2021" }, { "DOI": "10.1038/s43586-021-00038-x", "article-title": "Single-molecule localization microscopy", "author": "Lelek", "doi-asserted-by": "crossref", "first-page": "39", "issue": "1", "journal-title": "Nat. Rev. Methods Prim.", "key": "10.1016/j.ijbiomac.2025.146128_bb0300", "volume": "1", "year": "2021" }, { "DOI": "10.1038/ncomms7701", "article-title": "Encoding and decoding spatio-temporal information for super-resolution microscopy", "author": "Lanzanò", "doi-asserted-by": "crossref", "issue": "1", "journal-title": "Nat. Commun.", "key": "10.1016/j.ijbiomac.2025.146128_bb0305", "volume": "6", "year": "2015" }, { "DOI": "10.1007/s40766-020-00008-1", "article-title": "Optical nanoscopy", "author": "Diaspro", "doi-asserted-by": "crossref", "first-page": "385", "issue": "8", "journal-title": "La Rivista del Nuovo Cimento", "key": "10.1016/j.ijbiomac.2025.146128_bb0310", "volume": "43", "year": "2020" }, { "DOI": "10.1038/s41592-019-0515-7", "article-title": "Parameter-free image resolution estimation based on decorrelation analysis", "author": "Descloux", "doi-asserted-by": "crossref", "first-page": "918", "issue": "9", "journal-title": "Nat. Methods", "key": "10.1016/j.ijbiomac.2025.146128_bb0315", "volume": "16", "year": "2019" }, { "DOI": "10.1007/s12250-020-00230-5", "article-title": "On the calculation of TCID50 for quantitation of virus infectivity", "author": "Lei", "doi-asserted-by": "crossref", "first-page": "141", "issue": "1", "journal-title": "Virol. Sin.", "key": "10.1016/j.ijbiomac.2025.146128_bb0320", "volume": "36", "year": "2021" }, { "DOI": "10.1038/s41586-020-2665-2", "article-title": "Structures and distributions of SARS-CoV-2 spike proteins on intact virions", "author": "Ke", "doi-asserted-by": "crossref", "first-page": "498", "issue": "7838", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0325", "volume": "588", "year": "2020" }, { "DOI": "10.4049/immunohorizons.2200005", "article-title": "Inactivation of SARS-CoV-2 and COVID-19 patient samples for contemporary immunology and metabolomics studies", "author": "Eddins", "doi-asserted-by": "crossref", "first-page": "144", "issue": "2", "journal-title": "ImmunoHorizons", "key": "10.1016/j.ijbiomac.2025.146128_bb0330", "volume": "6", "year": "2022" }, { "DOI": "10.1039/c0pp00213e", "article-title": "Singlet oxygen: there is still something new under the sun, and it is better than ever", "author": "Ogilby", "doi-asserted-by": "crossref", "first-page": "1543", "journal-title": "Photochem. Photobiol. Sci.", "key": "10.1016/j.ijbiomac.2025.146128_bb0335", "volume": "9", "year": "2010" }, { "DOI": "10.1039/b926014p", "article-title": "Singlet oxygen: there is indeed something new under the sun", "author": "Ogilby", "doi-asserted-by": "crossref", "first-page": "3181", "issue": "8", "journal-title": "Chem. Soc. Rev.", "key": "10.1016/j.ijbiomac.2025.146128_bb0340", "volume": "39", "year": "2010" }, { "DOI": "10.1111/j.1751-1097.2008.00359.x", "article-title": "Time-resolved singlet oxygen phosphorescence measurements from photosensitized experiments in single cells: effects of oxygen diffusion and oxygen concentration", "author": "Hatz", "doi-asserted-by": "crossref", "first-page": "1284", "issue": "5", "journal-title": "Photochem. Photobiol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0345", "volume": "84", "year": "2008" }, { "DOI": "10.1021/jp206739y", "article-title": "Irradiation- and sensitizer-dependent changes in the lifetime of intracellular singlet oxygen produced in a photosensitized process", "author": "da Silva", "doi-asserted-by": "crossref", "first-page": "445", "issue": "1", "journal-title": "J. Phys. Chem. B", "key": "10.1016/j.ijbiomac.2025.146128_bb0350", "volume": "116", "year": "2012" }, { "DOI": "10.1021/acsomega.0c03830", "article-title": "Visible light spectroscopic analysis of methylene blue in water; what comes after dimer?", "author": "Fernández-Pérez", "doi-asserted-by": "crossref", "first-page": "29801", "issue": "46", "journal-title": "ACS Omega", "key": "10.1016/j.ijbiomac.2025.146128_bb0355", "volume": "5", "year": "2020" }, { "DOI": "10.1016/0003-2697(89)90602-7", "article-title": "Calculation of protein extinction coefficients from amino acid sequence data", "author": "Gill", "doi-asserted-by": "crossref", "first-page": "319", "issue": "2", "journal-title": "Anal. Biochem.", "key": "10.1016/j.ijbiomac.2025.146128_bb0360", "volume": "182", "year": "1989" }, { "DOI": "10.1016/S1572-1000(05)00097-9", "article-title": "Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications", "author": "Tardivo", "doi-asserted-by": "crossref", "first-page": "175", "issue": "3", "journal-title": "Photodiagnosis Photodyn. Ther.", "key": "10.1016/j.ijbiomac.2025.146128_bb0365", "volume": "2", "year": "2005" }, { "DOI": "10.1016/j.molliq.2014.06.030", "article-title": "Dimerization of methylene blue in aqueous and mixed aqueous organic solvent: a spectroscopic study", "author": "Florence", "doi-asserted-by": "crossref", "first-page": "255", "journal-title": "J. Mol. Liq.", "key": "10.1016/j.ijbiomac.2025.146128_bb0370", "volume": "198", "year": "2014" }, { "DOI": "10.1039/b109753a", "article-title": "Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces", "author": "Junqueira", "doi-asserted-by": "crossref", "first-page": "2320", "issue": "11", "journal-title": "Phys. Chem. Chem. Phys.", "key": "10.1016/j.ijbiomac.2025.146128_bb0375", "volume": "4", "year": "2002" }, { "DOI": "10.1021/j100483a006", "article-title": "Calorimetric determinations of absolute fluorescence quantum yields", "author": "Olmsted", "doi-asserted-by": "crossref", "first-page": "2581", "issue": "20", "journal-title": "J. Phys. Chem.", "key": "10.1016/j.ijbiomac.2025.146128_bb0380", "volume": "83", "year": "1979" }, { "author": "Public Health Image Library", "key": "10.1016/j.ijbiomac.2025.146128_bb0385" }, { "DOI": "10.1080/19420862.2016.1212148", "article-title": "Fluorescence correlation spectroscopy as a sensitive and useful tool for revealing potential overlaps between the epitopes of monoclonal antibodies on viral particles", "author": "Richert", "doi-asserted-by": "crossref", "first-page": "1235", "issue": "7", "journal-title": "MAbs", "key": "10.1016/j.ijbiomac.2025.146128_bb0390", "volume": "8", "year": "2016" }, { "DOI": "10.1016/j.bios.2009.04.005", "article-title": "Ultrasensitive Qbeta phage analysis using fluorescence correlation spectroscopy on an optofluidic chip", "author": "Rudenko", "doi-asserted-by": "crossref", "first-page": "3258", "issue": "11", "journal-title": "Biosens. Bioelectron.", "key": "10.1016/j.ijbiomac.2025.146128_bb0395", "volume": "24", "year": "2009" }, { "DOI": "10.1364/BOE.4.001646", "article-title": "Enumerating virus-like particles in an optically concentrated suspension by fluorescence correlation spectroscopy", "author": "Hu", "doi-asserted-by": "crossref", "first-page": "1646", "issue": "9", "journal-title": "Biomed. Opt. Express", "key": "10.1016/j.ijbiomac.2025.146128_bb0400", "volume": "4", "year": "2013" }, { "DOI": "10.1038/s41586-020-2665-2", "article-title": "Structures and distributions of SARS-CoV-2 spike proteins on intact virions", "author": "Ke", "doi-asserted-by": "crossref", "first-page": "498", "issue": "7838", "journal-title": "Nature", "key": "10.1016/j.ijbiomac.2025.146128_bb0405", "volume": "588", "year": "2020" }, { "DOI": "10.1126/science.abd5223", "article-title": "In situ structural analysis of SARS-CoV-2 spike reveals flexibility mediated by three hinges", "author": "Turoňová", "doi-asserted-by": "crossref", "first-page": "203", "issue": "6513", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0410", "volume": "370", "year": "2020" }, { "DOI": "10.1126/science.abd4251", "article-title": "Distinct conformational states of SARS-CoV-2 spike protein", "author": "Cai", "doi-asserted-by": "crossref", "first-page": "1586", "issue": "6511", "journal-title": "Science", "key": "10.1016/j.ijbiomac.2025.146128_bb0415", "volume": "369", "year": "2020" }, { "DOI": "10.3389/fmedt.2021.694347", "article-title": "Up state of the SARS-COV-2 spike homotrimer favors an increased virulence for new variants", "author": "Giron", "doi-asserted-by": "crossref", "journal-title": "Front. Med. Technol.", "key": "10.1016/j.ijbiomac.2025.146128_bb0420", "volume": "3", "year": "2021" }, { "DOI": "10.1371/journal.ppat.1011484", "article-title": "High-throughput super-resolution analysis of influenza virus pleomorphism reveals insights into viral spatial organization", "author": "McMahon", "doi-asserted-by": "crossref", "issue": "6", "journal-title": "PLoS Pathog.", "key": "10.1016/j.ijbiomac.2025.146128_bb0425", "volume": "19", "year": "2023" }, { "DOI": "10.1016/j.bbadis.2022.166347", "article-title": "Virus morphology: insights from super-resolution fluorescence microscopy", "author": "Robb", "doi-asserted-by": "crossref", "issue": "4", "journal-title": "Biochim. Biophys. Acta (BBA) - Mol. Basis Dis.", "key": "10.1016/j.ijbiomac.2025.146128_bb0430", "volume": "1868", "year": "2022" } ], "reference-count": 86, "references-count": 86, "relation": {}, "resource": { "primary": { "URL": "https://linkinghub.elsevier.com/retrieve/pii/S0141813025066851" } }, "score": 1, "short-title": [], "source": "Crossref", "special_numbering": "P4", "subject": [], "subtitle": [], "title": "Angiotensin Converting Enzyme 2 is a molecular decoy for targeted photodynamic SARS-CoV-2 inactivation", "type": "journal-article", "update-policy": "https://doi.org/10.1016/elsevier_cm_policy", "volume": "320" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit