Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

ZINC2109321 for COVID-19

ZINC2109321 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Alharbi, A., Structure-Based Identification of SARS-CoV-2 nsp10-16 Methyltransferase Inhibitors Using Molecular Dynamics Insights, Current Issues in Molecular Biology, doi:10.3390/cimb47030198
SARS-CoV-2 evades immune detection via nsp10-16 methyltransferase-mediated 2′-O-methylation of viral mRNA, making it a key antiviral target. Our study employed structure-based drug discovery—including virtual screening, molecular docking, and molecular dynamics (MD) simulations—to identify potent inhibitors of nsp10-16. We identified seven promising inhibitors (Z1–Z7) targeting the binding site of the SARS-CoV-2 nsp10-16 methyltransferase, with Z2, Z3, Z4, and Z7 exhibiting strong binding affinities. Further, molecular dynamics simulations confirmed that Z2, Z3, and Z7 effectively stabilized the enzyme by reducing conformational fluctuations and maintaining structural compactness, comparable to the native ligand-bound complex. The conformational deviation revealed that Z2, Z6, and Z7 restricted large-scale conformational transitions, reinforcing their stabilizing effect on the enzyme. The binding free energy calculations ranked Z4 (−37.26 kcal/mol), Z7 (−35.37 kcal/mol), and Z6 (−35.22 kcal/mol) as the strongest binders, surpassing the native tubercidin complex (−23.70 kcal/mol). The interactions analysis identified Asp99, Tyr132, and Cys115 as key stabilizing residues, with Z2, Z6, and Z7 forming high-lifetime hydrogen bonds. The drug-likeness analysis highlighted the selected compounds as promising candidates, exhibiting high gastrointestinal absorption, optimal solubility, and minimal CYP450 inhibition. Further experimental validation and lead optimization are needed to develop potent methyltransferase inhibitors with improved pharmacokinetics and antiviral efficacy.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit