Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Zeaxanthin for COVID-19

Zeaxanthin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Liu et al., Plant‐derived compounds as potential leads for new drug development targeting COVID‐19, Phytotherapy Research, doi:10.1002/ptr.8105
AbstractCOVID‐19, which was first identified in 2019 in Wuhan, China, is a respiratory illness caused by a virus called severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2). Although some patients infected with COVID‐19 can remain asymptomatic, most experience a range of symptoms that can be mild to severe. Common symptoms include fever, cough, shortness of breath, fatigue, loss of taste or smell and muscle aches. In severe cases, complications can arise including pneumonia, acute respiratory distress syndrome, organ failure and even death, particularly in older adults or individuals with underlying health conditions. Treatments for COVID‐19 include remdesivir, which has been authorised for emergency use in some countries, and dexamethasone, a corticosteroid used to reduce inflammation in severe cases. Biological drugs including monoclonal antibodies, such as casirivimab and imdevimab, have also been authorised for emergency use in certain situations. While these treatments have improved the outcome for many patients, there is still an urgent need for new treatments. Medicinal plants have long served as a valuable source of new drug leads and may serve as a valuable resource in the development of COVID‐19 treatments due to their broad‐spectrum antiviral activity. To date, various medicinal plant extracts have been studied for their cellular and molecular interactions, with some demonstrating anti‐SARS‐CoV‐2 activity in vitro. This review explores the evaluation and potential therapeutic applications of these plants against SARS‐CoV‐2. This review summarises the latest evidence on the activity of different plant extracts and their isolated bioactive compounds against SARS‐CoV‐2, with a focus on the application of plant‐derived compounds in animal models and in human studies.
Tsuji, M., Virtual Screening and Quantum Chemistry Analysis for SARS-CoV-2 RNA-Dependent RNA Polymerase Using the ChEMBL Database: Reproduction of the Remdesivir-RTP and Favipiravir-RTP Binding Modes Obtained from Cryo-EM Experiments with High Binding Affinity, International Journal of Molecular Sciences, doi:10.3390/ijms231911009
The novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was identified as the pathogenic cause of coronavirus disease 2019 (COVID-19). The RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2 is a potential target for the treatment of COVID-19. An RdRp complex:dsRNA structure suitable for docking simulations was prepared using a cryo-electron microscopy (cryo-EM) structure (PDB ID: 7AAP; resolution, 2.60 Å) that was reported recently. Structural refinement was performed using energy calculations. Structure-based virtual screening was performed using the ChEMBL database. Through 1,838,257 screenings, 249 drugs (37 approved, 93 clinical, and 119 preclinical drugs) were predicted to exhibit a high binding affinity for the RdRp complex:dsRNA. Nine nucleoside triphosphate analogs with anti-viral activity were included among these hit drugs, and among them, remdesivir-ribonucleoside triphosphate and favipiravir-ribonucleoside triphosphate adopted a similar docking mode as that observed in the cryo-EM structure. Additional docking simulations for the predicted compounds with high binding affinity for the RdRp complex:dsRNA suggested that 184 bioactive compounds could be anti-SARS-CoV-2 drug candidates. The hit bioactive compounds mainly consisted of a typical noncovalent major groove binder for dsRNA. Three-layer ONIOM (MP2/6-31G:AM1:AMBER) geometry optimization calculations and frequency analyses (MP2/6-31G:AMBER) were performed to estimate the binding free energy of a representative bioactive compound obtained from the docking simulation, and the fragment molecular orbital calculation at the MP2/6-31G level of theory was subsequently performed for analyzing the detailed interactions. The procedure used in this study represents a possible strategy for discovering anti-SARS-CoV-2 drugs from drug libraries that could significantly shorten the clinical development period for drug repositioning.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit