Withanolide A for COVID-19
Withanolide A has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Insights for Future Pharmacology: Exploring Phytochemicals as Potential Inhibitors Targeting SARS-CoV-2 Papain-like Protease, Future Pharmacology, doi:10.3390/futurepharmacol4030029
,
(1) Background: The SARS-CoV-2 papain-like protease (PLpro) remains an underexplored antiviral target so far. The reduced efficacy of approved treatments against novel variants highlights the importance of developing new agents. This review aims to provide a comprehensive understanding of phytochemicals as inhibitors of PLpro, identify gaps, and propose novel insights for future reference. (2) Methods: A thorough literature search was conducted using Google Scholar, ScienceDirect, and PubMed. Out of 150 articles reviewed, 57 met inclusion criteria, focusing on SARS-CoV-2 PLpro inhibitors, excluding studies on other coronaviruses or solely herbal extracts. Data were presented class-wise, and phytochemicals were grouped into virtual, weak, modest, and potential inhibitors. (3) Results: Approximately 100 phytochemicals are reported in the literature as PLpro inhibitors. We classified them as virtual inhibitors (70), weak inhibitors (13), modest inhibitors (11), and potential inhibitors (6). Flavonoids, terpenoids, and their glycosides predominated. Notably, six phytochemicals, including schaftoside, tanshinones, hypericin, and methyl 3,4-dihydroxybenzoate, emerged as potent PLpro inhibitors with favorable selectivity indices and disease-mitigation potential; (4) Conclusions: PLpro stands as a promising therapeutic target against SARS-CoV-2. The phytochemicals reported in the literature possess valuable drug potential; however, certain experimental and clinical gaps need to be filled to meet the therapeutic needs.
Phytochemicals of Withania somnifera as a Future Promising Drug against SARS-CoV-2: Pharmacological Role, Molecular Mechanism, Molecular Docking Evaluation, and Efficient Delivery, Microorganisms, doi:10.3390/microorganisms11041000
,
Coronavirus disease (COVID-19) has killed millions of people since first reported in Wuhan, China, in December 2019. Intriguingly, Withania somnifera (WS) has shown promising antiviral effects against numerous viral infections, including SARS-CoV and SARS-CoV-2, which are contributed by its phytochemicals. This review focused on the updated testing of therapeutic efficacy and associated molecular mechanisms of WS extracts and their phytochemicals against SARS-CoV-2 infection in preclinical and clinical studies with the aim to develop a long-term solution against COVID-19. It also deciphered the current use of the in silico molecular docking approach in developing potential inhibitors from WS targeting SARS-CoV-2 and host cell receptors that may aid the development of targeted therapy against SARS-CoV-2 ranging from prior to viral entry until acute respiratory distress syndrome (ARDS). This review also discussed nanoformulations or nanocarriers in achieving effective WS delivery to enhance its bioavailability and therapeutic efficacy, consequently preventing the emergence of drug resistance, and eventually therapeutic failure.
Plants as Biofactories for Therapeutic Proteins and Antiviral Compounds to Combat COVID-19, Life, doi:10.3390/life13030617
,
The outbreak of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had a profound impact on the world’s health and economy. Although the end of the pandemic may come in 2023, it is generally believed that the virus will not be completely eradicated. Most likely, the disease will become an endemicity. The rapid development of vaccines of different types (mRNA, subunit protein, inactivated virus, etc.) and some other antiviral drugs (Remdesivir, Olumiant, Paxlovid, etc.) has provided effectiveness in reducing COVID-19’s impact worldwide. However, the circulating SARS-CoV-2 virus has been constantly mutating with the emergence of multiple variants, which makes control of COVID-19 difficult. There is still a pressing need for developing more effective antiviral drugs to fight against the disease. Plants have provided a promising production platform for both bioactive chemical compounds (small molecules) and recombinant therapeutics (big molecules). Plants naturally produce a diverse range of bioactive compounds as secondary metabolites, such as alkaloids, terpenoids/terpenes and polyphenols, which are a rich source of countless antiviral compounds. Plants can also be genetically engineered to produce valuable recombinant therapeutics. This molecular farming in plants has an unprecedented opportunity for developing vaccines, antibodies, and other biologics for pandemic diseases because of its potential advantages, such as low cost, safety, and high production volume. This review summarizes the latest advancements in plant-derived drugs used to combat COVID-19 and discusses the prospects and challenges of the plant-based production platform for antiviral agents.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.