Analgesics
Antiandrogens
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Valproic acid for COVID-19

Valproic acid has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Gordon et al., A SARS-CoV-2-Human Protein-Protein Interaction Map Reveals Drug Targets and Potential Drug-Repurposing, bioRxiv, doi:10.1101/2020.03.22.002386
ABSTRACTAn outbreak of the novel coronavirus SARS-CoV-2, the causative agent of COVID-19 respiratory disease, has infected over 290,000 people since the end of 2019, killed over 12,000, and caused worldwide social and economic disruption1,2. There are currently no antiviral drugs with proven efficacy nor are there vaccines for its prevention. Unfortunately, the scientific community has little knowledge of the molecular details of SARS-CoV-2 infection. To illuminate this, we cloned, tagged and expressed 26 of the 29 viral proteins in human cells and identified the human proteins physically associated with each using affinity-purification mass spectrometry (AP-MS), which identified 332 high confidence SARS-CoV-2-human protein-protein interactions (PPIs). Among these, we identify 66 druggable human proteins or host factors targeted by 69 existing FDA-approved drugs, drugs in clinical trials and/or preclinical compounds, that we are currently evaluating for efficacy in live SARS-CoV-2 infection assays. The identification of host dependency factors mediating virus infection may provide key insights into effective molecular targets for developing broadly acting antiviral therapeutics against SARS-CoV-2 and other deadly coronavirus strains.
Huang et al., DeepCoVDR: deep transfer learning with graph transformer and cross-attention for predicting COVID-19 drug response, Bioinformatics, doi:10.1093/bioinformatics/btad244
Abstract Motivation The coronavirus disease 2019 (COVID-19) remains a global public health emergency. Although people, especially those with underlying health conditions, could benefit from several approved COVID-19 therapeutics, the development of effective antiviral COVID-19 drugs is still a very urgent problem. Accurate and robust drug response prediction to a new chemical compound is critical for discovering safe and effective COVID-19 therapeutics. Results In this study, we propose DeepCoVDR, a novel COVID-19 drug response prediction method based on deep transfer learning with graph transformer and cross-attention. First, we adopt a graph transformer and feed-forward neural network to mine the drug and cell line information. Then, we use a cross-attention module that calculates the interaction between the drug and cell line. After that, DeepCoVDR combines drug and cell line representation and their interaction features to predict drug response. To solve the problem of SARS-CoV-2 data scarcity, we apply transfer learning and use the SARS-CoV-2 dataset to fine-tune the model pretrained on the cancer dataset. The experiments of regression and classification show that DeepCoVDR outperforms baseline methods. We also evaluate DeepCoVDR on the cancer dataset, and the results indicate that our approach has high performance compared with other state-of-the-art methods. Moreover, we use DeepCoVDR to predict COVID-19 drugs from FDA-approved drugs and demonstrate the effectiveness of DeepCoVDR in identifying novel COVID-19 drugs. Availability and implementation https://github.com/Hhhzj-7/DeepCoVDR.
Sperry et al., Target-agnostic drug prediction integrated with medical record analysis uncovers differential associations of statins with increased survival in COVID-19 patients, PLOS Computational Biology, doi:10.1371/journal.pcbi.1011050 (Table 2)
Drug repurposing requires distinguishing established drug class targets from novel molecule-specific mechanisms and rapidly derisking their therapeutic potential in a time-critical manner, particularly in a pandemic scenario. In response to the challenge to rapidly identify treatment options for COVID-19, several studies reported that statins, as a drug class, reduce mortality in these patients. However, it is unknown if different statins exhibit consistent function or may have varying therapeutic benefit. A Bayesian network tool was used to predict drugs that shift the host transcriptomic response to SARS-CoV-2 infection towards a healthy state. Drugs were predicted using 14 RNA-sequencing datasets from 72 autopsy tissues and 465 COVID-19 patient samples or from cultured human cells and organoids infected with SARS-CoV-2. Top drug predictions included statins, which were then assessed using electronic medical records containing over 4,000 COVID-19 patients on statins to determine mortality risk in patients prescribed specific statins versus untreated matched controls. The same drugs were tested in Vero E6 cells infected with SARS-CoV-2 and human endothelial cells infected with a related OC43 coronavirus. Simvastatin was among the most highly predicted compounds (14/14 datasets) and five other statins, including atorvastatin, were predicted to be active in > 50% of analyses. Analysis of the clinical database revealed that reduced mortality risk was only observed in COVID-19 patients prescribed a subset of statins, including simvastatin and atorvastatin. In vitro testing of SARS-CoV-2 infected cells revealed simvastatin to be a potent direct inhibitor whereas most other statins were less effective. Simvastatin also inhibited OC43 infection and reduced cytokine production in endothelial cells. Statins may differ in their ability to sustain the lives of COVID-19 patients despite having a shared drug target and lipid-modifying mechanism of action. These findings highlight the value of target-agnostic drug prediction coupled with patient databases to identify and clinically evaluate non-obvious mechanisms and derisk and accelerate drug repurposing opportunities.
MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156
Abstract Background For both the current and future pandemics, there is a need for high-throughput drug screening methods to identify existing drugs with potential preventative and/or therapeutic activity. Epidemiologic studies could complement lab-focused efforts to identify possible therapeutic agents. Methods We performed a pharmacopeia-wide association study (PWAS) to identify commonly prescribed medications and medication classes that are associated with the detection of SARS-CoV-2 in older individuals (>65 years) in long-term care homes (LTCH) and the community, between January 15 th, 2020 and December 31 st, 2020, across the province of Ontario, Canada. Results 26,121 cases and 2,369,020 controls from LTCH and the community were included in this analysis. Many of the drugs and drug classes evaluated did not yield significant associations with SARS-CoV-2 detection. However, some drugs and drug classes appeared significantly associated with reduced SARS-CoV-2 detection, including cardioprotective drug classes such as statins (weighted OR 0.91, standard p-value <0.01, adjusted p-value <0.01) and beta-blockers (weighted OR 0.87, standard p-value <0.01, adjusted p-value 0.01), along with individual agents ranging from levetiracetam (weighted OR 0.70, standard p-value <0.01, adjusted p-value <0.01) to fluoxetine (weighted OR 0.86, standard p-value 0.013, adjusted p-value 0.198) to digoxin (weighted OR 0.89, standard p-value <0.01, adjusted p-value 0.02). Conclusions Using this epidemiologic approach which can be applied to current and future pandemics we have identified a variety of target drugs and drug classes that could offer therapeutic benefit in COVID-19 and may warrant further validation. Some of these agents (e.g. fluoxetine) have already been identified for their therapeutic potential.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit