Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Triazavirin for COVID-19

Triazavirin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ivan et al., Triazavirin might be the new hope to fight Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), Česká a slovenská farmacie, doi:10.5817/CSF2021-1-18
Since the beginning of the outbreak, a large number of clinical trials have been registered worldwide, and thousands of drugs have been investigated to face new health emergency of highly contagious COVID-19 caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Drug repurposing, i.e., utilizing an approved drug for a different indication, offers a time- and cost-efficient alternative for making new (relevant) therapies available to physicians and patients. Considering given strategy, many approved and investigational antiviral compounds, alone or in various relevant combinations, used in the past to fight Severe Acute Respiratory Syndrome Coronavirus-1, Middle East Respiratory Syndrome Coronavirus, Human Immunodeficiency Virus type 1, or Influenza viruses are being evaluated against the SARS-CoV-2. Triazavirin (TZV), a non-toxic broad--spectrum antiviral compound, is efficient against various strains of the Influenza A virus (Influenza Virus A, Orthomyxoviridae), i.e., swine flu (H1N1, or H3N2), avian influenza (H5N1, H5N2, H9N2, or highly pathogenic H7N3 strain), Influenza B virus (Influenza Virus B, Orthomyxoviridae), Respiratory Syncytial Virus (Orthopneumovirus, Pneumoviridae), Tick-Borne Encephalitis Virus (known as Forest-Spring Encephalitis Virus; Flavivirus, Flaviviridae), West Nile Virus (Flavivirus, Flavaviridae), Rift Valley Fever Virus (Phlebovirus, Bunyaviridae), and Herpes viruses (Simplexviruses, Herpesviridae) as well. In regard to COVID-19, the molecule probably reduced inflammatory reactions, thus limiting the damage to vital organs and reducing the need for therapeutic support, respectively. In addition, in silico computational methods indicated relatively satisfactory binding affinities of the TZV ligand to both structural (E)- and (S)-proteins, non-structural 3-chymotrypsin-like protease (3-CLpro) of SARS-CoV-2 as well as human angiotensin-I converting enzyme-2 (ACE-2). The interactions between TZV and given viral structures or the ACE-2 receptor for SARS-CoV-2 might effectively block both the entry of the pathogen into a host cell and its replication. Promising treatment patterns of COVID-19 positive patients might be also based on a suitable combination of a membrane fusion inhibitor (umifenovir, for example) with viral RNA synthesis and replication inhibitor (TZV).
Girgis et al., Indole-based compounds as potential drug candidates for SARS-CoV-2, MDPI AG, doi:10.20944/preprints202308.0746.v1
The COVID-19 pandemic has posed a significant threat to society in recent times, endangering human health, life, and economic well-being. The disease spreads quickly due to the highly infectious SARS-CoV-2 virus, which has undergone numerous mutations. Despite intense research efforts by the scientific community since its emergence in 2019, no effective therapeutics have been discovered yet. While some repurposed drugs have been used to control the global outbreak and save lives, none have proven universally effective, particularly for severely infected patients. Although the spread of the disease is generally under control, anti-SARS-CoV-2 agents are still needed to combat current and future infections. This study reviews some of the most promising repurposed drugs containing indolyl heterocycle, which is an essential scaffold of many alkaloids with diverse bio-properties in various biological fields. The study also discusses natural and synthetic indole-containing compounds with anti-SARS-CoV-2 properties, as well as computer-aided drug design (in-silico studies) for optimizing anti-SARS-CoV-2 hits/leads.
Yang et al., Rapid Structure-Based Screening Informs Potential Agents for Coronavirus Disease (COVID-19) Outbreak*, Chinese Physics Letters, doi:10.1088/0256-307X/37/5/058701
Coronavirus Disease 2019 (COVID-19), caused by the novel coronavirus, has spread rapidly across China. Consequently, there is an urgent need to sort and develop novel agents for the prevention and treatment of viral infections. A rapid structure-based virtual screening is used for the evaluation of current commercial drugs, with structures of human angiotensin converting enzyme II (ACE2), and viral main protease, spike, envelope, membrane and nucleocapsid proteins. Our results reveal that the reported drugs Arbidol, Chloroquine and Remdesivir may hinder the entry and release of virions through the bindings with ACE2, spike and envelope proteins. Due to the similar binding patterns, NHC (β-d-N4-hydroxycytidine) and Triazavirin are also in prospects for clinical use. Main protease (3CLpro) is likely to be a feasible target of drug design. The screening results to target 3CL-pro reveal that Mitoguazone, Metformin, Biguanide Hydrochloride, Gallic acid, Caffeic acid, Sulfaguanidine and Acetylcysteine seem be possible inhibitors and have potential application in the clinical therapy of COVID-19.
Moura et al., Converging Paths: A Comprehensive Review of the Synergistic Approach between Complementary Medicines and Western Medicine in Addressing COVID-19 in 2020, BioMed, doi:10.3390/biomed3020025
The rapid spread of the new coronavirus disease (COVID-19) caused by SARS-CoV-2 has become a global pandemic. Although specific vaccines are available and natural drugs are being researched, supportive care and specific treatments to alleviate symptoms and improve patient quality of life remain critical. Chinese medicine (CM) has been employed in China due to the similarities between the epidemiology, genomics, and pathogenesis of SARS-CoV-2 and SARS-CoV. Moreover, the integration of other traditional oriental medical systems into the broader framework of integrative medicine can offer a powerful approach to managing the disease. Additionally, it has been reported that integrated medicine has better effects and does not increase adverse drug reactions in the context of COVID-19. This article examines preventive measures, potential infection mechanisms, and immune responses in Western medicine (WM), as well as the pathophysiology based on principles of complementary medicine (CM). The convergence between WM and CM approaches, such as the importance of maintaining a strong immune system and promoting preventive care measures, is also addressed. Current treatment options, traditional therapies, and classical prescriptions based on empirical knowledge are also explored, with individual patient circumstances taken into account. An analysis of the potential benefits and challenges associated with the integration of complementary and Western medicine (WM) in the treatment of COVID-19 can provide valuable guidance, enrichment, and empowerment for future research endeavors.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit