Sweroside for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Sweroside may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed sweroside in detail.
, Swertiamarin and sweroside are potential inhibitors of COVID-19 based on the silico analysis, Medicine, doi:10.1097/MD.0000000000040425
The severity of the respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 has escalated rapidly in recent years, posing a significant threat to global health. Sweroside and swertiamarin are bioactive iridoid glycosides extracted mainly from Swertia davidii Franch. It remains unclear how Swertia davidii Franch. Specifically affects COVID-19 and its underlying mechanisms. We first employed network pharmacology and molecular docking techniques to investigate how sweroside and swertiamarin affect COVID-19 in order to explore its potential mechanism. We found that 35 potential target genes can be used for the treatment of COVID-19, with androgen receptor (AR), HSP90AA1, RAC-alpha serine/threonine–protein kinase, cyclin-dependent kinase 1, epidermal growth factor receptor, and glycogen synthase kinase-3 beta emerging as particularly promising candidates. Additionally, sweroside and swertiamarin demonstrated unambiguous interactions with the 3CL protease AR through molecular docking research. At the active site, sweroside and swertiamarin can bind to AR (1T65), the main protease (5R82), and 3CL protease (6M2N), showing therapeutic potential.