Piceatannol for COVID-19
Piceatannol has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries, Briefings in Bioinformatics, doi:10.1093/bib/bbab113
,
AbstractTo attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor, Molecules, doi:10.3390/molecules25204666
,
The global SARS-CoV-2 pandemic started late 2019 and currently continues unabated. The lag-time for developing vaccines means it is of paramount importance to be able to quickly develop and repurpose therapeutic drugs. Protein-based biosensors allow screening to be performed using routine molecular laboratory equipment without a need for expensive chemical reagents. Here we present a biosensor for the 3-chymotrypsin-like cysteine protease from SARS-CoV-2, comprising a FRET-capable pair of fluorescent proteins held in proximity by a protease cleavable linker. We demonstrate the utility of this biosensor for inhibitor discovery by screening 1280 compounds from the Library of Pharmaceutically Active Compounds collection. The screening identified 65 inhibitors, with the 20 most active exhibiting sub-micromolar inhibition of 3CLpro in follow-up EC50 assays. The top hits included several compounds not previously identified as 3CLpro inhibitors, in particular five members of a family of aporphine alkaloids that offer promise as new antiviral drug leads.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.