Phosphodiesterase enzyme type 5 inhibitors for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Phosphodiesterase enzyme type 5 inhibitors may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed phosphodiesterase enzyme type 5 inhibitors in detail.
, Targeting the NO‐cGMP‐PDE5 pathway in COVID‐19 infection. The DEDALO project, Andrology, doi:10.1111/andr.12837
AbstractBackgroundA pandemic outbreak of COVID‐19 has been sweeping the world since December. It begins as a respiratory infection that, mainly in men with diabetes or renal impairment, evolves into a systemic disease, with SARDS, progressive endothelial cell damage, abnormal clotting and impaired cardiovascular and liver function. Some clinical trials are testing biological drugs to limit the immune system dysregulation, “cytokines storm,” that causes the systemic complications of COVID‐19. The contraindications of these drugs and their cost raise concerns over the implications of their widespread availability.ObjectivesNumerous clinical and experimental studies have revealed a role for the nitric oxide (NO)‐cyclic GMP‐phosphodiesterase type 5 (PDE5) pathway in modulating low‐grade inflammation in patients with metabolic diseases, offering cardiovascular protection. PDE5 inhibition favors an anti‐inflammatory response by modulating activated T cells, reducing cytokine release, lowering fibrosis, increasing oxygen diffusion, stimulating vascular repair. PDE5 is highly expressed in the lungs, where its inhibition improves pulmonary fibrosis, a complication of severe COVID‐19 disease.Materials and methodsWe performed a systematic review of all evidence documenting any involvement of the NO‐cGMP‐PDE5 axis in the pathophysiology of COVID‐19, presenting the ongoing clinical trials aimed at modulating this axis, including our own “silDEnafil administration in DiAbetic and dysmetaboLic patients with COVID‐19 (DEDALO trial).”ResultsThe reviewed evidence suggests that PDE5 inhibitors could offer a new strategy in managing COVID‐19 by (i) counteracting the Ang‐II‐mediated downregulation of AT‐1 receptor; (ii) acting on monocyte switching, thus reducing pro‐inflammatory cytokines, interstitial infiltration and the vessel damage responsible for alveolar hemorrhage‐necrosis; (iii) inhibiting the transition of endothelial and smooth muscle cells to mesenchymal cells in the pulmonary artery, preventing clotting and thrombotic complications.Discussion and ConclusionIf the ongoing trials presented herein should provide positive findings, the low cost, wide availability and temperature stability of PDE5 inhibitors could make them a major resource to combat COVID‐19 in developing countries.