Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Nifedipine for COVID-19

Nifedipine has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ali et al., SARS-CoV-2 Syncytium under the Radar: Molecular Insights of the Spike-Induced Syncytia and Potential Strategies to Limit SARS-CoV-2 Replication, Journal of Clinical Medicine, doi:10.3390/jcm12186079
SARS-CoV-2 infection induces non-physiological syncytia when its spike fusogenic protein on the surface of the host cells interacts with the ACE2 receptor on adjacent cells. Spike-induced syncytia are beneficial for virus replication, transmission, and immune evasion, and contribute to the progression of COVID-19. In this review, we highlight the properties of viral fusion proteins, mainly the SARS-CoV-2 spike, and the involvement of the host factors in the fusion process. We also highlight the possible use of anti-fusogenic factors as an antiviral for the development of therapeutics against newly emerging SARS-CoV-2 variants and how the fusogenic property of the spike could be exploited for biomedical applications.
Nguyenla et al., Discovery of SARS-CoV-2 antiviral synergy between remdesivir and approved drugs in human lung cells, bioRxiv, doi:10.1101/2020.09.18.302398
The SARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with currently 29 million confirmed cases and close to a million deaths. At this time, there are no FDA-approved vaccines or therapeutics for COVID-19, but Emergency Use Authorization has been granted for remdesivir, a broad-spectrum antiviral nucleoside analog. However, remdesivir is only moderately efficacious against SARS-CoV-2 in the clinic, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. We identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5 A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir’s apparent potency 25-fold. We therefore suggest that the FDA-approved Hepatitis C therapeutics Epclusa (velpatasvir/sofosbuvir) and Zepatier (elbasvir/grazoprevir) should be fast-tracked for clinical evaluation in combination with remdesivir to improve treatment of acute SARS-CoV-2 infections.
Nguyenla et al., Discovery of SARS-CoV-2 antiviral synergy between remdesivir and approved drugs in human lung cells, Scientific Reports, doi:10.1038/s41598-022-21034-5
AbstractSARS coronavirus 2 (SARS-CoV-2) has caused an ongoing global pandemic with significant mortality and morbidity. At this time, the only FDA-approved therapeutic for COVID-19 is remdesivir, a broad-spectrum antiviral nucleoside analog. Efficacy is only moderate, and improved treatment strategies are urgently needed. To accomplish this goal, we devised a strategy to identify compounds that act synergistically with remdesivir in preventing SARS-CoV-2 replication. We conducted combinatorial high-throughput screening in the presence of submaximal remdesivir concentrations, using a human lung epithelial cell line infected with a clinical isolate of SARS-CoV-2. This identified 20 approved drugs that act synergistically with remdesivir, many with favorable pharmacokinetic and safety profiles. Strongest effects were observed with established antivirals, Hepatitis C virus nonstructural protein 5A (HCV NS5A) inhibitors velpatasvir and elbasvir. Combination with their partner drugs sofosbuvir and grazoprevir further increased efficacy, increasing remdesivir’s apparent potency > 25-fold. We report that HCV NS5A inhibitors act on the SARS-CoV-2 exonuclease proofreader, providing a possible explanation for the synergy observed with nucleoside analog remdesivir. FDA-approved Hepatitis C therapeutics Epclusa® (velpatasvir/sofosbuvir) and Zepatier® (elbasvir/grazoprevir) could be further optimized to achieve potency and pharmacokinetic properties that support clinical evaluation in combination with remdesivir.
Fani et al., Targeting host calcium channels and viroporins: a promising strategy for SARS-CoV-2 therapy, Future Virology, doi:10.2217/fvl-2022-0203
Despite passing the pandemic phase of the COVID-19, researchers are still investigating various drugs. Previous evidence suggests that blocking the calcium channels may be a suitable treatment option. Ca2+ is required to enhance the fusion process of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Also, some important inflammatory factors during SARS-CoV-2 infection are dependent on Ca2+ level. On the other hand, viroporins have emerged as attractive targets for antiviral therapy due to their essential role in viral replication and pathogenesis. By inhibiting the host calcium channels and viroporins, it is possible to limit the spread of infection. Therefore, calcium channel blockers (CCBs) and drugs targeting Viroporins can be considered an effective option in the fight against SARS-CoV-2.
MacFadden et al., Screening Large Population Health Databases for Potential COVID-19 Therapeutics: A Pharmacopeia-Wide Association Study (PWAS) of Commonly Prescribed Medications, Open Forum Infectious Diseases, doi:10.1093/ofid/ofac156
Abstract Background For both the current and future pandemics, there is a need for high-throughput drug screening methods to identify existing drugs with potential preventative and/or therapeutic activity. Epidemiologic studies could complement lab-focused efforts to identify possible therapeutic agents. Methods We performed a pharmacopeia-wide association study (PWAS) to identify commonly prescribed medications and medication classes that are associated with the detection of SARS-CoV-2 in older individuals (>65 years) in long-term care homes (LTCH) and the community, between January 15 th, 2020 and December 31 st, 2020, across the province of Ontario, Canada. Results 26,121 cases and 2,369,020 controls from LTCH and the community were included in this analysis. Many of the drugs and drug classes evaluated did not yield significant associations with SARS-CoV-2 detection. However, some drugs and drug classes appeared significantly associated with reduced SARS-CoV-2 detection, including cardioprotective drug classes such as statins (weighted OR 0.91, standard p-value <0.01, adjusted p-value <0.01) and beta-blockers (weighted OR 0.87, standard p-value <0.01, adjusted p-value 0.01), along with individual agents ranging from levetiracetam (weighted OR 0.70, standard p-value <0.01, adjusted p-value <0.01) to fluoxetine (weighted OR 0.86, standard p-value 0.013, adjusted p-value 0.198) to digoxin (weighted OR 0.89, standard p-value <0.01, adjusted p-value 0.02). Conclusions Using this epidemiologic approach which can be applied to current and future pandemics we have identified a variety of target drugs and drug classes that could offer therapeutic benefit in COVID-19 and may warrant further validation. Some of these agents (e.g. fluoxetine) have already been identified for their therapeutic potential.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit