Neohesperidin for COVID-19
Neohesperidin has been reported as potentially beneficial for
treatment of COVID-19. We have not reviewed these studies.
See all other treatments.
Computational screening combined with well-tempered metadynamics simulations identifies potential TMPRSS2 inhibitors, Scientific Reports, doi:10.1038/s41598-024-65296-7
,
AbstractType-II transmembrane serine proteases are effective pharmacological targets for host defence against viral entry and in certain cancer cell progressions. These serine proteases cleave viral spike proteins to expose the fusion peptide for cell entry, which is essential to the life cycle of the virus. TMPRSS2 inhibitors can also fight against respiratory viruses that employ them for cell entry. Our study combining virtual screening, all-atom molecular dynamics, and well-tempered metadynamics simulation identifies vicenin-2, neohesperidin, naringin, and rhoifolin as promising TMPRSS2 antagonists. The binding energies obtained are − 16.3, − 15.4, − 13.6, and − 13.8 kcal/mol for vicenin-2, neohesperidin, naringin, and rhoifolin respectively. The RMSD, RMSF, PCA, DCCM, and binding free energy profiles also correlate with the stable binding of these ligands at the active site of TMPRSS2. The study reveals that these molecules could be promising lead molecules for combating future outbreaks of coronavirus and other respiratory viruses.
Structure-based drug repurposing against COVID-19 and emerging infectious diseases: methods, resources and discoveries, Briefings in Bioinformatics, doi:10.1093/bib/bbab113
,
AbstractTo attain promising pharmacotherapies, researchers have applied drug repurposing (DR) techniques to discover the candidate medicines to combat the coronavirus disease 2019 (COVID-19) outbreak. Although many DR approaches have been introduced for treating different diseases, only structure-based DR (SBDR) methods can be employed as the first therapeutic option against the COVID-19 pandemic because they rely on the rudimentary information about the diseases such as the sequence of the severe acute respiratory syndrome coronavirus 2 genome. Hence, to try out new treatments for the disease, the first attempts have been made based on the SBDR methods which seem to be among the proper choices for discovering the potential medications against the emerging and re-emerging infectious diseases. Given the importance of SBDR approaches, in the present review, well-known SBDR methods are summarized, and their merits are investigated. Then, the databases and software applications, utilized for repurposing the drugs against COVID-19, are introduced. Besides, the identified drugs are categorized based on their targets. Finally, a comparison is made between the SBDR approaches and other DR methods, and some possible future directions are proposed.
Plant Extracts and SARS-CoV-2: Research and Applications, Life, doi:10.3390/life13020386
,
The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.
Please send us corrections, updates, or comments.
c19early involves the extraction of 100,000+ datapoints from
thousands of papers. Community updates
help ensure high accuracy.
Treatments and other interventions are complementary.
All practical, effective, and safe
means should be used based on risk/benefit analysis.
No treatment or intervention is 100% available and effective for all current
and future variants.
We do not provide medical advice. Before taking any medication,
consult a qualified physician who can provide personalized advice and details
of risks and benefits based on your medical history and situation. FLCCC and WCH
provide treatment protocols.
Thanks for your feedback! Please search before submitting papers and note
that studies are listed under the date they were first available, which may be
the date of an earlier preprint.