Conv. Plasma
Nigella Sativa

Home COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Azvudine Meta
Bromhexine Meta Molnupiravir Meta
Budesonide Meta
Colchicine Meta
Conv. Plasma Meta Nigella Sativa Meta
Curcumin Meta Nitazoxanide Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Methylene blue for COVID-19

Methylene blue has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Bojadzic et al., Methylene Blue Inhibits the SARS-CoV-2 Spike–ACE2 Protein-Protein Interaction–a Mechanism that can Contribute to its Antiviral Activity Against COVID-19, Frontiers in Pharmacology, doi:10.3389/fphar.2020.600372
Due to our interest in the chemical space of organic dyes to identify potential small-molecule inhibitors (SMIs) for protein-protein interactions (PPIs), we initiated a screen of such compounds to assess their inhibitory activity against the interaction between SARS-CoV-2 spike protein and its cognate receptor ACE2, which is the first critical step initiating the viral attachment and entry of this coronavirus responsible for the ongoing COVID-19 pandemic. As part of this, we found that methylene blue, a tricyclic phenothiazine compound approved by the FDA for the treatment of methemoglobinemia and used for other medical applications (including the inactivation of viruses in blood products prior to transfusion when activated by light), inhibits this interaction. We confirmed that it does so in a concentration-dependent manner with a low micromolar half-maximal inhibitory concentration (IC50 = 3 μM) in our protein-based ELISA-type setup, while chloroquine, siramesine, and suramin showed no inhibitory activity in this assay. Erythrosine B, which we have shown before to be a promiscuous SMI of PPIs, also inhibited this interaction. Methylene blue inhibited the entry of a SARS-CoV-2 spike bearing pseudovirus into ACE2-expressing cells with similar IC50 (3.5 μM). Hence, this PPI inhibitory activity could contribute to its antiviral activity against SARS-CoV-2 even in the absence of light by blocking its attachment to ACE2-expressing cells and making this inexpensive and widely available drug potentially useful in the prevention and treatment of COVID-19 as an oral or inhaled medication.
Cagno et al., Methylene Blue has a potent antiviral activity against SARS-CoV-2 and H1N1 influenza virus in the absence of UV-activation in vitro, Scientific Reports, doi:10.1038/s41598-021-92481-9
AbstractMethylene blue is an FDA (Food and Drug Administration) and EMA (European Medicines Agency) approved drug with an excellent safety profile. It displays broad-spectrum virucidal activity in the presence of UV light and has been shown to be effective in inactivating various viruses in blood products prior to transfusions. In addition, its use has been validated for methemoglobinemia and malaria treatment. In this study, we first evaluated the virucidal activity of methylene blue against influenza virus H1N1 upon different incubation times and in the presence or absence of light activation, and then against SARS-CoV-2. We further assessed the therapeutic activity of methylene blue by administering it to cells previously infected with SARS-CoV-2. Finally, we examined the effect of co-administration of the drug together with immune serum. Our findings reveal that methylene blue displays virucidal preventive or therapeutic activity against influenza virus H1N1 and SARS-CoV-2 at low micromolar concentrations and in the absence of UV-activation. We also confirm that MB antiviral activity is based on several mechanisms of action as the extent of genomic RNA degradation is higher in presence of light and after long exposure. Our work supports the interest of testing methylene blue in clinical studies to confirm a preventive and/or therapeutic efficacy against both influenza virus H1N1 and SARS-CoV-2 infections.
Xing et al., Analysis of Infected Host Gene Expression Reveals Repurposed Drug Candidates and Time-Dependent Host Response Dynamics for COVID-19, bioRxiv, doi:10.1101/2020.04.07.030734
SummaryThe repurposing of existing drugs offers the potential to expedite therapeutic discovery against the current COVID-19 pandemic caused by the SARS-CoV-2 virus. We have developed an integrative approach to predict repurposed drug candidates that can reverse SARS-CoV-2-induced gene expression in host cells, and evaluate their efficacy against SARS-CoV-2 infection in vitro. We found that 13 virus-induced gene expression signatures computed from various viral preclinical models could be reversed by compounds previously identified to be effective against SARS- or MERS-CoV, as well as drug candidates recently reported to be efficacious against SARS-CoV-2. Based on the ability of candidate drugs to reverse these 13 infection signatures, as well as other clinical criteria, we identified 10 novel candidates. The four drugs bortezomib, dactolisib, alvocidib, and methotrexate inhibited SARS-CoV-2 infection-induced cytopathic effect in Vero E6 cells at < 1 µM, but only methotrexate did not exhibit unfavorable cytotoxicity. Although further improvement of cytotoxicity prediction and bench testing is required, our computational approach has the potential to rapidly and rationally identify repurposed drug candidates against SARS-CoV-2. The analysis of signature genes induced by SARS-CoV-2 also revealed interesting time-dependent host response dynamics and critical pathways for therapeutic interventions (e.g. Rho GTPase activation and cytokine signaling suppression).
Ellinger et al., Identification of inhibitors of SARS-CoV-2 in-vitro cellular toxicity in human (Caco-2) cells using a large scale drug repurposing collection, Research Square, doi:10.21203/
Abstract To identify possible candidates for progression towards clinical studies against SARS-CoV-2, we screened a well-defined collection of 5632 compounds including 3488 compounds which have undergone clinical investigations (marketed drugs, phases 1 -3, and withdrawn) across 600 indications. Compounds were screened for their inhibition of viral induced cytotoxicity using the human epithelial colorectal adenocarcinoma cell line Caco-2 and a SARS-CoV-2 isolate. The primary screen of 5632 compounds gave 271 hits. A total of 64 compounds with IC50 <20 µM were identified, including 19 compounds with IC50 < 1 µM. Of this confirmed hit population, 90% have not yet been previously reported as active against SARS-CoV-2 in-vitro cell assays. Some 37 of the actives are launched drugs, 19 are in phases 1-3 and 10 pre-clinical. Several inhibitors were associated with modulation of host pathways including kinase signaling P53 activation, ubiquitin pathways and PDE activity modulation, with long chain acyl transferases were effective viral inhibitors.
Murer et al., Arrayed multicycle drug screens identify broadly acting chemical inhibitors for repurposing against SARS-CoV-2, bioRxiv, doi:10.1101/2021.03.30.437771
AbstractCoronaviruses (CoVs) circulate in humans and animals, and expand their host range by zoonotic and anthroponotic transmissions. Endemic human CoVs, such as 229E and OC43 cause limited respiratory disease, and elicit short term anti-viral immunity favoring recurrent infections. Yet, severe acute respir-atory syndrome (SARS)-CoV-2 spreads across the globe with unprecedented impact on societies and economics. The world lacks broadly effective and affordable anti-viral agents to fight the pandemic and reduce the death toll. Here, we developed an image-based multicycle replication assay for focus for-mation of α-coronavirus hCoV-229E-eGFP infected cells for screening with a chemical library of 5440 compounds arrayed in 384 well format. The library contained about 39% clinically used compounds, 26% in phase I, II or III clinical trials, and 34% in preclinical development. Hits were counter-selected against toxicity, and challenged with hCoV-OC43 and SARS-CoV-2 in tissue culture and human bronchial and nasal epithelial explant cultures from healthy donors. Fifty three compounds inhibited hCoV-229E-GFP, 39 of which at 50% effective concentrations (EC50) < 2μM, and were at least 2-fold separated from toxicity. Thirty nine of the 53 compounds inhibited the replication of hCoV-OC43, while SARS-CoV-2 was inhibited by 11 compounds in at least two of four tested cell lines. Six of the 11 compounds are FDA-approved, one of which is used in mouth wash formulations, and five are systemic and orally available. Here, we demonstrate that methylene blue (MB) and mycophenolic acid (MPA), two broadly available low cost compounds, strongly inhibited shedding of infectious SARS-CoV-2 at the apical side of the cultures, in either pre- or post-exposure regimens, with somewhat weaker effects on viral RNA release indicated by RT-qPCR measurements. Our study illustrates the power of full cycle screens in repurposing clinical compounds against SARS-CoV-2. Importantly, both MB and MPA reportedly act as immunosuppressants, making them interesting candidates to counteract the cytokine storms affecting COVID-19 patients.
Bojadzic et al., Small-Molecule In Vitro Inhibitors of the Coronavirus Spike – ACE2 Protein-Protein Interaction as Blockers of Viral Attachment and Entry for SARS-CoV-2, bioRxiv, doi:10.1101/2020.10.22.351056
ABSTRACTInhibitors of the protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and ACE2, which acts as a ligand-receptor pair that initiates the viral attachment and cellular entry of this coronavirus causing the ongoing COVID-19 pandemic, are of considerable interest as potential antiviral agents. While blockade of such PPIs with small molecules is more challenging than with antibodies, small-molecule inhibitors (SMIs) might offer alternatives that are less strain- and mutation-sensitive, suitable for oral or inhaled administration, and more controllable / less immunogenic. Here, we report the identification of SMIs of this PPI by screening our compound-library that is focused on the chemical space of organic dyes. Among promising candidates identified, several dyes (Congo red, direct violet 1, Evans blue) and novel drug-like compounds (DRI-C23041, DRI-C91005) inhibited the interaction of hACE2 with the spike proteins of SARS-CoV-2 as well as SARS-CoV with low micromolar activity in our cell-free ELISA-type assays (IC50s of 0.2-3.0 μM); whereas, control compounds, such as sunset yellow FCF, chloroquine, and suramin, showed no activity. Protein thermal shift assays indicated that the SMIs identified here bind SARS-CoV-2-S and not ACE2. Selected promising compounds inhibited the entry of a SARS-CoV-2-S expressing pseudovirus into ACE2-expressing cells in concentration-dependent manner with low micromolar IC50s (6-30 μM). This provides proof-of-principle evidence for the feasibility of small-molecule inhibition of PPIs critical for coronavirus attachment/entry and serves as a first guide in the search for SMI-based alternative antiviral therapies for the prevention and treatment of diseases caused by coronaviruses in general and COVID-19 in particular.
Law et al., Photodynamic Action of Curcumin and Methylene Blue against Bacteria and SARS-CoV-2—A Review, Pharmaceuticals, doi:10.3390/ph17010034
Coronavirus disease 19 (COVID-19) has occurred for more than four years, and the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19 is a strain of coronavirus, which presents high rates of morbidity around the world. Up to the present date, there are no therapeutics that can avert this form of illness, and photodynamic therapy (PDT) may be an alternative approach against SARS-CoV-2. Curcumin and methylene blue have been approved and used in clinical practices as a photosensitizer in PDT for a long time with their anti-viral properties and for disinfection through photo-inactivated SARS-CoV-2. Previously, curcumin and methylene blue with antibacterial properties have been used against Gram-positive bacteria, Staphylococcus aureus (S. aureus), and Gram-negative bacteria, Escherichia coli (E. coli), Enterococcus faecalis (E. faecalis), and Pseudomonas aeruginosa (P. aeruginosa). Methods: To conduct a literature review, nine electronic databases were researched, such as WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without any regard to language constraints. In vitro and in vivo studies were included that evaluated the effect of PDT mediated via curcumin or methylene blue to combat bacteria and SARS-CoV-2. All eligible studies were analyzed and summarized in this review. Results: Curcumin and methylene blue inhibited the replication of SARS-CoV-2. The reactive oxygen species (ROS) are generated during the treatment of PDT with curcumin and methylene blue to prevent the attachment of SARS-CoV-2 on the ACE2 receptor and damage to the nucleic acids either DNA or RNA. It also modulates pro-inflammatory cytokines and attenuates the clotting effects of the host response. Conclusion: The photodynamic action of curcumin and methylene blue provides a possible approach against bacteria and SARS-CoV-2 infection because they act as non-toxic photosensitizers in PDT with an antibacterial effect, anti-viral properties, and disinfection functions.
Ellinger et al., A SARS-CoV-2 cytopathicity dataset generated by high-content screening of a large drug repurposing collection, Scientific Data, doi:10.1038/s41597-021-00848-4
AbstractSARS-CoV-2 is a novel coronavirus responsible for the COVID-19 pandemic, in which acute respiratory infections are associated with high socio-economic burden. We applied high-content screening to a well-defined collection of 5632 compounds including 3488 that have undergone previous clinical investigations across 600 indications. The compounds were screened by microscopy for their ability to inhibit SARS-CoV-2 cytopathicity in the human epithelial colorectal adenocarcinoma cell line, Caco-2. The primary screen identified 258 hits that inhibited cytopathicity by more than 75%, most of which were not previously known to be active against SARS-CoV-2 in vitro. These compounds were tested in an eight-point dose response screen using the same image-based cytopathicity readout. For the 67 most active molecules, cytotoxicity data were generated to confirm activity against SARS-CoV-2. We verified the ability of known inhibitors camostat, nafamostat, lopinavir, mefloquine, papaverine and cetylpyridinium to reduce the cytopathic effects of SARS-CoV-2, providing confidence in the validity of the assay. The high-content screening data are suitable for reanalysis across numerous drug classes and indications and may yield additional insights into SARS-CoV-2 mechanisms and potential therapeutic strategies.
Oliver et al., Different drug approaches to COVID-19 treatment worldwide: an update of new drugs and drugs repositioning to fight against the novel coronavirus, Therapeutic Advances in Vaccines and Immunotherapy, doi:10.1177/25151355221144845
According to the World Health Organization (WHO), in the second half of 2022, there are about 606 million confirmed cases of COVID-19 and almost 6,500,000 deaths around the world. A pandemic was declared by the WHO in March 2020 when the new coronavirus spread around the world. The short time between the first cases in Wuhan and the declaration of a pandemic initiated the search for ways to stop the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or to attempt to cure the disease COVID-19. More than ever, research groups are developing vaccines, drugs, and immunobiological compounds, and they are even trying to repurpose drugs in an increasing number of clinical trials. There are great expectations regarding the vaccine’s effectiveness for the prevention of COVID-19. However, producing sufficient doses of vaccines for the entire population and SARS-CoV-2 variants are challenges for pharmaceutical industries. On the contrary, efforts have been made to create different vaccines with different approaches so that they can be used by the entire population. Here, we summarize about 8162 clinical trials, showing a greater number of drug clinical trials in Europe and the United States and less clinical trials in low-income countries. Promising results about the use of new drugs and drug repositioning, monoclonal antibodies, convalescent plasma, and mesenchymal stem cells to control viral infection/replication or the hyper-inflammatory response to the new coronavirus bring hope to treat the disease.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.