Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Manganese for COVID-19

Manganese has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Shetler et al., Therapeutic potential of metal ions for COVID-19: insights from the papain-like protease of SARS-CoV-2, Biochemical Journal, doi:10.1042/BCJ20220380
Coronaviruses have been responsible for multiple challenging global pandemics, including coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Papain-like protease (PLpro), one of two cysteine proteases responsible for the maturation and infectivity of SARS-CoV-2, processes and liberates functional proteins from the viral polyproteins and cleaves ubiquitin and ISG15 modifications to inhibit innate immune sensing. Consequently, PLpro is an attractive target for developing COVID-19 therapies. PLpro contains a zinc-finger domain important for substrate binding and structural stability. However, the impact of metal ions on the activity and biophysical properties of SARS-CoV-2 PLpro has not been comprehensively studied. Here, we assessed the impacts of metal ions on the catalytic activity of PLpro. Zinc had the largest inhibitory effect on PLpro, followed by manganese. Calcium, magnesium, and iron had smaller or no effects on PLpro activity. EDTA at a concentration of 0.5 mM was essential for PLpro activity, likely by chelating trace metals that inhibit PLpro. IC50 values for ZnCl2, ZnSO4, and MnCl2 of 0.42 ± 0.02 mM, 0.35 ± 0.01 mM, and 2.6 ± 0.3 mM were obtained in the presence of 0.5 mM EDTA; in the absence of EDTA, the estimated IC50 of ZnCl2 was 14 µM. Tryptophan intrinsic fluorescence analysis confirmed the binding of zinc and manganese to PLpro, and differential scanning calorimetry revealed that zinc but not manganese reduced ΔHcal of PLpro. The results of this study provide a reference for further work targeting PLpro to prevent and treat COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit