Ilexin B for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
Ilexin B may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed Ilexin B in detail.
, Antiviral Efficacy of Selected Natural Phytochemicals against SARS-CoV-2 Spike Glycoprotein Using Structure-Based Drug Designing, Molecules, doi:10.3390/molecules27082401
SARS-CoV-2 is a highly virulent coronavirus that first surfaced in late 2019 and has since created a pandemic of the acute respiratory sickness known as “coronavirus disease 2019” (COVID-19), posing a threat to human health and public safety. S-RBD is a coronaviral protein that is essential for a coronavirus (CoV) to bind and penetrate into host cells. As a result, it has become a popular pharmacological target. The goal of this study was to find potential candidates for anti-coronavirus disease 2019 (COVID-19) drugs by targeting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) S-RBD with novel bioactive compounds and molecular interaction studies of 15,000 phytochemicals belonging to different flavonoid subgroups. A spike protein crystal structure attached to the ACE2 structure was obtained from the PDB database. A library of 15,000 phytochemicals was made by collecting compounds from different databases, such as the Zinc-database, PubChem-database, and MPD3-database. This library was docked against a receptor binding domain of a spike glycoprotein through the Molecular Operating Environment (MOE). The top drug candidates Phylloflavan, Milk thistle, Ilexin B and Isosilybin B, after virtual screening, were selected on the basis of the least binding score. Phylloflavan ranked as the top compound because of its least binding affinity score of −14.09 kcal/mol. In silico studies showed that all those compounds showed good activity and could be used as an immunological response with no bioavailability issues. Absorption, distribution, metabolism, excretion and a toxicological analysis were conducted through SwissADME. Stability and effectiveness of the docked complexes were elucidated by performing the 100 ns molecular dynamic simulation through the Desmond package.