Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

Exemestane for COVID-19

Exemestane has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Waaje et al., Network biology and bioinformatics-based framework to identify the impacts of SARS-CoV-2 infections on lung cancer and tuberculosis, medRxiv, doi:10.1101/2024.09.10.24313452
The severe acute respiratory syndrome coronavirus 2 (SARSCoV 2) is a coronavirus variation responsible for COVID19, the respiratory disease that triggered the COVID19 pandemic. The primary aim of our study is to elucidate the complex network of interactions between SARS CoV 2, tuberculosis, and lung cancer employing a bioinformatics and network biology approach. Lung cancer is the leading cause of significant illness and death connected to cancer worldwide. Tuberculosis (TB) is a prevalent medical condition induced by the Mycobacterium bacteria. It mostly affects the lungs but may also have an influence on other areas of the body. Coronavirus disease (COVID19) causes a risk of respiratory complications between lung cancer and tuberculosis. SARSCoV 2 impacts the lower respiratory system and causes severe pneumonia, which can significantly increase the mortality risk in individuals with lung cancer. We conducted transcriptome analysis to determine molecular biomarkers and common pathways in lung cancer, TB, and COVID19, which provide understanding into the association of SARSCoV 2 to lung cancer and tuberculosis. Based on the compatible RNA-seq data, our research employed GREIN and NCBI's Gene Expression Omnibus (GEO) to perform differential gene expression analysis. Our study exploited three RNAseq datasets from the Gene Expression Omnibus (GEO) GSE171110, GSE89403, and GSE81089 to identify distinct relationships between differentially expressed genes (DEGs) in SARSCoV 2, tuberculosis, and lung cancer. We identified 30 common genes among SARSCoV 2, tuberculosis, and lung cancer (25 upregulated genes and 5 downregulated genes). We analyzed the following five databases: WikiPathway, KEGG, Bio Carta, Elsevier Pathway and Reactome. Using Cytohubba's MCC and Degree methods, We determined the top 15 hub genes resulting from the PPI interaction. These hub genes can serve as potential biomarkers, leading to novel treatment strategies for disorders under investigation. Transcription factors (TFs) and microRNAs (miRNAs) were identified as the molecules that control the differentially expressed genes (DEGs) of interest, either during transcription or after transcription. We identified 35 prospective therapeutic compounds that form significant differentially expressed genes (DEGs) in SARSCoV 2, lung cancer, and tuberculosis, which could potentially serve as medications. We hypothesized that the potential medications that emerged from this investigation may have therapeutic benefits.
Ma et al., Integration of human organoids single‐cell transcriptomic profiles and human genetics repurposes critical cell type‐specific drug targets for severe COVID‐19, Cell Proliferation, doi:10.1111/cpr.13558
AbstractHuman organoids recapitulate the cell type diversity and function of their primary organs holding tremendous potentials for basic and translational research. Advances in single‐cell RNA sequencing (scRNA‐seq) technology and genome‐wide association study (GWAS) have accelerated the biological and therapeutic interpretation of trait‐relevant cell types or states. Here, we constructed a computational framework to integrate atlas‐level organoid scRNA‐seq data, GWAS summary statistics, expression quantitative trait loci, and gene–drug interaction data for distinguishing critical cell populations and drug targets relevant to coronavirus disease 2019 (COVID‐19) severity. We found that 39 cell types across eight kinds of organoids were significantly associated with COVID‐19 outcomes. Notably, subset of lung mesenchymal stem cells increased proximity with fibroblasts predisposed to repair COVID‐19‐damaged lung tissue. Brain endothelial cell subset exhibited significant associations with severe COVID‐19, and this cell subset showed a notable increase in cell‐to‐cell interactions with other brain cell types, including microglia. We repurposed 33 druggable genes, including IFNAR2, TYK2, and VIPR2, and their interacting drugs for COVID‐19 in a cell‐type‐specific manner. Overall, our results showcase that host genetic determinants have cellular‐specific contribution to COVID‐19 severity, and identification of cell type‐specific drug targets may facilitate to develop effective therapeutics for treating severe COVID‐19 and its complications.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit