EKLIC for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
EKLIC may be beneficial for
COVID-19 according to the studies below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed EKLIC in detail.
, Current state-of-the-art and potential future therapeutic drugs against COVID-19, Frontiers in Cell and Developmental Biology, doi:10.3389/fcell.2023.1238027
The novel coronavirus disease (COVID-19) continues to endanger human health, and its therapeutic drugs are under intensive research and development. Identifying the efficacy and toxicity of drugs in animal models is helpful for further screening of effective medications, which is also a prerequisite for drugs to enter clinical trials. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) invades host cells mainly by the S protein on its surface. After the SARS-CoV-2 RNA genome is injected into the cells, M protein will help assemble and release new viruses. RdRp is crucial for virus replication, assembly, and release of new virus particles. This review analyzes and discusses 26 anti-SARS-CoV-2 drugs based on their mechanism of action, effectiveness and safety in different animal models. We propose five drugs to be the most promising to enter the next stage of clinical trial research, thus providing a reference for future drug development.
, DRAVP: A Comprehensive Database of Antiviral Peptides and Proteins, Viruses, doi:10.3390/v15040820
Viruses with rapid replication and easy mutation can become resistant to antiviral drug treatment. With novel viral infections emerging, such as the recent COVID-19 pandemic, novel antiviral therapies are urgently needed. Antiviral proteins, such as interferon, have been used for treating chronic hepatitis C infections for decades. Natural-origin antimicrobial peptides, such as defensins, have also been identified as possessing antiviral activities, including direct antiviral effects and the ability to induce indirect immune responses to viruses. To promote the development of antiviral drugs, we constructed a data repository of antiviral peptides and proteins (DRAVP). The database provides general information, antiviral activity, structure information, physicochemical information, and literature information for peptides and proteins. Because most of the proteins and peptides lack experimentally determined structures, AlphaFold was used to predict each antiviral peptide’s structure. A free website for users (http://dravp.cpu-bioinfor.org/, accessed on 30 August 2022) was constructed to facilitate data retrieval and sequence analysis. Additionally, all the data can be accessed from the web interface. The DRAVP database aims to be a useful resource for developing antiviral drugs.