Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
Top
 
Feedback
Home
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

BR582 for COVID-19

BR582 has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Ho et al., An In Silico Design of Peptides Targeting the S1/S2 Cleavage Site of the SARS-CoV-2 Spike Protein, Viruses, doi:10.3390/v15091930
SARS-CoV-2, responsible for the COVID-19 pandemic, invades host cells via its spike protein, which includes critical binding regions, such as the receptor-binding domain (RBD), the S1/S2 cleavage site, the S2 cleavage site, and heptad-repeat (HR) sections. Peptides targeting the RBD and HR1 inhibit binding to host ACE2 receptors and the formation of the fusion core. Other peptides target proteases, such as TMPRSS2 and cathepsin L, to prevent the cleavage of the S protein. However, research has largely ignored peptides targeting the S1/S2 cleavage site. In this study, bioinformatics was used to investigate the binding of the S1/S2 cleavage site to host proteases, including furin, trypsin, TMPRSS2, matriptase, cathepsin B, and cathepsin L. Peptides targeting the S1/S2 site were designed by identifying binding residues. Peptides were docked to the S1/S2 site using HADDOCK (High-Ambiguity-Driven protein–protein DOCKing). Nine peptides with the lowest HADDOCK scores and strong binding affinities were selected, which was followed by molecular dynamics simulations (MDSs) for further investigation. Among these peptides, BR582 and BR599 stand out. They exhibited relatively high interaction energies with the S protein at −1004.769 ± 21.2 kJ/mol and −1040.334 ± 24.1 kJ/mol, respectively. It is noteworthy that the binding of these peptides to the S protein remained stable during the MDSs. In conclusion, this research highlights the potential of peptides targeting the S1/S2 cleavage site as a means to prevent SARS-CoV-2 from entering cells, and contributes to the development of therapeutic interventions against COVID-19.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit