Analgesics
Antiandrogens
Antihistamines
Azvudine
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Molnupiravir
Monoclonals
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Paxlovid
Quercetin
Remdesivir
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
Top
..
c19early.org COVID-19 treatment researchSelect treatment..Select..
Melatonin Meta
Metformin Meta
Antihistamines Meta
Azvudine Meta Molnupiravir Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Famotidine Meta Paxlovid Meta
Favipiravir Meta Quercetin Meta
Fluvoxamine Meta Remdesivir Meta
Hydroxychlor.. Meta Thermotherapy Meta
Ivermectin Meta

4'-hydroxyisolonchocarpin for COVID-19

4'-hydroxyisolonchocarpin has been reported as potentially beneficial for treatment of COVID-19. We have not reviewed these studies. See all other treatments.
Tuz-Zohura et al., In-silico approach to designing effective antiviral drugs against SARS-CoV-2 and SARS-CoV-1 from reported phytochemicals: a quality improvement study, Annals of Medicine & Surgery, doi:10.1097/ms9.0000000000000839
Computer-aided drug design by molecular docking, statistical analysis like multiple linear regression (MLR), principal component analysis (PCA), and molecular dynamics studies can emerge as an efficient approach to designing promising core scaffolds for coronavirus medication. The main protease [3-chymotrypsin-like protease (3CLpro)] of severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and SARS-CoV-2 is one of the critical targets for designing and developing broad-spectrum antiviral therapeutic drugs. The main objective of this study was to investigate potential phytochemicals against SARS-CoV-1 and SARS-CoV-2 to ensure effective natural product-induced therapy. In this evaluation, we have selected 40 reported phytochemicals to design efficient core scaffolds that can act as potent inhibitors against the main proteases of SARS-CoV-2 and SARS-CoV-1. We categorized the selected phytochemicals into a more bioavailable and less bioavailable set, considering phytochemical drug likeliness properties. All the selected phytochemicals vigorously interacted with the catalytic dyads His41 and Cys145. Statistical analysis by MLR confirmed their contribution to structural features on binding affinities and PCA analysis for structural activity relationships for their structural pattern recognition to determine the core scaffold inhibitors. We confirmed that 4′-Hydroxyisolonchocarpin and BrussochalconeA were safe and exhibited excellent pharmacological properties. Because 4′-Hydroxyisolonchocarpin and BrussochalconeA are flavonoid derivatives, they exhibit the chalcone’s ring. The presence of the reactive α,β-unsaturated system in the chalcone’s rings showed different potential pharmacokinetics with an insignificant toxicological profile. Our comprehensive computational and statistical analysis reveals that these selected phytochemicals (4′-Hydroxyisolonchocarpin, BrussochalconeA) can be used to design potential broad antiviral inhibitors against SARS-CoV-2 and SARS-CoV-1.
Heleno et al., Plant Extracts and SARS-CoV-2: Research and Applications, Life, doi:10.3390/life13020386
The recent pandemic of COVID-19 caused by the SARS-CoV-2 virus has brought upon the world an unprecedented challenge. During its acute dissemination, a rush for vaccines started, making the scientific community come together and contribute to the development of efficient therapeutic agents and vaccines. Natural products have been used as sources of individual molecules and extracts capable of inhibiting/neutralizing several microorganisms, including viruses. Natural extracts have shown effective results against the coronavirus family, when first tested in the outbreak of SARS-CoV-1, back in 2002. In this review, the relationship between natural extracts and SARS-CoV is discussed, while also providing insight into misinformation regarding the use of plants as possible therapeutic agents. Studies with plant extracts on coronaviruses are presented, as well as the main inhibition assays and trends for the future regarding the yet unknown long-lasting effects post-infection with SARS-CoV-2.
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Thanks for your feedback! Please search before submitting papers and note that studies are listed under the date they were first available, which may be the date of an earlier preprint.
Submit