4-ferrocenyloxy-1-methyl-quinol-2-one for COVID-19
c19early.org
COVID-19 Treatment Clinical Evidence
COVID-19 involves the interplay of 400+ viral and host proteins and factors, providing many therapeutic targets.
c19early analyzes 6,000+ studies for 210+ treatments—over 17 million hours of research.
Only three high-profit early treatments are approved in the US.
In reality, many treatments reduce risk,
with 25 low-cost treatments approved across 163 countries.
-
Naso/
oropharyngeal treatment Effective Treatment directly to the primary source of initial infection. -
Healthy lifestyles Protective Exercise, sunlight, a healthy diet, and good sleep all reduce risk.
-
Immune support Effective Vitamins A, C, D, and zinc show reduced risk, as with other viruses.
-
Thermotherapy Effective Methods for increasing internal body temperature, enhancing immune system function.
-
Systemic agents Effective Many systemic agents reduce risk, and may be required when infection progresses.
-
High-profit systemic agents Conditional Effective, but with greater access and cost barriers.
-
Monoclonal antibodies Limited Utility Effective but rarely used—high cost, variant dependence, IV/SC admin.
-
Acetaminophen Harmful Increased risk of severe outcomes and mortality.
-
Remdesivir Harmful Increased mortality with longer followup. Increased kidney and liver injury, cardiac disorders.
4-ferrocenyloxy-1-methyl-quinol-2-one may be beneficial for
COVID-19 according to the study below.
COVID-19 involves the interplay of 400+ viral and host proteins and factors providing many therapeutic targets.
Scientists have proposed 11,000+ potential treatments.
c19early.org analyzes
210+ treatments.
We have not reviewed 4-ferrocenyloxy-1-methyl-quinol-2-one in detail.
, Ferrocenoyl-substituted quinolinone and coumarin as organometallic inhibitors of SARS-CoV-2 3CLpro main protease, Metallomics, doi:10.1093/mtomcs/mfad023
Abstract The 3-chymotrypsin-like protease 3CLpro from SARS-CoV-2 is a potential target for antiviral drug development. In this work, three organometallic ferrocene-modified quinolinones and coumarins were compared to their benzoic acid ester analogues with regard to inhibition of 3CLpro using a HPLC-based assay with a 15mer model peptide as the substrate. In contrast to FRET-based assays, this allows direct identification of interference of buffer constituents with the inhibitors, as demonstrated by the complete abolishment of ebselen inhibitory activity in the presence of DTT as a redox protectant. The presence of the organometallic ferrocene moiety significantly increased the stability of the title compounds towards hydrolysis. Among the studied compounds, 4-ferrocenyloxy-1-methyl-quinol-2-one was identified as the most stable and potent inhibitor candidate. IC50 values determined for ebselen and this sandwich complex compound are (0.40 ± 0.07) and (2.32 ± 0.21) μM, respectively.