Conv. Plasma
Nigella Sativa
Nitric Oxide
Peg.. Lambda

Home   COVID-19 treatment studies for Bromhexine  COVID-19 treatment studies for Bromhexine  C19 studies: Bromhexine  Bromhexine   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
0 0.5 1 1.5 2+ Discharge 75% Improvement Relative Risk Oxygen therapy 50% Recovery time -3% no CI Li et al. Bromhexine for COVID-19 RCT EARLY TREATMENT Is early treatment with bromhexine beneficial for COVID-19? RCT 18 patients in China Higher discharge (p=0.11) and lower need for oxygen therapy (p=0.57), not stat. sig. Li et al., Clinical and Translational Science, doi:10.1111/cts.12881 Favors bromhexine Favors control
Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled Pilot Study
Li et al., Clinical and Translational Science, doi:10.1111/cts.12881
Li et al., Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID-19: An Open-Label Randomized Controlled.., Clinical and Translational Science, doi:10.1111/cts.12881
Sep 2020   Source   PDF  
  All Studies   Meta
Tiny RCT with 12 bromhexine and 6 control patients showing non-statistically significant improvements in chest CT, need for oxygen therapy, and discharge rate within 20 days. Authors recommend a larger scale trial.
Bromhexine may be less effective for omicron due to the entry process moving towards TMPRSS2-independent fusion.
risk of no hospital discharge, 75.0% lower, RR 0.25, p = 0.11, treatment 2 of 12 (16.7%), control 4 of 6 (66.7%), NNT 2.0.
risk of oxygen therapy, 50.0% lower, RR 0.50, p = 0.57, treatment 2 of 12 (16.7%), control 2 of 6 (33.3%), NNT 6.0.
recovery time, 3.2% higher, relative time 1.03, treatment 12, control 6.
Effect extraction follows pre-specified rules prioritizing more serious outcomes. Submit updates
Li et al., 3 Sep 2020, Randomized Controlled Trial, China, peer-reviewed, 10 authors.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperBromhexineAll
Bromhexine Hydrochloride Tablets for the Treatment of Moderate COVID‐19: An Open‐Label Randomized Controlled Pilot Study
Ting Li, Laifang Sun, Wenwu Zhang, Chanfan Zheng, Chenchen Jiang, Mingjing Chen, Di Chen, Zhijuan Dai, Shihui Bao, Xian Shen
Clinical and Translational Science, doi:10.1111/cts.12881
This open-label randomized controlled pilot study aimed to test the study feasibility of bromhexine hydrochloride (BRH) tablets for the treatment of mild or moderate coronavirus disease 2019 (COVID-19) and to explore its clinical efficacy and safety. Patients with mild or moderate COVID-19 were randomly divided into the BRH group or the control group at a 2:1 ratio. Routine treatment according to China's Novel Coronavirus Pneumonia Diagnosis and Treatment Plan was performed in both groups, whereas patients in the BRH group were additionally given oral BRH (32 mg t.i.d.) for 14 consecutive days. The efficacy and safety of BRH were evaluated. A total of 18 patients with moderate COVID-19 were randomized into the BRH group (n = 12) or the control group (n = 6). There were suggestions of BRH advantage over placebo in improved chest computed tomography, need for oxygen therapy, and discharge rate within 20 days. However, none of these findings were statistically significant. BRH tablets may potentially have a beneficial effect in patients with COVID-19, especially for those with lung or hepatic injury. A further definitive large-scale clinical trial is feasible and necessary.
Chau, SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases, Hepatology
Chen, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study, Lancet
Depfenhart, Markus, Marina, Dario, De Danielle, A SARS-CoV-2 prophylactic and treatment: a counter argument against the sole use of chloroquine, Am. J. Biomed. Sci. Res
Glowacka, Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response, J. Virol
Guan, Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. Med
Hatesuer, Tmprss2 is essential for influenza H1N1 virus pathogenesis in mice, PLoS Pathogens
Heurich, Hofmann-Winkler, Gierer, Liepold, Jahn et al., TMPRSS2 and ADAM17 cleave ACE2 differentially and only proteolysis by TMPRSS2 augments entry driven by the severe acute respiratory syndrome coronavirus spike protein, J. Virol
Hoffmann, SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor, Cell
Iwata-Yoshikawa, Okamura, Shimizu, Hasegawa, Takeda et al., TMPRSS2 contributes to virus spread and immunopathology in the airways of murine models after coronavirus infection, J. Virol
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges, Int. J. Antimicrob. Agents
Lee, The clinical and virological features of the first imported case causing MERS-CoV outbreak in South Korea, BMC Infect. Dis
Limburg, TMPRSS2 is the major activating protease of influenza A virus in primary human airway cells and influenza B virus in human type II pneumocytes, J. Virol
Lucas, The androgen-regulated protease TMPRSS2 activates a proteolytic cascade involving components of the tumor microenvironment and promotes prostate cancer metastasis, Cancer Discov
Matsuyama, Enhanced isolation of SARS-CoV-2 by TMPRSS2-expressing cells, Proc. Natl. Acad. Sci
Pan, Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia, Radiology
Rodriguez-Morales, Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis, Travel Med. Infect. Dis
Sakai, The host protease TMPRSS2 plays a major role in in vivo replication of emerging H7N9 and seasonal influenza viruses, J. Virol
Tarnow, TMPRSS2 is a host factor that is essential for pneumotropism and pathogenicity of H7N9 influenza A virus in mice, J. Virol
Wang, Wang, Ye, Liu, A review of the 2019 novel coronavirus (COVID-19) based on current evidence, Int. J. Antimicrob. Agents
Wu, Mcgoogan, Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and prevention, JAMA
Yang, Yuan, Tu, Determination of bromhexine in plasma by gas chromatography-electron capture detection and pharmacokinetic studies
Yang, Yuan, Tu, Determination of bromhexine in plasma by gas chromatography-electron capture detection and pharmacokinetic studies
Zhang, Shi, Wang, Liver injury in COVID-19: management and challenges, Lancet Gastroenterol. Hepatol
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop