Mechanics-guided parametric modeling of intranasal spray devices and formulations for targeted drug delivery to the nasopharynx
et al., Frontiers in Drug Delivery, doi:10.3389/fddev.2025.1721960, Dec 2025
Computational fluid dynamics study of intranasal spray devices showing optimal drug delivery to the nasopharynx (a primary site of respiratory viral infection) is achieved with particle sizes of 25-45 μm and spray plume angles ≤30°.
Hossain et al., 12 Dec 2025, retrospective, India, peer-reviewed, 13 authors.
Contact: saikat.basu@sdstate.edu.
Mechanics-guided parametric modeling of intranasal spray devices and formulations for targeted drug delivery to the nasopharynx
Frontiers in Drug Delivery, doi:10.3389/fddev.2025.1721960
Introduction: Improving the efficacy of nasal sprays by enhancing targeted drug delivery to intra-airway tissue sites prone to infection onset is hypothesized to be achievable through an optimization of key device and formulation parameters, such as the sprayed droplet sizes, the spray cone angle, and the formulation density. This study focuses on the nasopharynx, a primary locus of early viral entry, as the optimal target for intranasal drug delivery. Methods: Two full-scale three-dimensional anatomical upper airway geometries reconstructed from high-resolution computed tomography scans were used to numerically evaluate a cone injection approach, with inert particles mimicking the motion of sprayed droplets within an underlying inhaled airflow field of 15 L/min, commensurate with relaxed breathing conditions. Therein we have considered monodisperse sprayed particles sized between 10-50 μm, six material densities ranging from 1.0-1.5 g/mL for the constituent formulation, and twelve plume angles spanning 15 °-70 °subtended by the spray jet at the nozzle position. Large Eddy Simulation-based modeling of the inhaled airflow physics within the anatomical domains was coupled with a Lagrangian particle-tracking framework to derive the drug deposition trend at the nasopharynx. Results: The resulting three-dimensional deposition contour map, obtained by interpolating the outcomes for the discrete test parameters, revealed that the mean nasopharyngeal deposition rate peaked for particle sizes d ∈ [25, 45] μm and plume angles θ ≲ 30 °, with the deposition rates averaged over the test airway geometries and formulation densities. That mean deposition rate at the nasopharynx was approximately 11.4% within the specified {d, θ} parametric bounds. In addition, the formulation density of 1.0 g/mL yielded the highest mean deposition rate, over the comprehensive tested range of sprayed particle
Ethics statement The studies involving existing and anonymized human imaging data were approved by South Dakota State University Institutional Review Board. The studies were conducted in accordance with the
Conflict of interest JS, GW, and GF are employed by Aptar Pharma. JS has additional appointment at Suman Pharma Solutions. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The author(s) declared that they were an editorial board member of Frontiers, at the time of submission. This had no impact on the peer review process and the final decision.
Generative AI statement The authors declare that no Generative AI was used in the creation of this manuscript. Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
Publisher's note All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Author disclaimer The..
References
Afkhami, D'agostino, Zhang, Stacey, Marzok et al., Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2, Cell, doi:10.1016/j.cell.2022.02.005
Aggarwal, Xiao, Uthuppan, Effect of Stokes number on particle dispersion, Atomization Sprays, doi:10.1615/atomizspr.v4.i2.60
Akash, Lao, Balivada, Ato, Ka et al., On a model-based approach to improve intranasal spray targeting for respiratory viral infections, Front. Drug Deliv, doi:10.3389/fddev.2023.1164671
Baghernezhad, Abouali, Different SGS models in large eddy simulation of 90 °square cross-section bends, J. Turbul. N, doi:10.1080/14685248.2010.520016
Banella, Quarta, Brandolini, Grumiro, Sambri et al., Nasal inhalation of antiviral microparticulate powders to target early infection of upper airways, Drug Deliv. Transl. Res, doi:10.1007/s13346-025-01916-7
Basu, Computational characterization of inhaled droplet transport to the nasopharynx, Sci. Rep, doi:10.1038/s41598-021-85765-7
Basu, Frank-Ito, Kimbell, On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation, Int. J. Numer. Methods Biomed. Eng, doi:10.1002/cnm.2946
Basu, Holbrook, Kudlaty, Fasanmade, Wu et al., Numerical evaluation of spray position for improved nasal drug delivery, Sci. Rep, doi:10.1038/s41598-020-66716-0
Basu, On the mechanics of inhaled bronchial transmission of pathogenic microdroplets generated from the upper respiratory tract, with implications for downwind infection onset, PloS One, doi:10.1371/journal.pone.0335962
Basu, Witten, Kimbell, Influence of localized mesh refinement on numerical simulations of post-surgical sinonasal airflow, J. Aerosol Med. Pulm. Drug Deliv, doi:10.1089/jamp.2017.ab01.abstracts
Baxter, Myatt, Stein, Parkinson, Chambers et al., Spray pattern and plume geometry testing and methodology: an IPAC-RS working group overview, AAPS PharmSciTech, doi:10.1208/s12249-022-02278-w
Borojeni, Frank-Ito, Kimbell, Rhee, Garcia, Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy, Int. J. Numer. Methods Biomed. Eng, doi:10.1002/cnm.2825
Borojeni, Garcia, Moghaddam, Frank-Ito, Kimbell et al., Normative ranges of nasal airflow variables in healthy adults, Int. J. Comput. Assisted Radiology Surg, doi:10.1007/s11548-019-02023-y
Brandtzaeg, Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways, Am. J. Respir. Crit. Care Med, doi:10.1164/rccm.201011-1783OC
Chakravarty, Panchagnula, Mohan, Patankar, Pulmonary drug delivery and retention: a computational study to identify plausible parameters based on a coupled airway-mucus flow model, PLoS Comput. Biol, doi:10.1371/journal.pcbi.1010143
Cohen, Statistical power analysis for the behavioral sciences
Crowder, Rosati, Schroeter, Hickey, Martonen, Fundamental effects of particle morphology on lung delivery: predictions of stokes' law and the particular relevance to dry powder inhaler formulation and development, Pharm. Res, doi:10.1023/a:1014426530935
Darquenne, Borojeni, Colebank, Forest, Madas et al., Aerosol transport modeling: the key link between lung infections of individuals and populations, Front. Physiology, doi:10.3389/fphys.2022.923945
Dey, Jadcherla, Johnston, Bock, Garcia, Optimizing dry powder inhaler for laryngopharyngeal reflux: effects of particle size and breathing technique, J. Aerosol Sci, doi:10.1016/j.jaerosci.2025.106641
Dey, Patni, Anand, Improved aerosol deposition predictions in human upper respiratory tract using coupled mesh phantom-based computational model, Sci. Rep, doi:10.1038/s41598-025-86458-1
Djupesland, Nasal drug delivery devices: characteristics and performance in a clinical perspective-a review, Drug Deliv. Transl. Res, doi:10.1007/s13346-012-0108-9
Doorly, Taylor, Schroter, Mechanics of airflow in the human nasal airways, Respir. Physiology and Neurobiol, doi:10.1016/j.resp.2008.07.027
Fahy, Dickey, Airway mucus function and dysfunction, N. Engl. J. Med, doi:10.1056/NEJMra0910061
Farnoud, Tofighian, Baumann, Garcia, Schmid et al., Large eddy simulations of airflow and particle deposition in pulsating bidirectional nasal drug delivery, Phys. Fluids, doi:10.1063/5.0024264
Feng, Zhao, Chen, Lin, An in silico subject-variability study of upper airway morphological influence on the airflow regime in a tracheobronchial tree, Bioengineering, doi:10.3390/bioengineering4040090
Feng, Zhao, Hayati, Sperry, Yi, Tutorial: understanding the transport, deposition, and translocation of particles in human respiratory systems using computational fluid-particle dynamics and physiologically based toxicokinetic models, J. Aerosol Sci, doi:10.1016/j.jaerosci.2020.105672
Finlay, The mechanics of inhaled pharmaceutical aerosols: an introduction
Foo, Cheng, Su, Donovan, The influence of spray properties on intranasal deposition, J. Aerosol Med, doi:10.1089/jam.2007.0638
Frank-Ito, Wofford, Schroeter, Kimbell, Influence of mesh density on airflow and particle deposition in sinonasal airway modeling, J. Aerosol Med. Pulm. Drug Deliv, doi:10.1089/jamp.2014.1188
Garcia, Schroeter, Segal, Stanek, Foureman et al., Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability, Inhal. Toxicol, doi:10.1080/08958370802320186
Ghahramani, Abouali, Emdad, Ahmadi, Numerical investigation of turbulent airflow and microparticle deposition in a realistic model of human upper airway using LES, Comput. and Fluids, doi:10.1016/j.compfluid.2017.08.003
Hayati, Feng, Chen, Kolewe, Fromen, Prediction of transport, deposition, and resultant immune response of nasal spray vaccine droplets using a CFPD-HCD model in a 6-year-old upper airway geometry to potentially prevent COVID-19
He, Landowne, Currie, Amoah, Shi et al., Threedimensional printing of large objects with high resolution by scanning lithography, Int. J. Adv. Manuf. Technol, doi:10.1007/s00170-019-03862-4
Hossain, Akash, Malakar, Suman, Basu, Identification of optimal spray formulation and device features for enhancing intraairway drug delivery to the nasopharynx
Hosseini, Schuman, Walenga, Wilkins, Babiskin et al., Use of anatomically-accurate 3-dimensional nasal airway models of adult human subjects in a novel methodology to identify and evaluate the internal nasal valve, Comput. Biol. Med, doi:10.1016/j.compbiomed.2020.103896
Hou, Okuda, Edwards, Martinez, Asakura et al., SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract, Cell, doi:10.1016/j.cell.2020.05.042
Inthavong, Tian, Tu, Yang, Xue, Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics, Comput. Biol. Med, doi:10.1016/j.compbiomed.2008.03.008
Islam, Rahman, Drug delivery through naso-pharyngeal routes, Biol. Flow. Model, doi:10.1201/9781003287636-4
Jin, Wang, Jin, Song, Wang, From intramuscular to nasal: unleashing the potential of nasal spray vaccines against coronavirus disease 2019, Clin. and Transl. Immunol, doi:10.1002/cti2.1514
Kashyap, Shukla, Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges, Curr. Drug Deliv, doi:10.2174/1567201816666191029122740
Kleinstreuer, Zhang, Li, Roberts, Rojas, A new methodology for targeting drug-aerosols in the human respiratory system, Int. J. Heat Mass Transf, doi:10.1016/j.ijheatmasstransfer.2008.04.052
Kleven, Melaaen, Djupesland, Computational fluid dynamics (CFD) applied in the drug delivery design process to the nasal passages: a review, J. Mech. Med. Biol, doi:10.1142/s0219519411004526
Knowles, Boucher, Mucus clearance as a primary innate defense mechanism for mammalian airways, J. Clin. Investigation, doi:10.1172/JCI15217
Laube, Kesavan, Farias, Karavas, Blondel et al., Targeting aerosol delivery to regions of nasal-associated lymphoid tissue (NALT) in three dimensional models of human intranasal airways using the BiVax intranasal atomizer, Front. Drug Deliv, doi:10.3389/fddev.2024.1456538
Lee, Lung, Ng, Nasopharyngeal carcinoma: from etiology to clinical practice
Liu, Doub, Guo, Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry (PDA), AAPS PharmSciTech, doi:10.1208/s12249-011-9594-1
Longest, Vinchurkar, Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence, J. Biomechanics, doi:10.1016/j.jbiomech.2006.01.006
Malakar, Borojeni, Basu, Parametric numerical analysis of targeted drug delivery for intranasal sprays inside the upper respiratory airspace
Matheson, Lehner, How does SARS-CoV-2 cause COVID-19?, Science, doi:10.1126/science.abc6156
Mi, Chen, Lin, He, Zhang et al., Short-term effectiveness of single-dose intranasal spray COVID-19 vaccine against symptomatic SARS-CoV-2 Omicron infection in healthcare workers: a prospective cohort study, EClinicalMedicine, doi:10.1016/j.eclinm.2023.102374
Niegodajew, Flow patterns and vortex formation mechanisms inside a human nasal cavity, Phys. Fluids, doi:10.1063/5.0253363
O'connell, Yeasin, Yuk, Panicker, Jung et al., Exploring deposition features within an anatomy-guided uniaxial human respiratory system: a synergy of experiments and simulations
Perkins, Basu, Garcia, Buckmire, Shah et al., Ideal particle sizes for inhaled steroids targeting vocal granulomas: preliminary study using computational fluid dynamics, Otolaryngology-Head Neck Surg, doi:10.1177/0194599817742126
Pires, Fortuna, Alves, Falcão, Intranasal drug delivery: how, why and what for? Can, Soc. Pharm. Sci, doi:10.18433/j3nc79
Pirnar, Dolenc-Grošelj, Fajdiga, Žun, Computational fluidstructure interaction simulation of airflow in the human upper airway, J. Biomechanics, doi:10.1016/j.jbiomech.2015.08.017
Popper, Martin, Shah, Sicard, Hodges et al., Intranasal spray characteristics for best drug delivery in patients with chronic rhinosinusitis, Laryngoscope, doi:10.1002/lary.30155
Puza, Neill, Generalised clopper-pearson confidence intervals for the binomial proportion, J. Stat. Comput. Simul, doi:10.1080/10629360500107527
Schroeter, Garcia, Kimbell, Effects of surface smoothness on inertial particle deposition in human nasal models, J. Aerosol Sci, doi:10.1016/j.jaerosci.2010.11.002
Shang, Inthavong, Tu, Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity, J. Biomechanics, doi:10.1016/j.jbiomech.2019.01.015
Tong, Dong, Shang, Inthavong, Tu, Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity, Comput. Biol. Med, doi:10.1016/j.compbiomed.2016.08.002
Treat, Ebert, Farzal, Basu, Zanation et al., Intranasal corticosteroids: patient administration angles and impact of education, Rhinol. Online, doi:10.4193/rhinol/20.070
Volpe, Irish, Palumbo, Lee, Herbert et al., Viral infections and chronic rhinosinusitis, J. Allergy Clin. Immunol, doi:10.1016/j.jaci.2023.07.018
Wu, Li, Yuan, Zhao, Li, Brain delivery strategies for biomacromolecular drugs: intranasal administration, Int. J. Nanomedicine, doi:10.2147/IJN.S520768
Zhao, Feng, Koshiyama, Wu, Prediction of airway deformation effect on pulmonary air-particle dynamics: a numerical study, Phys. Fluids, doi:10.1063/5.0065309
DOI record:
{
"DOI": "10.3389/fddev.2025.1721960",
"ISSN": [
"2674-0850"
],
"URL": "http://dx.doi.org/10.3389/fddev.2025.1721960",
"abstract": "<jats:sec>\n <jats:title>Introduction</jats:title>\n <jats:p>Improving the efficacy of nasal sprays by enhancing targeted drug delivery to intra-airway tissue sites prone to infection onset is hypothesized to be achievable through an optimization of key device and formulation parameters, such as the sprayed droplet sizes, the spray cone angle, and the formulation density. This study focuses on the nasopharynx, a primary locus of early viral entry, as the optimal target for intranasal drug delivery.</jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Methods</jats:title>\n <jats:p>\n Two full-scale three-dimensional anatomical upper airway geometries reconstructed from high-resolution computed tomography scans were used to numerically evaluate a cone injection approach, with inert particles mimicking the motion of sprayed droplets within an underlying inhaled airflow field of 15 L/min, commensurate with relaxed breathing conditions. Therein we have considered monodisperse sprayed particles sized between 10–50\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m1\">\n <mml:mrow>\n <mml:mi>μ</mml:mi>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n m, six material densities ranging from 1.0–1.5 g/mL for the constituent formulation, and twelve plume angles spanning 15\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m2\">\n <mml:mrow>\n <mml:msup>\n <mml:mo> </mml:mo>\n <mml:mo>°</mml:mo>\n </mml:msup>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n – 70\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m3\">\n <mml:mrow>\n <mml:msup>\n <mml:mo> </mml:mo>\n <mml:mo>°</mml:mo>\n </mml:msup>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n subtended by the spray jet at the nozzle position. Large Eddy Simulation-based modeling of the inhaled airflow physics within the anatomical domains was coupled with a Lagrangian particle-tracking framework to derive the drug deposition trend at the nasopharynx.\n </jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Results</jats:title>\n <jats:p>\n The resulting three-dimensional deposition contour map, obtained by interpolating the outcomes for the discrete test parameters, revealed that the mean nasopharyngeal deposition rate peaked for particle sizes\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m4\">\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>∈</mml:mo>\n <mml:mtext> </mml:mtext>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n [25, 45]\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m5\">\n <mml:mrow>\n <mml:mi>μ</mml:mi>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n m and plume angles\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m6\">\n <mml:mrow>\n <mml:mi>θ</mml:mi>\n <mml:mo>≲</mml:mo>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n 30\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m7\">\n <mml:mrow>\n <mml:msup>\n <mml:mo> </mml:mo>\n <mml:mo>°</mml:mo>\n </mml:msup>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n , with the deposition rates averaged over the test airway geometries and formulation densities. That mean deposition rate at the nasopharynx was approximately 11.4% within the specified\n <jats:inline-formula>\n <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" id=\"m8\">\n <mml:mrow>\n <mml:mo stretchy=\"false\">{</mml:mo>\n <mml:mrow>\n <mml:mi>d</mml:mi>\n <mml:mo>,</mml:mo>\n <mml:mi>θ</mml:mi>\n </mml:mrow>\n <mml:mo stretchy=\"false\">}</mml:mo>\n </mml:mrow>\n </mml:math>\n </jats:inline-formula>\n parametric bounds. In addition, the formulation density of 1.0 g/mL yielded the highest mean deposition rate, over the comprehensive tested range of sprayed particle sizes and plume angles. A subset of the simulated nasopharyngeal deposition trends was experimentally validated through representative physical spray tests conducted in a 3D-printed replica of one of the test geometries.\n </jats:p>\n </jats:sec>\n <jats:sec>\n <jats:title>Discussion</jats:title>\n <jats:p>The overall findings, while implicitly tied to the two test subjects (i.e., for spray administration through four representative nasal pathways), do collectively demonstrate that rational optimization of the intranasal sprays for targeted nasopharyngeal deposition is attainable with actionable design modifications on the sprayed droplet sizes and device plume angles.</jats:p>\n </jats:sec>",
"alternative-id": [
"10.3389/fddev.2025.1721960"
],
"article-number": "1721960",
"author": [
{
"affiliation": [],
"family": "Hossain",
"given": "Md Tariqul",
"sequence": "first"
},
{
"affiliation": [],
"family": "Malakar",
"given": "Abir",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Yeasin",
"given": "Mohammad",
"sequence": "additional"
},
{
"affiliation": [],
"family": "O’Connell",
"given": "William",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Akash",
"given": "Mohammad Mehedi Hasan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Borojeni",
"given": "Azadeh A. T.",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Samanta",
"given": "Devranjan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Williams",
"given": "Gerallt",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Reineke",
"given": "Joshua",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Farias",
"given": "Gonçalo",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Jung",
"given": "Sunghwan",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Suman",
"given": "Julie",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Basu",
"given": "Saikat",
"sequence": "additional"
}
],
"container-title": "Frontiers in Drug Delivery",
"container-title-short": "Front. Drug Deliv.",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"frontiersin.org"
]
},
"created": {
"date-parts": [
[
2025,
12,
12
]
],
"date-time": "2025-12-12T11:26:08Z",
"timestamp": 1765538768000
},
"deposited": {
"date-parts": [
[
2025,
12,
12
]
],
"date-time": "2025-12-12T11:26:11Z",
"timestamp": 1765538771000
},
"funder": [
{
"DOI": "10.13039/100000001",
"award": [
"2339001"
],
"award-info": [
{
"award-number": [
"2339001"
]
}
],
"doi-asserted-by": "publisher",
"id": [
{
"asserted-by": "publisher",
"id": "10.13039/100000001",
"id-type": "DOI"
}
],
"name": "National Science Foundation"
}
],
"indexed": {
"date-parts": [
[
2025,
12,
14
]
],
"date-time": "2025-12-14T15:59:36Z",
"timestamp": 1765727976463,
"version": "3.48.0"
},
"is-referenced-by-count": 1,
"issued": {
"date-parts": [
[
2025,
12,
12
]
]
},
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
12,
12
]
],
"date-time": "2025-12-12T00:00:00Z",
"timestamp": 1765497600000
}
}
],
"link": [
{
"URL": "https://www.frontiersin.org/articles/10.3389/fddev.2025.1721960/full",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1965",
"original-title": [],
"prefix": "10.3389",
"published": {
"date-parts": [
[
2025,
12,
12
]
]
},
"published-online": {
"date-parts": [
[
2025,
12,
12
]
]
},
"publisher": "Frontiers Media SA",
"reference": [
{
"DOI": "10.1016/j.cell.2022.02.005",
"article-title": "Respiratory mucosal delivery of next-generation COVID-19 vaccine provides robust protection against both ancestral and variant strains of SARS-CoV-2",
"author": "Afkhami",
"doi-asserted-by": "publisher",
"first-page": "896",
"journal-title": "Cell",
"key": "B1",
"volume": "185",
"year": "2022"
},
{
"DOI": "10.1615/atomizspr.v4.i2.60",
"article-title": "Effect of Stokes number on particle dispersion",
"author": "Aggarwal",
"doi-asserted-by": "publisher",
"first-page": "223",
"journal-title": "Atomization Sprays",
"key": "B2",
"volume": "4",
"year": "1994"
},
{
"DOI": "10.3389/fddev.2023.1164671",
"article-title": "On a model-based approach to improve intranasal spray targeting for respiratory viral infections",
"author": "Akash",
"doi-asserted-by": "publisher",
"first-page": "1164671",
"journal-title": "Front. Drug Deliv.",
"key": "B3",
"volume": "3",
"year": "2023"
},
{
"DOI": "10.1080/14685248.2010.520016",
"article-title": "Different SGS models in large eddy simulation of 90° square cross-section bends",
"author": "Baghernezhad",
"doi-asserted-by": "publisher",
"journal-title": "J. Turbul.",
"key": "B4",
"year": "2010"
},
{
"DOI": "10.1007/s13346-025-01916-7",
"article-title": "Nasal inhalation of antiviral microparticulate powders to target early infection of upper airways",
"author": "Banella",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Drug Deliv. Transl. Res.",
"key": "B5",
"year": "2025"
},
{
"DOI": "10.1038/s41598-021-85765-7",
"article-title": "Computational characterization of inhaled droplet transport to the nasopharynx",
"author": "Basu",
"doi-asserted-by": "publisher",
"first-page": "6652",
"journal-title": "Sci. Rep.",
"key": "B6",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1371/journal.pone.0335962",
"article-title": "On the mechanics of inhaled bronchial transmission of pathogenic microdroplets generated from the upper respiratory tract, with implications for downwind infection onset",
"author": "Basu",
"doi-asserted-by": "publisher",
"first-page": "e0335962",
"journal-title": "PloS One",
"key": "B7",
"volume": "20",
"year": "2025"
},
{
"DOI": "10.1089/jamp.2017.ab01.abstracts",
"article-title": "Influence of localized mesh refinement on numerical simulations of post-surgical sinonasal airflow",
"author": "Basu",
"doi-asserted-by": "publisher",
"first-page": "A14",
"journal-title": "J. Aerosol Med. Pulm. Drug Deliv.",
"key": "B8",
"volume": "30",
"year": "2017"
},
{
"DOI": "10.1002/cnm.2946",
"article-title": "On computational fluid dynamics models for sinonasal drug transport: relevance of nozzle subtraction and nasal vestibular dilation",
"author": "Basu",
"doi-asserted-by": "publisher",
"first-page": "e2946",
"journal-title": "Int. J. Numer. Methods Biomed. Eng.",
"key": "B9",
"volume": "34",
"year": "2018"
},
{
"DOI": "10.1038/s41598-020-66716-0",
"article-title": "Numerical evaluation of spray position for improved nasal drug delivery",
"author": "Basu",
"doi-asserted-by": "publisher",
"first-page": "10568",
"journal-title": "Sci. Rep.",
"key": "B10",
"volume": "10",
"year": "2020"
},
{
"DOI": "10.1208/s12249-022-02278-w",
"article-title": "Spray pattern and plume geometry testing and methodology: an IPAC-RS working group overview",
"author": "Baxter",
"doi-asserted-by": "publisher",
"first-page": "145",
"journal-title": "AAPS PharmSciTech",
"key": "B11",
"volume": "23",
"year": "2022"
},
{
"DOI": "10.1002/cnm.2825",
"article-title": "Creation of an idealized nasopharynx geometry for accurate computational fluid dynamics simulations of nasal airflow in patient-specific models lacking the nasopharynx anatomy",
"author": "Borojeni",
"doi-asserted-by": "publisher",
"first-page": "e2825",
"journal-title": "Int. J. Numer. Methods Biomed. Eng.",
"key": "B12",
"volume": "33",
"year": "2017"
},
{
"DOI": "10.1007/s11548-019-02023-y",
"article-title": "Normative ranges of nasal airflow variables in healthy adults",
"author": "Borojeni",
"doi-asserted-by": "publisher",
"first-page": "87",
"journal-title": "Int. J. Comput. Assisted Radiology Surg.",
"key": "B13",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1164/rccm.201011-1783OC",
"article-title": "Potential of nasopharynx-associated lymphoid tissue for vaccine responses in the airways",
"author": "Brandtzaeg",
"doi-asserted-by": "publisher",
"first-page": "1595",
"journal-title": "Am. J. Respir. Crit. Care Med.",
"key": "B14",
"volume": "183",
"year": "2011"
},
{
"DOI": "10.1371/journal.pcbi.1010143",
"article-title": "Pulmonary drug delivery and retention: a computational study to identify plausible parameters based on a coupled airway-mucus flow model",
"author": "Chakravarty",
"doi-asserted-by": "publisher",
"first-page": "e1010143",
"journal-title": "PLoS Comput. Biol.",
"key": "B15",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.4324/9780203771587",
"author": "Cohen",
"doi-asserted-by": "crossref",
"key": "B16",
"volume-title": "Statistical power analysis for the behavioral sciences",
"year": "2013"
},
{
"DOI": "10.1023/a:1014426530935",
"article-title": "Fundamental effects of particle morphology on lung delivery: predictions of stokes’ law and the particular relevance to dry powder inhaler formulation and development",
"author": "Crowder",
"doi-asserted-by": "publisher",
"first-page": "239",
"journal-title": "Pharm. Res.",
"key": "B17",
"volume": "19",
"year": "2002"
},
{
"DOI": "10.3389/fphys.2022.923945",
"article-title": "Aerosol transport modeling: the key link between lung infections of individuals and populations",
"author": "Darquenne",
"doi-asserted-by": "publisher",
"first-page": "923945",
"journal-title": "Front. Physiology",
"key": "B18",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1038/s41598-025-86458-1",
"article-title": "Improved aerosol deposition predictions in human upper respiratory tract using coupled mesh phantom-based computational model",
"author": "Dey",
"doi-asserted-by": "publisher",
"first-page": "14260",
"journal-title": "Sci. Rep.",
"key": "B19",
"volume": "15",
"year": "2025"
},
{
"DOI": "10.1016/j.jaerosci.2025.106641",
"article-title": "Optimizing dry powder inhaler for laryngopharyngeal reflux: effects of particle size and breathing technique",
"author": "Dey",
"doi-asserted-by": "publisher",
"first-page": "106641",
"journal-title": "J. Aerosol Sci.",
"key": "B20",
"volume": "189",
"year": "2025"
},
{
"DOI": "10.1007/s13346-012-0108-9",
"article-title": "Nasal drug delivery devices: characteristics and performance in a clinical perspective—a review",
"author": "Djupesland",
"doi-asserted-by": "publisher",
"first-page": "42",
"journal-title": "Drug Deliv. Transl. Res.",
"key": "B21",
"volume": "3",
"year": "2013"
},
{
"DOI": "10.1016/j.resp.2008.07.027",
"article-title": "Mechanics of airflow in the human nasal airways",
"author": "Doorly",
"doi-asserted-by": "publisher",
"first-page": "100",
"journal-title": "Respir. Physiology and Neurobiol.",
"key": "B22",
"volume": "163",
"year": "2008"
},
{
"DOI": "10.1056/NEJMra0910061",
"article-title": "Airway mucus function and dysfunction",
"author": "Fahy",
"doi-asserted-by": "publisher",
"first-page": "2233",
"journal-title": "N. Engl. J. Med.",
"key": "B23",
"volume": "363",
"year": "2010"
},
{
"DOI": "10.1063/5.0024264",
"article-title": "Large eddy simulations of airflow and particle deposition in pulsating bi-directional nasal drug delivery",
"author": "Farnoud",
"doi-asserted-by": "publisher",
"first-page": "101905",
"journal-title": "Phys. Fluids",
"key": "B24",
"volume": "32",
"year": "2020"
},
{
"DOI": "10.3390/bioengineering4040090",
"article-title": "An in silico subject-variability study of upper airway morphological influence on the airflow regime in a tracheobronchial tree",
"author": "Feng",
"doi-asserted-by": "publisher",
"first-page": "90",
"journal-title": "Bioengineering",
"key": "B25",
"volume": "4",
"year": "2017"
},
{
"DOI": "10.1016/j.jaerosci.2020.105672",
"article-title": "Tutorial: understanding the transport, deposition, and translocation of particles in human respiratory systems using computational fluid-particle dynamics and physiologically based toxicokinetic models",
"author": "Feng",
"doi-asserted-by": "publisher",
"first-page": "105672",
"journal-title": "J. Aerosol Sci.",
"key": "B26",
"volume": "151",
"year": "2021"
},
{
"author": "Finlay",
"key": "B27",
"volume-title": "The mechanics of inhaled pharmaceutical aerosols: an introduction",
"year": "2001"
},
{
"DOI": "10.1089/jam.2007.0638",
"article-title": "The influence of spray properties on intranasal deposition",
"author": "Foo",
"doi-asserted-by": "publisher",
"first-page": "495",
"journal-title": "J. Aerosol Med.",
"key": "B28",
"volume": "20",
"year": "2007"
},
{
"DOI": "10.1089/jamp.2014.1188",
"article-title": "Influence of mesh density on airflow and particle deposition in sinonasal airway modeling",
"author": "Frank-Ito",
"doi-asserted-by": "publisher",
"first-page": "46",
"journal-title": "J. Aerosol Med. Pulm. Drug Deliv.",
"key": "B29",
"volume": "29",
"year": "2016"
},
{
"DOI": "10.1080/08958370802320186",
"article-title": "Dosimetry of nasal uptake of water-soluble and reactive gases: a first study of interhuman variability",
"author": "Garcia",
"doi-asserted-by": "publisher",
"first-page": "607",
"journal-title": "Inhal. Toxicol.",
"key": "B30",
"volume": "21",
"year": "2009"
},
{
"DOI": "10.1016/j.compfluid.2017.08.003",
"article-title": "Numerical investigation of turbulent airflow and microparticle deposition in a realistic model of human upper airway using LES",
"author": "Ghahramani",
"doi-asserted-by": "publisher",
"first-page": "43",
"journal-title": "Comput. and Fluids",
"key": "B31",
"volume": "157",
"year": "2017"
},
{
"article-title": "Prediction of transport, deposition, and resultant immune response of nasal spray vaccine droplets using a CFPD-HCD model in a 6-year-old upper airway geometry to potentially prevent COVID-19",
"author": "Hayati",
"first-page": "1",
"key": "B32",
"volume-title": "Experimental and computational multiphase flow",
"year": "2023"
},
{
"DOI": "10.1007/s00170-019-03862-4",
"article-title": "Three-dimensional printing of large objects with high resolution by scanning lithography",
"author": "He",
"doi-asserted-by": "publisher",
"first-page": "4147",
"journal-title": "Int. J. Adv. Manuf. Technol.",
"key": "B33",
"volume": "105",
"year": "2019"
},
{
"article-title": "Identification of optimal spray formulation and device features for enhancing intra-airway drug delivery to the nasopharynx",
"author": "Hossain",
"key": "B34",
"volume-title": "Division of Fluid dynamics annual meeting 2025",
"year": "2025"
},
{
"DOI": "10.1016/j.compbiomed.2020.103896",
"article-title": "Use of anatomically-accurate 3-dimensional nasal airway models of adult human subjects in a novel methodology to identify and evaluate the internal nasal valve",
"author": "Hosseini",
"doi-asserted-by": "publisher",
"first-page": "103896",
"journal-title": "Comput. Biol. Med.",
"key": "B35",
"volume": "123",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2020.05.042",
"article-title": "SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract",
"author": "Hou",
"doi-asserted-by": "publisher",
"first-page": "429",
"journal-title": "Cell",
"key": "B36",
"volume": "182",
"year": "2020"
},
{
"DOI": "10.1016/j.compbiomed.2008.03.008",
"article-title": "Optimising nasal spray parameters for efficient drug delivery using computational fluid dynamics",
"author": "Inthavong",
"doi-asserted-by": "publisher",
"first-page": "713",
"journal-title": "Comput. Biol. Med.",
"key": "B37",
"volume": "38",
"year": "2008"
},
{
"DOI": "10.1201/9781003287636-4",
"article-title": "Drug delivery through naso-pharyngeal routes",
"author": "Islam",
"doi-asserted-by": "publisher",
"first-page": "74",
"journal-title": "Biol. Flow. Model.",
"key": "B38",
"volume": "74",
"year": "2025"
},
{
"DOI": "10.1002/cti2.1514",
"article-title": "From intramuscular to nasal: unleashing the potential of nasal spray vaccines against coronavirus disease 2019",
"author": "Jin",
"doi-asserted-by": "publisher",
"first-page": "e1514",
"journal-title": "Clin. and Transl. Immunol.",
"key": "B39",
"volume": "13",
"year": "2024"
},
{
"DOI": "10.2174/1567201816666191029122740",
"article-title": "Drug delivery and targeting to the brain through nasal route: mechanisms, applications and challenges",
"author": "Kashyap",
"doi-asserted-by": "publisher",
"first-page": "887",
"journal-title": "Curr. Drug Deliv.",
"key": "B40",
"volume": "16",
"year": "2019"
},
{
"DOI": "10.1016/j.ijheatmasstransfer.2008.04.052",
"article-title": "A new methodology for targeting drug-aerosols in the human respiratory system",
"author": "Kleinstreuer",
"doi-asserted-by": "publisher",
"first-page": "5578",
"journal-title": "Int. J. Heat Mass Transf.",
"key": "B41",
"volume": "51",
"year": "2008"
},
{
"DOI": "10.1142/s0219519411004526",
"article-title": "Computational fluid dynamics (CFD) applied in the drug delivery design process to the nasal passages: a review",
"author": "Kleven",
"doi-asserted-by": "publisher",
"first-page": "1230002",
"journal-title": "J. Mech. Med. Biol.",
"key": "B42",
"volume": "12",
"year": "2012"
},
{
"DOI": "10.1172/JCI15217",
"article-title": "Mucus clearance as a primary innate defense mechanism for mammalian airways",
"author": "Knowles",
"doi-asserted-by": "publisher",
"first-page": "571",
"journal-title": "J. Clin. Investigation",
"key": "B43",
"volume": "109",
"year": "2002"
},
{
"DOI": "10.3389/fddev.2024.1456538",
"article-title": "Targeting aerosol delivery to regions of nasal-associated lymphoid tissue (NALT) in three dimensional models of human intranasal airways using the BiVax intranasal atomizer",
"author": "Laube",
"doi-asserted-by": "publisher",
"first-page": "1456538",
"journal-title": "Front. Drug Deliv.",
"key": "B44",
"volume": "4",
"year": "2024"
},
{
"author": "Lee",
"key": "B45",
"volume-title": "Nasopharyngeal carcinoma: from etiology to clinical practice",
"year": "2019"
},
{
"DOI": "10.1208/s12249-011-9594-1",
"article-title": "Assessment of the influence factors on nasal spray droplet velocity using phase-Doppler anemometry (PDA)",
"author": "Liu",
"doi-asserted-by": "publisher",
"first-page": "337",
"journal-title": "AAPS PharmSciTech",
"key": "B46",
"volume": "12",
"year": "2011"
},
{
"DOI": "10.1016/j.jbiomech.2006.01.006",
"article-title": "Validating CFD predictions of respiratory aerosol deposition: effects of upstream transition and turbulence",
"author": "Longest",
"doi-asserted-by": "publisher",
"first-page": "305",
"journal-title": "J. Biomechanics",
"key": "B47",
"volume": "40",
"year": "2007"
},
{
"article-title": "“Parametric numerical analysis of targeted drug delivery for intranasal sprays inside the upper respiratory airspace,”",
"author": "Malakar",
"key": "B48",
"year": "2023"
},
{
"DOI": "10.1126/science.abc6156",
"article-title": "How does SARS-CoV-2 cause COVID-19?",
"author": "Matheson",
"doi-asserted-by": "publisher",
"first-page": "510",
"journal-title": "Science",
"key": "B49",
"volume": "369",
"year": "2020"
},
{
"DOI": "10.1016/j.eclinm.2023.102374",
"article-title": "Short-term effectiveness of single-dose intranasal spray COVID-19 vaccine against symptomatic SARS-CoV-2 Omicron infection in healthcare workers: a prospective cohort study",
"author": "Mi",
"doi-asserted-by": "publisher",
"first-page": "102374",
"journal-title": "EClinicalMedicine",
"key": "B50",
"volume": "67",
"year": "2024"
},
{
"DOI": "10.1063/5.0253363",
"article-title": "Flow patterns and vortex formation mechanisms inside a human nasal cavity",
"author": "Niegodajew",
"doi-asserted-by": "publisher",
"first-page": "021918",
"journal-title": "Phys. Fluids",
"key": "B51",
"volume": "37",
"year": "2025"
},
{
"article-title": "Exploring deposition features within an anatomy-guided uniaxial human respiratory system: a synergy of experiments and simulations",
"author": "O’Connell",
"key": "B52",
"volume-title": "Division of fluid dynamics annual meeting 2025",
"year": "2025"
},
{
"DOI": "10.1177/0194599817742126",
"article-title": "Ideal particle sizes for inhaled steroids targeting vocal granulomas: preliminary study using computational fluid dynamics",
"author": "Perkins",
"doi-asserted-by": "publisher",
"first-page": "511",
"journal-title": "Otolaryngology–Head Neck Surg.",
"key": "B53",
"volume": "158",
"year": "2018"
},
{
"DOI": "10.18433/j3nc79",
"article-title": "Intranasal drug delivery: how, why and what for?",
"author": "Pires",
"doi-asserted-by": "publisher",
"first-page": "288",
"journal-title": "Can. Soc. Pharm. Sci.",
"key": "B54",
"volume": "12",
"year": "2009"
},
{
"DOI": "10.1016/j.jbiomech.2015.08.017",
"article-title": "Computational fluid-structure interaction simulation of airflow in the human upper airway",
"author": "Pirnar",
"doi-asserted-by": "publisher",
"first-page": "3685",
"journal-title": "J. Biomechanics",
"key": "B55",
"volume": "48",
"year": "2015"
},
{
"DOI": "10.1002/lary.30155",
"article-title": "Intranasal spray characteristics for best drug delivery in patients with chronic rhinosinusitis",
"author": "Popper",
"doi-asserted-by": "publisher",
"first-page": "1036",
"journal-title": "Laryngoscope",
"key": "B56",
"volume": "133",
"year": "2023"
},
{
"DOI": "10.1080/10629360500107527",
"article-title": "Generalised clopper-pearson confidence intervals for the binomial proportion",
"author": "Puza",
"doi-asserted-by": "publisher",
"first-page": "489",
"journal-title": "J. Stat. Comput. Simul.",
"key": "B57",
"volume": "76",
"year": "2006"
},
{
"DOI": "10.1016/j.jaerosci.2010.11.002",
"article-title": "Effects of surface smoothness on inertial particle deposition in human nasal models",
"author": "Schroeter",
"doi-asserted-by": "publisher",
"first-page": "52",
"journal-title": "J. Aerosol Sci.",
"key": "B58",
"volume": "42",
"year": "2011"
},
{
"DOI": "10.1016/j.jbiomech.2019.01.015",
"article-title": "Development of a computational fluid dynamics model for mucociliary clearance in the nasal cavity",
"author": "Shang",
"doi-asserted-by": "publisher",
"first-page": "74",
"journal-title": "J. Biomechanics",
"key": "B59",
"volume": "85",
"year": "2019"
},
{
"DOI": "10.1016/j.compbiomed.2016.08.002",
"article-title": "Effects of nasal drug delivery device and its orientation on sprayed particle deposition in a realistic human nasal cavity",
"author": "Tong",
"doi-asserted-by": "publisher",
"first-page": "40",
"journal-title": "Comput. Biol. Med.",
"key": "B60",
"volume": "77",
"year": "2016"
},
{
"DOI": "10.4193/rhinol/20.070",
"article-title": "Intranasal corticosteroids: patient administration angles and impact of education",
"author": "Treat",
"doi-asserted-by": "publisher",
"first-page": "160",
"journal-title": "Rhinol. Online",
"key": "B61",
"volume": "3",
"year": "2020"
},
{
"DOI": "10.1016/j.jaci.2023.07.018",
"article-title": "Viral infections and chronic rhinosinusitis",
"author": "Volpe",
"doi-asserted-by": "publisher",
"first-page": "819",
"journal-title": "J. Allergy Clin. Immunol.",
"key": "B62",
"volume": "152",
"year": "2023"
},
{
"DOI": "10.2147/IJN.S520768",
"article-title": "Brain delivery strategies for biomacromolecular drugs: intranasal administration",
"author": "Wu",
"doi-asserted-by": "publisher",
"first-page": "6463",
"journal-title": "Int. J. Nanomedicine",
"key": "B63",
"volume": "20",
"year": "2025"
},
{
"DOI": "10.1063/5.0065309",
"article-title": "Prediction of airway deformation effect on pulmonary air-particle dynamics: a numerical study",
"author": "Zhao",
"doi-asserted-by": "publisher",
"first-page": "101906",
"journal-title": "Phys. Fluids",
"key": "B64",
"volume": "33",
"year": "2021"
}
],
"reference-count": 64,
"references-count": 64,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.frontiersin.org/articles/10.3389/fddev.2025.1721960/full"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Mechanics-guided parametric modeling of intranasal spray devices and formulations for targeted drug delivery to the nasopharynx",
"type": "journal-article",
"update-policy": "https://doi.org/10.3389/crossmark-policy",
"volume": "5"
}