Getting in on the action: New tools to see SARS-CoV-2 infect a cell
Scott B Hansen, Zixuan Yuan
Cell Chemical Biology, doi:10.1016/j.chembiol.2023.02.010
In this issue of Cell Chemical Biology, Miao et al. develop probes for live cell tracking of SARS-CoV-2. The probes reveal the endocytic pathway for viral entry. Unexpectedly, the antiviral compound BafA1 traps the virus on the cell surface, highlighting the power of super-resolution imaging in live cells.
References
Bayati, Kumar, Francis, Mcpherson, SARS-CoV-2 infects cells after viral entry via clathrin-mediated endocytosis, J. Biol. Chem,
doi:10.1016/j.jbc.2021.100306
Bonazzi, Hennezel, Beckwith, Xu, Fazal et al., Discovery and characterization of a selective IKZF2 glue degrader for cancer immunotherapy, Cell Chemical Biology,
doi:10.1016/j.chembiol.2023.02.005
Fischer, Bohm, Lydeard, Yang, Stadler et al., Structure of the DDB1-CRBN E3 ubiq-uitin ligase in complex with thalidomide, Nature,
doi:10.1038/nature13527
Hoffmann, Kleine-Weber, Schroeder, Kr€ Uger, Herrler et al., SARS-CoV-2 cell entry Depends on ACE2 and TMPRSS2 and is blocked by a Clinically Proven Protease inhibitor, Cell,
doi:10.1016/j.cell.2020.02.052
Kim, Barnitz, Kreslavsky, Brown, Moffett et al., Stable inhibitory activity of regulatory T cells requires the transcription factor Helios, Science,
doi:10.1126/science.aad0616
Kreutzberger, Sanyal, Saminathan, Bloyet, Stumpf et al., SARS-CoV-2 requires acidic pH to infect cells, Proc. Natl. Acad. Sci. USA,
doi:10.1073/pnas.2209514119
Kronke, Udeshi, Narla, Grauman, Hurst et al., Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science,
doi:10.1126/science.1244851
Lu, Middleton, Sun, Naniong, Ott et al., The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science,
doi:10.1126/science.1244917
Matyskiela, Lu, Ito, Pagarigan, Lu et al., A novel cereblon modulator recruits GSPT1 to the CRL4(CRBN) ubiquitin ligase, Nature,
doi:10.1038/nature18611
Meng, Abdullahi, Ferreira, Goonawardane, Saito et al., Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and fusogenicity, Nature,
doi:10.1038/s41586-022-04474-x
Miao, Yan, Chen, Zhou, Zhou et al., SIM imaging Resolves endocytosis of SARS-CoV-2 spike RBD in living cells, Cell Chem Biol
Nakagawa, Sido, Reyes, Kiers, Cantor et al., Instability of Helios-deficient Tregs is associated with conversion to a T-effector phenotype and enhanced antitumor immunity, Proc. Natl. Acad. Sci. USA,
doi:10.1073/pnas.1604765113
Rusinova, He, Andersen, Mechanisms underlying drug-mediated regulation of membrane protein function, Proc. Natl. Acad. Sci. USA,
doi:10.1073/pnas.2113229118
Sievers, Petzold, Bunker, Renneville, S1abicki et al., Defining the human C2H2 zinc finger degrome targeted by thalidomide analogs through CRBN, Science,
doi:10.1126/science.aat0572
Wang, Verano, Nowak, Yuan, Donovan et al., Acute pharmacological degradation of Helios destabilizes regulatory T cells, Nat. Chem. Biol,
doi:10.1038/s41589-021-00802-w
Yoshimori, Yamamoto, Moriyama, Futai, Tashiro, Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, inhibits acidification and protein degradation in lysosomes of cultured cells, J. Biol. Chem,
doi:10.1016/s0021-9258(19)47429-2
Yuan, Hansen, Cholesterol regulation of membrane proteins revealed by two-color super-resolution imaging, Membranes,
doi:10.3390/membranes13020250
Yuan, Pavel, Wang, Kwachukwu, Mediouni et al., Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway in mammalian cell culture, Commun. Biol,
doi:10.1038/s42003-022-03841-8
{ 'indexed': {'date-parts': [[2024, 3, 17]], 'date-time': '2024-03-17T06:40:34Z', 'timestamp': 1710657634320},
'reference-count': 10,
'publisher': 'Elsevier BV',
'issue': '3',
'license': [ { 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'tdm',
'delay-in-days': 0,
'URL': 'https://www.elsevier.com/tdm/userlicense/1.0/'},
{ 'start': { 'date-parts': [[2024, 3, 16]],
'date-time': '2024-03-16T00:00:00Z',
'timestamp': 1710547200000},
'content-version': 'vor',
'delay-in-days': 381,
'URL': 'http://www.elsevier.com/open-access/userlicense/1.0/'},
{ 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'stm-asf',
'delay-in-days': 0,
'URL': 'https://doi.org/10.15223/policy-017'},
{ 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'stm-asf',
'delay-in-days': 0,
'URL': 'https://doi.org/10.15223/policy-037'},
{ 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'stm-asf',
'delay-in-days': 0,
'URL': 'https://doi.org/10.15223/policy-012'},
{ 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'stm-asf',
'delay-in-days': 0,
'URL': 'https://doi.org/10.15223/policy-029'},
{ 'start': { 'date-parts': [[2023, 3, 1]],
'date-time': '2023-03-01T00:00:00Z',
'timestamp': 1677628800000},
'content-version': 'stm-asf',
'delay-in-days': 0,
'URL': 'https://doi.org/10.15223/policy-004'}],
'content-domain': { 'domain': ['cell.com', 'elsevier.com', 'sciencedirect.com'],
'crossmark-restriction': True},
'published-print': {'date-parts': [[2023, 3]]},
'DOI': '10.1016/j.chembiol.2023.02.010',
'type': 'journal-article',
'created': {'date-parts': [[2023, 3, 16]], 'date-time': '2023-03-16T14:54:08Z', 'timestamp': 1678978448000},
'page': '233-234',
'update-policy': 'http://dx.doi.org/10.1016/elsevier_cm_policy',
'source': 'Crossref',
'is-referenced-by-count': 1,
'title': 'Getting in on the action: New tools to see SARS-CoV-2 infect a cell',
'prefix': '10.1016',
'volume': '30',
'author': [ {'given': 'Scott B.', 'family': 'Hansen', 'sequence': 'first', 'affiliation': []},
{'given': 'Zixuan', 'family': 'Yuan', 'sequence': 'additional', 'affiliation': []}],
'member': '78',
'reference': [ { 'key': '10.1016/j.chembiol.2023.02.010_bib1',
'doi-asserted-by': 'crossref',
'first-page': '248',
'DOI': '10.1016/j.chembiol.2023.02.001',
'article-title': 'SIM imaging Resolves endocytosis of SARS-CoV-2 spike\xa0RBD in living '
'cells',
'author': 'Miao',
'year': '2023',
'journal-title': 'Cell Chem Biol'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib2',
'doi-asserted-by': 'crossref',
'first-page': '271',
'DOI': '10.1016/j.cell.2020.02.052',
'article-title': 'SARS-CoV-2 cell entry Depends on ACE2 and TMPRSS2 and is blocked by a '
'Clinically Proven Protease inhibitor',
'volume': '181',
'author': 'Hoffmann',
'year': '2020',
'journal-title': 'Cell'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib3',
'doi-asserted-by': 'crossref',
'first-page': '1',
'DOI': '10.1073/pnas.2209514119',
'article-title': 'SARS-CoV-2 requires acidic pH to infect cells',
'volume': '119',
'author': 'Kreutzberger',
'year': '2022',
'journal-title': 'Proc. Natl. Acad. Sci. USA'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib4',
'doi-asserted-by': 'crossref',
'first-page': '706',
'DOI': '10.1038/s41586-022-04474-x',
'article-title': 'Altered TMPRSS2 usage by SARS-CoV-2 Omicron impacts infectivity and '
'fusogenicity',
'volume': '603',
'author': 'Meng',
'year': '2022',
'journal-title': 'Nature'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib5',
'doi-asserted-by': 'crossref',
'first-page': '958',
'DOI': '10.1038/s42003-022-03841-8',
'article-title': 'Hydroxychloroquine blocks SARS-CoV-2 entry into the endocytic pathway '
'in mammalian cell culture',
'volume': '5',
'author': 'Yuan',
'year': '2022',
'journal-title': 'Commun. Biol.'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib6',
'article-title': 'The role of high cholesterol in aged related COVID19 lethality',
'author': 'Wang',
'year': '2020',
'journal-title': 'bioRxiv'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib7',
'doi-asserted-by': 'crossref',
'first-page': '17707',
'DOI': '10.1016/S0021-9258(19)47429-2',
'article-title': 'Bafilomycin A1, a specific inhibitor of vacuolar-type H+-ATPase, '
'inhibits acidification and protein degradation in lysosomes of cultured '
'cells',
'volume': '266',
'author': 'Yoshimori',
'year': '1991',
'journal-title': 'J.\xa0Biol. Chem.'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib8',
'doi-asserted-by': 'crossref',
'first-page': '100306',
'DOI': '10.1016/j.jbc.2021.100306',
'article-title': 'SARS-CoV-2 infects cells after viral entry via clathrin-mediated '
'endocytosis',
'volume': '296',
'author': 'Bayati',
'year': '2021',
'journal-title': 'J.\xa0Biol. Chem.'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib9',
'doi-asserted-by': 'crossref',
'first-page': '250',
'DOI': '10.3390/membranes13020250',
'article-title': 'Cholesterol regulation of membrane proteins revealed by two-color '
'super-resolution imaging',
'volume': '13',
'author': 'Yuan',
'year': '2023',
'journal-title': 'Membranes'},
{ 'key': '10.1016/j.chembiol.2023.02.010_bib10',
'doi-asserted-by': 'crossref',
'DOI': '10.1073/pnas.2113229118',
'article-title': 'Mechanisms underlying drug-mediated regulation of membrane protein '
'function',
'volume': '118',
'author': 'Rusinova',
'year': '2021',
'journal-title': 'Proc. Natl. Acad. Sci. USA'}],
'container-title': 'Cell Chemical Biology',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://api.elsevier.com/content/article/PII:S2451945623000594?httpAccept=text/xml',
'content-type': 'text/xml',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://api.elsevier.com/content/article/PII:S2451945623000594?httpAccept=text/plain',
'content-type': 'text/plain',
'content-version': 'vor',
'intended-application': 'text-mining'}],
'deposited': { 'date-parts': [[2024, 3, 17]],
'date-time': '2024-03-17T06:14:15Z',
'timestamp': 1710656055000},
'score': 1,
'resource': {'primary': {'URL': 'https://linkinghub.elsevier.com/retrieve/pii/S2451945623000594'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2023, 3]]},
'references-count': 10,
'journal-issue': {'issue': '3', 'published-print': {'date-parts': [[2023, 3]]}},
'alternative-id': ['S2451945623000594'],
'URL': 'http://dx.doi.org/10.1016/j.chembiol.2023.02.010',
'relation': {},
'ISSN': ['2451-9456'],
'subject': [ 'Clinical Biochemistry', 'Drug Discovery', 'Pharmacology', 'Molecular Biology',
'Molecular Medicine', 'Biochemistry'],
'container-title-short': 'Cell Chemical Biology',
'published': {'date-parts': [[2023, 3]]},
'assertion': [ {'value': 'Elsevier', 'name': 'publisher', 'label': 'This article is maintained by'},
{ 'value': 'Getting in on the action: New tools to see SARS-CoV-2 infect a cell',
'name': 'articletitle',
'label': 'Article Title'},
{'value': 'Cell Chemical Biology', 'name': 'journaltitle', 'label': 'Journal Title'},
{ 'value': 'https://doi.org/10.1016/j.chembiol.2023.02.010',
'name': 'articlelink',
'label': 'CrossRef DOI link to publisher maintained version'},
{ 'value': 'https://doi.org/10.1016/j.chembiol.2023.02.001',
'name': 'associatedlink',
'label': 'CrossRef DOI link to the associated document'},
{'value': 'simple-article', 'name': 'content_type', 'label': 'Content Type'},
{'value': '© 2023 Elsevier Ltd.', 'name': 'copyright', 'label': 'Copyright'}]}