Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand
Karim Farmanpour-Kalalagh, Arman Beyraghdar Kashkooli, Alireza Babaei, Ali Rezaei, Alexander R Van Der Krol
Frontiers in Plant Science, doi:10.3389/fpls.2022.780257
Artemisinin is a natural bioactive sesquiterpene lactone containing an unusual endoperoxide 1, 2, 4-trioxane ring. It is derived from the herbal medicinal plant Artemisia annua and is best known for its use in treatment of malaria. However, recent studies also indicate the potential for artemisinin and related compounds, commonly referred to as artemisinins, in combating viral infections, inflammation and certain cancers. Moreover, the different potential modes of action of artemisinins make these compounds also potentially relevant to the challenges the world faces in the COVID-19 pandemic. Initial studies indicate positive effects of artemisinin or Artemisia spp. extracts to combat SARS-CoV-2 infection or COVID-19 related symptoms and WHO-supervised clinical studies on the potential of artemisinins to combat COVID-19 are now in progress. However, implementing multiple potential new uses of artemisinins will require effective solutions to boost production, either by enhancing synthesis in A. annua itself or through biotechnological engineering in alternative biosynthesis platforms. Because of this renewed interest in artemisinin and its derivatives, here we review its modes of action, its potential application in different diseases including COVID-19, its biosynthesis and future options to boost production.
AUTHOR CONTRIBUTIONS ABK conceptualized the review. KF-K, AR, AB, ARK, and ABK wrote the manuscript. ABK, ARK, and AB reviewed the manuscript. KF-K, AR, and ABK did the figures visualization. All authors contributed to the article and approved the submitted version.
Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher. Copyright © 2022 Farmanpour-Kalalagh, Beyraghdar Kashkooli, Babaei, Rezaei and van der Krol. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
References
Aftab, Khan, Idrees, Naeem, Optimizing nitrogen levels combined with gibberellic acid for enhanced yield, photosynthetic attributes, enzyme activities, and artemisinin content of Artemisia annua, Front. Agric. China,
doi:10.1007/s11703-011-1065-7
Aftab, Masroor, Khan, Idrees, Naeem, Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L, J. Crop Sci. Biotechnol,
doi:10.1007/s12892-010-0040-3
Alam, Abdin, Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content, Plant Cell Rep,
doi:10.1007/s00299-011-1099-6
Alam, Hao, Zhang, Li, Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways, Biotechnol. Adv,
doi:10.1016/j.biotechadv.2021.107759
Alcântara, Ribeiro, Cardoso, Dos, Araújo et al., In vitro evaluation of the cytotoxic and genotoxic effects of artemether, an antimalarial drug, in a gastric cancer cell line (PG100), J. Appl. Toxicol,
doi:10.1002/jat.1734
Aldieri, Atragene, Bergandi, Riganti, Costamagna et al., Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation, FEBS Lett,
doi:10.1016/S0014-5793(03)00905-0
Anfosso, Efferth, Albini, Pfeffer, Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins, Pharmacogenomics J,
doi:10.1038/sj.tpj.6500371
Anthony, Anthony, Nowroozi, Kwon, Newman et al., Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene, Metab. Eng,
doi:10.1016/j.ymben.2008.07.007
Antoine, Fisher, Amewu, O'neill, Ward et al., Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential, J. Antimicrob. Chemother,
doi:10.1093/jac/dkt486
Aquil, Husaini, Abdin, Rather, Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants, Planta Med,
doi:10.1055/s-0029-1185775
Bahrami, Kamalinejad, Latifi, Seif, Dadmehr, Cytokine storm in COVID-19 and parthenolide: preclinical evidence, Phyther. Res,
doi:10.1002/ptr.6776
Bailly, Vergoten, Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?, Pharmacol. Ther,
doi:10.1016/j.pharmthera.2020.107618
Banyai, Kirdmanee, Mii, Supaibulwatana, Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L. Plant Cell, Tissue Organ Cult,
doi:10.1007/s11240-010-9775-8
Beccafico, Morozzi, Marchetti, Riccardi, Sidoni et al., Artesunate induces ROS-and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells, Carcinogenesis,
doi:10.1093/carcin/bgv098
Belhassan, Zaki, Chtita, Alaqarbeh, Alsakhen et al., Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: computational approach, Comput. Biol. Med,
doi:10.1016/j.compbiomed.2021.104758
Berdelle, Nikolova, Quiros, Efferth, Kaina, Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells, Mol. Cancer Ther,
doi:10.1158/1535-7163.MCT-11-0534
Bertea, Freije, Van Der Woude, Verstappen, Perk et al., Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua, Planta Med,
doi:10.1055/s-2005-837749
Beyraghdar Kashkooli, Van Der Krol, Rabe, Dickschat, Bouwmeester, Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production, Metab. Eng,
doi:10.1016/j.ymben.2019.01.007
Blazquez, Fernandez-Dolon, Sanchez-Vicente, Maestre, Gomez-San et al., Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis, Bioorganic Med. Chem,
doi:10.1016/j.bmc.2013.04.059
Bridgford, Xie, Cobbold, Pasaje, Herrmann et al., Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome, Nat. Commun,
doi:10.1038/s41467-018-06221-1
Cao, Feng, Gao, Li, Jin et al., Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo, Int. Immunopharmacol,
doi:10.1016/j.intimp.2019.01.041
Carqueijeiro, Langley, Grzech, Koudounas, Papon et al., Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs, Curr. Opin. Biotechnol,
doi:10.1016/j.copbio.2019.11.017
Chaijaroenkul, Viyanant, Mahavorasirikul, Cytotoxic activity of artemisinin derivatives against cholangiocarcinoma (CL-6) and hepatocarcinoma (Hep-G2) cell lines, Asian Pacific J. Cancer Prev
Chen, Chen, Feng, Wen, Sun, Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis via synergistic upregulation of ALAS1 expression, Acta Pharm. Sin. B,
doi:10.1016/j.apsb.2019.05.001
Chen, Klinkhamer, Escobar-Bravo, Leiss, Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: implications for thrips resistance, Plant Sci,
doi:10.1016/j.plantsci.2018.08.007
Chen, Shen, Wang, Wang, Wu et al., The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L, Plant Biotechnol. Rep,
doi:10.1007/s11816-012-0262-z
Chen, Shou, Lin, Duan, Wu et al., Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells, Anticancer. Drugs,
doi:10.1097/CAD.0000000000000089
Chen, Sun, Pan, Jiang, Sun, Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo, Anticancer. Drugs,
doi:10.1097/CAD.0b013e3283212ade
Chen, Sun, Wang, Pan, Gao et al., Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB, J. Cancer Res. Clin. Oncol,
doi:10.1007/s00432-009-0731-0
Chen, Wong, Lim, Lim, Lin et al., Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway, Molecules,
doi:10.3390/molecules22081272
Chen, Ye, Li, Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation, Plant Sci,
doi:10.1016/S0168-9452(00)00217-X
Chen, Zhang, Zhang, Gao, Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142, Brazilian J. Med. Biol. Res,
doi:10.1590/1414-431x20197992
Chen, Zhou, Fang, Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro, Pharmacol. Res,
doi:10.1016/S1043-6618(03)00107-5
Cheong, Tan, Wong, Tran, Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases, Pharmacol. Res,
doi:10.1016/j.phrs.2020.104901
Conti, Younes, Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection, J. Biol. Regul. Homeost. Agents,
doi:10.23812/Editorial-Conti-3
Cui, Feng, Shi, Wang, Feng et al., Artesunate downregulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10, Int. Immunopharmacol,
doi:10.1016/j.intimp.2015.05.004
Davies, Atkinson, Burns, Woolley, Hipps et al., Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua, Ann. Bot,
doi:10.1093/aob/mcp126
De Oliveira, Da Rocha, Magalhães, Da Silva Mendes, Marinho et al., Computational approach towards the design of artemisinin-thymoquinone hybrids against main protease of SARS-COV-2, Futur. J. Pharm. Sci,
doi:10.1186/s43094-021-00334-z
Dewick, Medicinal Natural Products: A Biosynthetic Approach, 3rd Edn
Dietrich, Yoshikuni, Fisher, Woolard, Ockey et al., A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3, ACS Chem. Biol,
doi:10.1021/cb900006h
Dilshad, Cusido, Palazon, Estrada, Bonfill et al., Enhanced artemisinin yield by expression of rol genes in Artemisia annua, Malar. J,
doi:10.1186/s12936-015-0951-5
Disbrow, Baege, Kierpiec, Yuan, Centeno et al., Dihydroartemisinin is cytotoxic to papillomavirusexpressing epithelial cells in vitro and in vivo, Cancer Res,
doi:10.1158/0008-5472.CAN-05-1216
Dong, Zhou, Li, Yan, Deng et al., Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis, Cancer Biol. Ther,
doi:10.4161/15384047.2014.955728
Du, Zhang, De Ma, Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo, Cancer Chemother. Pharmacol,
doi:10.1007/s00280-009-1095-5
Dwivedi, Mazumder, Du Plessis, Du Preez, Haynes et al., In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells, Nanomed. Nanotechnol. Biol. Med,
doi:10.1016/j.nano.2015.07.010
Efferth, Marschall, Wang, Huong, Hauber et al., Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses, J. Mol. Med,
doi:10.1007/s00109-001-0300-8
Efferth, Oesch, The immunosuppressive activity of artemisinintype drugs towards inflammatory and autoimmune diseases, Med. Res. Rev,
doi:10.1002/med.21842
Efferth, Romero, Wolf, Stamminger, Marin et al., The antiviral activities of artemisinin and artesunate, Clin. Infect. Dis,
doi:10.1086/591195
Eling, Reuter, Hazin, Hamacher-Brady, Brady, Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells, Oncoscience,
doi:10.18632/oncoscience.160
Farhi, Marhevka, Ben-Ari, Algamas-Dimantov, Liang et al., Generation of the potent anti-malarial drug artemisinin in tobacco, Nat. Biotechnol,
doi:10.1038/nbt.2054
Fei, Gu, Xie, Su, Jiang, Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage, J. Pharmacol. Sci,
doi:10.1016/j.jphs.2018.09.011
Ferreira, Laughlin, Delabays, De Magalhães, Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin, Plant Genet. Resour,
doi:10.1079/pgr200585
Firestone, Oyewole, Reid, Ng, Repurposing quinoline and artemisinin antimalarials as therapeutics for SARS-CoV-2: rationale and implications, ACS Pharmacol. Transl. Sci,
doi:10.1021/acsptsci.0c00222
Fröhlich, Kiss, Wölfling, Mernyák, Kulmány et al., Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast Cancer, ACS Med. Chem. Lett,
doi:10.1021/acsmedchemlett.8b00381
Fröhlich, Ndreshkjana, Muenzner, Reiter, Hofmeister et al., Synthesis of novel hybrids of thymoquinone and artemisinin with hig activity and selectivity against colon cancer, Chem. Med. Chem,
doi:10.1002/cmdc.201600594
Fuentes, Zhou, Erban, Karcher, Kopka et al., A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop, Elife,
doi:10.7554/eLife.13664
Fuzimoto, An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment, J. Integr. Med,
doi:10.1016/j.joim.2021.07.003
Gendrot, Duflot, Boxberger, Delandre, Jardot et al., Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate, Int. J. Infect. Dis,
doi:10.1016/j.ijid.2020.08.032
Gong, Gallis, Goodlett, Yang, Lu et al., Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines, Anticancer Res
Graham, Besser, Blumer, Branigan, Czechowski et al., The genetic map of Artemisia annua L identifies loci affecting yield of the antimalarial drug artemisinin, Science,
doi:10.1126/science.1182612
Gravett, Liu, Krishna, Chan, Haynes et al., In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents, Cancer Chemother. Pharmacol,
doi:10.1007/s00280-010-1355-4
Greenshields, Shepherd, Hoskin, Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate, Mol. Carcinog,
doi:10.1002/mc.22474
Gu, Wang, Wang, Yuan, Wu et al., Artemisinin attenuates post-infarct myocardial remodeling by down-regulating the NF-κB pathway, Tohoku J. Exp. Med,
doi:10.1620/tjem.227.161
Guastalegname, Vallone, Could chloroquine /hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment?, Clin. Infect. Dis,
doi:10.1093/cid/ciaa321
Hamacher-Brady, Stein, Turschner, Toegel, Mora et al., Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production, J. Biol. Chem,
doi:10.1074/jbc.M110.210047
Han, Wang, Kanagarajan, Hao, Lundgren et al., Promoting artemisinin biosynthesis in Artemisia annua plants by substrate channeling, Mol. Plant,
doi:10.1016/j.molp.2016.03.004
Hao, Xie, De, Yi, Zang et al., PHresponsive artesunate polymer prodrugs with enhanced ablation effect on rodent xenograft colon cancer, Int. J. Nanomedicine,
doi:10.2147/IJN.S242032
Hassanipour, Arab-Zozani, Amani, Heidarzad, Fathalipour et al., The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials, Sci. Rep,
doi:10.1038/s41598-021-90551-6
Hu, Liu, Qin, Lin, An et al., Artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro, Front. Cell Infect. Microbiol,
doi:10.3389/fcimb.2021.680127
Huang, Tao, Liu, Cai, Huang et al., Current prevention of COVID-19: natural products and herbal medicine, Front. Pharmacol,
doi:10.3389/fphar.2020.588508
Hwang, Yun, Kim, Han, Lee et al., Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NF-κB/AP-1-dependent mechanisms, Biochem. Pharmacol,
doi:10.1016/j.bcp.2010.02.003
Iannicelli, Guariniello, Tossi, Regalado, Di Ciaccio et al., The "polyploid effect" in the breeding of aromatic and medicinal species, Sci. Hortic,
doi:10.1016/j.scienta.2019.108854
Ikram, Beyraghdar Kashkooli, Peramuna, Van Der Krol, Bouwmeester et al., Insights into heterologous biosynthesis of arteannuin B and artemisinin in physcomitrella patens, Molecules,
doi:10.3390/molecules24213822
Ikram, Beyraghdar Kashkooli, Peramuna, Van Der Krol, Bouwmeester et al., Stable production of the antimalarial drug artemisinin in the moss physcomitrella patens, Front. Bioeng. Biotechnol,
doi:10.3389/fbioe.2017.00047
Ilamathi, Prabu, Ayyappa, Sivaramakrishnan, Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling, Biomed. Pharmacother,
doi:10.1016/j.biopha.2016.04.061
Immethun, Hoynes-O'connor, Balassy, Moon, Microbial production of isoprenoids enabled by synthetic biology, Front. Microbiol,
doi:10.3389/fmicb.2013.00075
Islam, Hossain, Sarker, Ferdous, Hannan et al., Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure, Phyther. Res,
doi:10.1002/ptr.6895
Jamalzadeh, Ghafoori, Aghamaali, Sariri, Induction of apoptosis in human breast cancer MCF-7 cells by a semi-synthetic derivative of artemisinin: a caspase-related mechanism, Iran. J. Biotechnol,
doi:10.15171/ijb.1567
Javed, Meeran, Jha, Ojha, Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19, Front. Plant Sci,
doi:10.3389/fpls.2020.601335
Jelodar, Bhatt, Mohamed, Keng, New cultivation approaches of Artemisia annua L. for a sustainable production of the antimalarial drug artemisinin, J. Med. Plants Res,
doi:10.5897/JMPR11.1053
Jha, Ram, Khan, Kiran, Abdin, Impact of organic manure and chemical fertilizers on artemisinin content and yield in Artemisia annua, L. Int. Crop. Prod,
doi:10.1016/j.indcrop.2010.12.011
Jiang, Chai, Chuang, Li, Wang et al., Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells, Anticancer. Drugs,
doi:10.1097/CAD.0b013e328350e8ac
Jiang, Fu, Pan, Tang, Shen et al., Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua, Biomed Res. Int,
doi:10.1155/2016/7314971
Jiang, Geng, Yu, Liu, Gao et al., Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-smallcell lung cancer via inhibiting NF-κB/GLUT1 axis, Oncotarget,
doi:10.18632/oncotarget.13536
Jiang, Huang, Wang, Yu, Zhang, The synergistic anticancer effect of artesunate combined with allicin in osteosarcoma cell line in vitro and in vivo, Asian Pacific J. Cancer Prev,
doi:10.7314/APJCP.2013.14.8.4615
Jiang, Zhou, Zhang, Liu, Chen, Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate-induced apoptosis, Int. J. Mol. Med,
doi:10.3892/ijmm.2018.3712
Judd, Bagley, Li, Zhu, Lei et al., Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua, Mol. Plant,
doi:10.1016/j.molp.2019.02.011
Kapepula, Kabengele, Kingombe, Van Bambeke, Tulkens et al., Artemisia spp. derivatives for COVID-19 treatment: anecdotal use, political hype, treatment potential, challenges, and road map to randomized clinical trials, Am. J. Trop. Med. Hyg,
doi:10.4269/ajtmh.20-0820
Kiani, Suberu, Mirza, Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin, Malar. J,
doi:10.1186/s12936-016-1312-8
Klayman, Qinghaosu (artemisinin): an antimalarial drug from china, Published by: American. Science
Koi, Takahashi, Fuchi, Umeno, Muramatsu et al., A fully synthetic 6-aza-artemisinin bearing an amphiphilic chain generates aggregates and exhibits anti-cancer activities, Org. Biomol. Chem,
doi:10.1039/d0ob00919a
Koshak, Koshak, Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: a mini review of in silico studies, Curr. Ther. Res,
doi:10.1016/j.curtheres.2020.100602
Krishna, Augustin, Wang, Xu, Staines et al., Repurposing antimalarials to tackle the COVID-19 pandemic, Trends Parasitol,
doi:10.1016/j.pt.2020.10.00
Krishna, Ganapathi, Ster, Saeed, Cowan et al., A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer, EBioMedicine,
doi:10.1016/j.ebiom.2014.11.010
Kumar, Verma, Das, Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer, Drug Dev. Res,
doi:10.1002/ddr.21590
Lai, Chen, Tian, Li, Zhang et al., Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2015.08.040
Lai, Nakase, Lacoste, Singh, Sasaki, Artemisinintransferrin conjugate retards growth of breast tumors in the rat, Anticancer Res
Lai, Shih, Ko, Tang, Hsueh, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges, Int. J. Antimicrob. Agents,
doi:10.1016/j.ijantimicag.2020.105924
Lai, Singh, Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat, Cancer Lett,
doi:10.1016/j.canlet.2005.01.019
Langroudi, Hassan, Ebtekar, Mahdavi, Pakravan et al., A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model, Int. Immunopharmacol,
doi:10.1016/j.intimp.2010.06.005
Larson, Dolivo, Dominko, Artesunate inhibits myofibroblast formation via induction of apoptosis and antagonism of profibrotic gene expression in human dermal fibroblasts, Cell Biol. Int,
doi:10.1002/cbin.11220
Leow, Jelodar, Chan, Ethyl methane sulfonate (Ems) enhanced the formation of leaf glandular trichomes and the production of artemisinin in Artemisia annua L. Asia Pacific, J. Sci. Technol
Li, Ba, Liu, Yue, Chen et al., Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRá protein, Cell .Discov,
doi:10.1038/celldisc.2017.42
Li, Bu, Sun, Guo, Lai, Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest, Acta Biochim. Biophys. Sin,
doi:10.1093/abbs/gmy125
Li, Feng, Lu, Wei, Ma et al., Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation, J. Cell. Physiol,
doi:10.1002/jcp.27875
Li, Gu, Sun, Dai, Chen et al., The selectivity of artemisinin-based drugs on human lung normal and cancer cells, Environ. Toxicol. Pharmacol,
doi:10.1016/j.etap.2017.12.004
Li, Ma, Deng, Wu, Wang et al., Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway, Gene,
doi:10.1016/j.gene.2020.145134
Li, Sui, Jiang, Li, Han et al., Dihydroartemisinin increases the sensitivity of photodynamic therapy via NF-κB/HIF-1α/VEGF pathway in esophageal cancer cell in vitro and in vivo, Cell Physiol. Biochem,
doi:10.1159/000492541
Li, Xu, Pian, Sun, Artesunate and sorafenib: combinatorial inhibition of liver cancer cell growth, Oncol. Lett,
doi:10.3892/ol.2019.10810
Li, Yuan, Li, Deng, Wang et al., Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial, Int. J. Antimicrob. Agents,
doi:10.1016/j.ijantimicag.2020.106216
Li, Zhang, Yuan, Tian, Wang et al., Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/β-catenin pathway, Int. J. Cancer,
doi:10.1002/ijc.22804
Li, Zhang, Yuan, Yang, Wang et al., Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2008.03.041
Li, Zhou, Du, Jia, Wu et al., Dihydroartemisinin accentuates the anti-tumor effects of photodynamic therapy via inactivation of NF-κB in Eca109 and Ec9706 esophageal cancer cells, Cell Physiol. Biochem,
doi:10.1159/000358716
Liang, Liu, Wu, Qiao, Lu et al., Artemisinin induced reversal of EMT affects the molecular biological activity of ovarian cancer SKOV3 cell lines, Oncol. Lett,
doi:10.3892/ol.2019.10608
Lin, Zhou, Zhang, Lu, Zhang et al., Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway, Biotechnol. Appl. Biochem,
doi:10.1002/bab.13
Lindahl, Olsson, Mercke, Tollbom, Schelin et al., Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae, Biotechnol. Lett,
doi:10.1007/s10529-006-0015-6
Liu, Gao, Zhu, Zheng, Zhang et al., Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway, Cancer Med,
doi:10.1002/cam4.1827
Liu, Xu, Ouyang, Ye, Li, Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor, Bioproc. Eng,
doi:10.1007/PL00009041
Liu, Zhang, Yang, Ma, Li et al., The role of interleukin-6 in monitoring severe case of coronavirus disease 2019, EMBO Mol. Med,
doi:10.15252/emmm.202012421
Lu, Chen, Zhang, Ding, Meng, The anti-cancer activity of dihydroartemisinin is associated with induction of irondependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells, Invest. New Drugs,
doi:10.1007/s10637-010-9481-8
Lu, Zhao, Li, Niu, Yang et al., Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding, Lancet,
doi:10.1016/S0140-6736(20)30251-8
Luo, Zhu, Tang, Cao, Zhou et al., Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo, Radiat. Oncol,
doi:10.1186/1748-717X-9-84
Ma, Li, Alejos-Gonzalez, Zhu, Xue et al., Overexpression of a type-I isopentenyl pyrophosphate isomerase of Artemisia annua in the cytosol leads to high arteannuin B production and artemisinin increase, Plant J,
doi:10.1111/tpj.13583
Ma, Pu, Lei, Ma, Wang et al., Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis, Plant Cell Physiol,
doi:10.1093/pcp/pcp149
Ma, Wang, Wang, Alejos-Gonzales, Sun et al., A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua, Mol. Plant,
doi:10.1016/j.molp.2015.07.004
Ma, Xu, Li, Zhang, Fu et al., Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua, Sci. Adv,
doi:10.1126/sciadv.aas9357
Ma, Yao, Zhang, Lin, Wang et al., The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model, Molecules,
doi:10.3390/molecules161210556
Malhotra, Subramaniyan, Rawat, Kalamuddin, Qureshi et al., Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells, Mol. Plant,
doi:10.1016/j.molp.2016.09.013
Mandal, Upadhyay, Wajid, Ram, Jain et al., Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels, Mycorrhiza,
doi:10.1007/s00572-014-0614-3
Mani, Johnson, Steel, Broszczak, Neilsen et al., Natural product-derived phytochemicals as potential agents against coronaviruses: a review, Virus Res,
doi:10.1016/j.virusres.2020.197989
Mao, Gu, Qu, Sun, Song et al., Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro, Int. J. Mol. Med,
doi:10.3892/ijmm.2012.1176
Martin, Pitera, Withers, Newman, Keasling, Engineering a mevalonate pathway in Escherichia coli for production of terpenoids, Nat. Biotechnol,
doi:10.1038/nbt833
Mbengue, Bhattacharjee, Pandharkar, Liu, Estiu et al., A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria, Nature,
doi:10.1038/nature14412
Mcdowell, Hill, Mccorkle, Gorski, Zhang et al., Preclinical evaluation of artesunate as an antineoplastic agent in ovarian cancer treatment, Diagnostics,
doi:10.3390/diagnostics11030395
Mercke, Bengtsson, Bouwmeester, Posthumus, Brodelius, Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L, Arch. Biochem. Biophys,
doi:10.1006/abbi.2000.1962
Mert, K1r1c1, Ayanoglu, The effects of different plant densities on yield, yield components and quality of Artemisia annua L. ecotypes, J. Herbs. Spices Med. Plants,
doi:10.1300/J044v09n04_20
Michaelis, Kleinschmidt, Barth, Rothweiler, Geiler et al., Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines, Biochem. Pharmacol,
doi:10.1016/j.bcp.2009.08.013
Mok, Ashley, Ferreira, Zhu, Lin et al., Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance, Science,
doi:10.1126/science.1260403
Mondal, Chatterji, Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 Infected human cervical cancer cells, J. Cell. Biochem,
doi:10.1002/jcb.25152
Nafis, Akmal, Ram, Alam, Ahlawat et al., Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L, Plant Biotechnol. Rep,
doi:10.1007/s11816-010-0156-x
Nair, Huang, Fidock, Towler, Weathers, Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta, J. Ethnopharmacol,
doi:10.1016/j.jep.2021.114797
Nakase, Gallis, Takatani-Nakase, Oh, Lacoste et al., Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis, Cancer Lett,
doi:10.1016/j.canlet.2008.09.023
Newman, Marshall, Chang, Nowroozi, Paradise et al., High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli, Biotechnol. Bioeng,
doi:10.1002/bit.21017
Nunes, Pandey, Yadav, Goel, Ateeq, Targeting NFkappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens, Neoplasia,
doi:10.1016/j.neo.2017.02.002
Ohgami, Elstad, Chung, Shirachi, Quock et al., Effect of hyperbaric oxygen on the anticancer effect of artemisinin on molt-4 human leukemia cells, Anticancer Res
Ooko, Saeed, Kadioglu, Sarvi, Colak et al., Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells, Phytomedicine,
doi:10.1016/j.phymed.2015.08.002
Orege, Adeyemi, Tiamiyu, Akinyemi, Ibrahim et al., Artemisia and artemisia-based products for COVID-19 management: current state and future perspective, Adv. Tradit. Med,
doi:10.1007/s13596-021-00576-5
Osaki, Uto, Ishizuka, Tanaka, Yamanaka et al., Artesunate enhances the cytotoxicity of 5-aminolevulinic acid-based sonodynamic therapy against mouse mammary tumor cells in vitro, Molecules,
doi:10.3390/molecules22040533
Paddon, Keasling, Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development, Nat. Rev. Microbiol,
doi:10.1038/nrmicro3240
Paddon, Westfall, Pitera, Benjamin, Fisher et al., High-level semi-synthetic production of the potent antimalarial artemisinin, Nature,
doi:10.1038/nature12051
Pandey, Pandey-Rai, Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L. Plant Cell, Tissue Organ Cult,
doi:10.1007/s11240-013-0413-0
Paradise, Kirby, Chan, Keasling, Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase, Biotechnol. Bioeng,
doi:10.1002/bit.21766
Pirali, Taheri, Zarei, Majidi, Ghafouri, Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells, Int. J. Biol. Macromol,
doi:10.1016/j.ijbiomac.2020.08.198
Pitera, Paddon, Newman, Keasling, Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli, Metab. Eng,
doi:10.1016/j.ymben.2006.11.002
Rasheed, Efferth, Asangani, Allgayer, First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases, Int. J. Cancer,
doi:10.1002/ijc.25315
Raymond, Miriam, Oliver, Edwin, Stephen, Enhancement of artemisinin in Artemisia annua L. through induced mutation, OALib,
doi:10.4236/oalib.1102189
Raza, Ghoshal, Chockalingam, Ghosh, Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells, Sci. Rep,
doi:10.1038/s41598-017-08058-y
Reed, Stephenson, Miettinen, Brouwer, Leveau et al., A translational synthetic biology platform for rapid access to gramscale quantities of novel drug-like molecules, Metab. Eng,
doi:10.1016/j.ymben.2017.06.012
Ribaudo, Coghi, Yang, Ng, Mastinu et al., Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptorbinding domain (RBD), Nat. Prod. Res,
doi:10.1080/14786419.2021.1925894
Riganti, Doublier, Viarisio, Miraglia, Pescarmona et al., Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1α and P-glycoprotein overexpression, Br. J. Pharmacol,
doi:10.1111/j.1476-5381.2009.00117.x
Ro, Ouellet, Paradise, Burd, Eng et al., Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid, BMC Biotechnol,
doi:10.1186/1472-6750-8-83
Ro, Paradise, Quellet, Fisher, Newman et al., Production of the antimalarial drug precursor artemisinic acid in engineered yeast, Nature,
doi:10.1038/nature04640
Roh, Kim, Jang, Shin, Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunateinduced ferroptosis, Redox Biol,
doi:10.1016/j.redox.2016.12.010
Rolta, Salaria, Kumar, Sourirajan, Dev, Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: in silico approach, Curr. Pharmacol. Rep,
doi:10.1016/S0168-9452(00)00453-2
Sarma, Willmes, Angerer, Adam, Becker et al., Artesunate affects T antigen expression and survival of virus-positive merkel cell carcinoma, Cancers,
doi:10.3390/cancers12040919
Schramek, Wang, Römisch-Margl, Keil, Radykewicz et al., Artemisinin biosynthesis in growing plants of Artemisia annua. a 13CO2 study, Phytochemistry,
doi:10.1016/j.phytochem.2009.10.015
Sehailia, Chemat, Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19, J. Biomol. Struct. Dyn,
doi:10.1080/07391102.2020.1796809
Shandilya, Chacko, Jayaram, Ghosh, A plausible mechanism for the antimalarial activity of artemisinin: a computational approach, Sci. Rep,
doi:10.1038/srep02513
Shen, Chen, Wang, Wu, Lu et al., Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (asteraceae), Genet. Mol. Res,
doi:10.4238/2012.September.12.13
Shi, Cui, Bi, Huang, Song et al., Artesunate altered cellular mechanical properties leading to deregulation of cell proliferation and migration in esophageal squamous cell carcinoma, Oncol. Lett,
doi:10.3892/ol.2015.2982
Singh, Lai, Artemisinin induces apoptosis in human cancer cells, Anticancer Res
Singh, Verma, Case report of a laryngeal squamous cell carcinoma treated with artesunate, Arch. Oncol,
doi:10.2298/AOO0204279S
Song, Zhang, Xu, Yang, Yang et al., The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro, Biochem. Pharmacol,
doi:10.1016/j.bcp.2020.114302
Srivastava, Sharma, Influence of micronutrient imbalance on growth and artemisinin content in Artemisia annua, Indian J. Pharm. Sci
Su, Li, Guan, Liu, Huang et al., Artemisinin and its derivatives prevent helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling, Phytomedicine,
doi:10.1016/j.phymed.2019.152968
Subedi, Futamura, Nishi, Ryo, Watanabe et al., High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: involvement of mitochondrial metabolism, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2016.06.128
Sundar, Marconett, Doan, Willoughby, Firestone, Artemisinin selectively decreases functional levels of estrogen receptoralpha and ablates estrogen-induced proliferation in human breast cancer cells, Carcinogenesis,
doi:10.1093/carcin/bgn214
Tanaka, Narazaki, Kishimoto, IL-6 in inflammation, immunity, and disease, Cold Spring Harb. Perspect. Biol
Teoh, Polichuk, Reed, Nowak, Covello, Artemisia annua L. (asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin, FEBS Lett,
doi:10.1016/j.febslet.2006.01.065
Thanaketpaisarn, Waiwut, Sakurai, Saiki, Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways, Int. J. Oncol,
doi:10.3892/ijo.2011.1017
Tilley, Straimer, Gnädig, Ralph, Fidock, Artemisinin action and resistance in Plasmodium falciparum, Trends Parasitol,
doi:10.1016/j.pt.2016.05.010
Tin, Sundar, Tran, Park, Poindexter et al., Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes, Anticancer. Drugs,
doi:10.1097/CAD.0b013e32834f6ea8
Ting, Wang, Rydén, Woittiez, Van Herpen et al., The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage, New Phytol,
doi:10.1111/nph.12274
Tong, Liu, Zheng, Zheng, Liu et al., Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling, Oncotarget,
doi:10.18632/oncotarget.8920
Tran, Nguyen, Kim, Yong, Nguyen, Enhancing activity of artesunate against breast cancer cells via inducedapoptosis pathway by loading into lipid carriers, Artif. Cells Nanomed. Biotechnol,
doi:10.3109/21691401.2015.1129616
Tran, Tin, Firestone, Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclindependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling, Anticancer. Drugs,
doi:10.1097/CAD.0000000000000054
Tsuruta, Paddon, Eng, Lenihan, Horning et al., High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli, PLoS One,
doi:10.1371/journal.pone.0004489
Tu, The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine, Nat. Med,
doi:10.1038/nm.2471
Uckun, Saund, Windlass, Trieu, Repurposing antimalaria phytomedicine artemisinin as a COVID-19 drug, Front. Pharmacol,
doi:10.3389/fphar.2021.649532
Van Herpen, Cankar, Nogueira, Bosch, Bouwmeester et al., Nicotiana benthamiana as a production platform for artemisinin precursors, PLoS One,
doi:10.1371/journal.pone.0014222
Velazquez-Salinas, Verdugo-Rodriguez, Rodriguez, Borca, The role of interleukin 6 during viral infections, Front. Microbiol,
doi:10.3389/fmicb.2019.01057
Verma, Das, Kumar, Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis, Chem. Biol. Interact,
doi:10.1016/j.cbi.2017.10.011
Verma, Stevenson, Schwarz, Van Antwerp, Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation, Genes Dev
Verma, Twilley, Esmear, Oosthuizen, Reid et al., Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19), Front. Pharmacol,
doi:10.3389/fphar.2020.561334
Våtsveen, Myhre, Steen, Wälchli, Lingjaerde et al., Artesunate shows potent anti-tumor activity in B-cell lymphoma, J. Hematol. Oncol,
doi:10.1186/s13045-018-0561-0
Wallaart, Bouwmeester, Hille, Poppinga, Maijers, Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin, Planta,
doi:10.1007/s004250000428
Wang, Beyraghdar Kashkooli, Sallets, Ting, De Ruijter et al., Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from a. annua, Metab. Eng,
doi:10.1016/j.ymben.2016.07.004
Wang, Gao, Chen, Kong, Jiang et al., Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo, Cancer Lett,
doi:10.1016/j.canlet.2010.01.001
Wang, Hou, Liu, Wu, Guo et al., Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51, Cancer Biol. Ther,
doi:10.1080/15384047.2015.1071738
Wang, Huang, Li, Fan, Long et al., Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation, PLoS One,
doi:10.1371/journal.pone.0009582
Wang, Li, Shi, Li, Tang et al., Antimalarial dihydroartemisinin triggers autophagy HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70, Phytomedicine,
doi:10.1016/j.phymed.2018.09.221
Wang, Sun, Cheng, Zhou, Gao et al., Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway, Cancer Chemother. Pharmacol,
doi:10.1007/s00280-011-1643-7
Wang, Wang, Lu, Zhang, Liu et al., Artesunate inhibits epithelial-mesenchymal transition in nonsmall-cell lung cancer (NSCLC) cells by down-regulating the expression of BTBD7, Bioengineered,
doi:10.1080/21655979.2020.1834727
Wang, Zhang, Chia, Loh, Li et al., Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum, Nat. Commun,
doi:10.1038/ncomms10111
Wang, Zhang, Wang, Cao, Qi et al., Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells, Drug Des. Devel. Ther,
doi:10.2147/DDDT.S199459
Wani, Choudhary, Zehra, Naeem, Weathers et al., Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches, Planta,
doi:10.1007/s00425-021-03676-3
Weathers, Bunk, Mccoy, The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots, Vitr. Cell. Dev. Biol. Plant,
doi:10.1079/IVP2004604
Wen, Liu, Wen, Yu, Wei, Artesunate promotes G2/M cell cycle arrest in MCF7 breast cancer cells through ATM activation, Breast Cancer,
doi:10.1007/s12282-018-0873-5
Westfall, Pitera, Lenihan, Eng, Woolard et al., Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin, Proc. Natl. Acad. Sci. U.S.A,
doi:10.1073/pnas.1110740109
Williamson, Kerimi, Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction, Biochem. Pharmacol,
doi:10.1016/j.bcp.2020.114123
Willoughby, Sundar, Cheung, Tin, Modiano et al., Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression, J. Biol. Chem,
doi:10.1074/jbc.M804491200
Wu, Cheng, Deng, Tao, Ye, Dihydroartemisinin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cell by upregulating tumor necrosis factor via JNK/NF-κB pathways. evidence-based Complement, Altern. Med,
doi:10.1155/2019/9581327
Wu, Hu, Yang, Zhou, Yang et al., Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells, J. Cell. Biochem,
doi:10.1002/jcb.23114
Wu, Wu, Yin, Dai, Li et al., Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway. Shengwu Gongcheng Xuebao, Chinese J. Biotechnol
Xie, Ma, Judd, Jones, Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives, Phytochem. Rev,
doi:10.1007/s11101-016-9480-2
Xiong, Sun, Zhu, Cheng, Zhang et al., Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling, Eur. J. Pharmacol,
doi:10.1016/j.ejphar.2010.09.018
Xu, He, Yang, Liang, Zhan et al., Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes, Rheumatology,
doi:10.1093/rheumatology/kem014
Yan, Pan, An, Gan, Feng, The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana, J. Photochem. Photobiol. B Biol,
doi:10.1016/j.jphotobiol.2012.04.011
Yang, Di Tan, Ng, Shi, Zhou et al., Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin, J. Biol. Chem,
doi:10.1074/jbc.M114.564567
Yang, Feng, Yang, Yin, Xu et al., Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants, Planta Med,
doi:10.1055/s-2008-1081333
Yao, Bhandari, Wang, Pan, Yang et al., Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line, Biochem. Biophys. Res. Commun,
doi:10.1016/j.bbrc.2018.05.026
Ye, Bhatia, Metabolic engineering for the production of clinically important molecules: omega-3 fatty acids, artemisinin, and taxol, Biotechnol. J,
doi:10.1002/biot.201100289
Yin, Liu, Qin, Wu, Huang et al., Artesunate suppresses the proliferation and development of estrogen receptor-α-positive endometrial cancer in HAND2-dependent pathway, Front. Cell Dev. Biol,
doi:10.3389/fcell.2020.606969
Yin, Yang, Zhao, Wei, Tao et al., Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells, Hum. Exp. Toxicol,
doi:10.1177/0960327120937331
Yu, Chen, Shuai, Xu, Ding et al., Artesunate protects pancreatic beta cells against cytokine-induced damage via SIRT1 inhibiting NF-κB activation, J. Endocrinol. Invest,
doi:10.1007/s40618-015-0328-1
Yu, Sun, Zhou, Shen, Zhou et al., Inhibition of AKT enhances the anti-cancer effects of artemisinin in clear cell renal cell carcinoma, Biomed. Pharmacother,
doi:10.1016/j.biopha.2019.109383
Yuan, Liu, Zhang, Xiang, Liu et al., Overexpression of artemisinic aldehyde 11 (13) reductase geneenhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L, Biotechnol. Appl. Biochem,
doi:10.1002/bab.1234
Zeng, Zhang, Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase, Nitric Oxide Biol. Chem,
doi:10.1016/j.niox.2010.12.005
Zeng, Zhang, Wang, Tao, Zou et al., Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca2+-NFATc1 signaling pathway and prevents ovariectomy-induced bone loss, Biochem. Pharmacol,
doi:10.1016/j.bcp.2016.10.007
Zhang, Jing, Li, Li, Wang et al., Development of transgenic Artemisia annua (chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNAmediated gene silencing, Biotechnol. Appl. Biochem,
doi:10.1042/BA20080068
Zhang, Liu, Ye, Sha, Qian et al., Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression, Cell Biol. Int
Zhang, Luo, Li, Tan, Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2, Onco. Targets. Ther,
doi:10.2147/OTT.S81041
Zhang, Teoh, Reed, Maes, Goossens et al., The molecular cloning of artemisinic aldehyde 11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua, J. Biol. Chem,
doi:10.1074/jbc.M803090200
Zhang, Wang, Zhang, Zhang, Artemisinin inhibits gastric cancer cell proliferation through upregulation of p53, Tumor Biol,
doi:10.1002/cbin.10244
Zhang, Ye, Liu, Wang, Li, Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants, Russ. J. Plant Physiol,
doi:10.1007/s11183-005-0009-6
Zhao, Jiang, Li, Yao, Dong et al., Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G 2/M phase, Int. Immunopharmacol,
doi:10.1016/j.intimp.2011.08.017
Zhao, Vakhrusheva, Markowitsch, Slade, Tsaur et al., Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction, Cells,
doi:10.3390/cells9122643
Zhou, Chen, Wang, Wu, Zhang et al., Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells, Chem. Biol. Interact,
doi:10.1016/j.cbi.2020.109273
Zhou, Gilmore, Ramirez, Settels, Gammeltoft et al., In vitro efficacy of artemisinin-based treatments against SARS-CoV-2, Sci. Rep,
doi:10.1038/s41598-021-93361-y
Zhou, Sun, Wang, Chen, Zheng et al., Artesunate inhibits the growth of gastric cancer cells through the mechanism of promoting oncosis both in vitro and in vivo, Anticancer. Drugs,
doi:10.1097/CAD.0b013e328364a109
Zhou, Wang, Wu, Lee, Li, Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells, Vascul. Pharmacol,
doi:10.1016/j.vph.2007.05.002
Zhou, Wang, Zhang, He, Wang et al., Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184, Oncotarget,
doi:10.18632/oncotarget.15353
Zhou, Zijlstra, Soto-Gamez, Setroikromo, Quax, Artemisinin derivatives stimulate DR5-specific TRAIL-induced apoptosis by regulating wildtype P53, Cancers,
doi:10.3390/cancers12092514
Zhu, Cai, Fan, Lou, Hua et al., Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019, Int. J. Infect. Dis,
doi:10.1016/j.ijid.2020.04.041
Zhu, Liu, Ke, Li, Hu et al., Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma, Oncol. Rep,
doi:10.3892/or.2014.3323
Zuo, Wang, Xue, Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression, Int. J. Mol. Sci,
doi:10.3390/ijms150814298
DOI record:
{
"DOI": "10.3389/fpls.2022.780257",
"ISSN": [
"1664-462X"
],
"URL": "http://dx.doi.org/10.3389/fpls.2022.780257",
"abstract": "<jats:title>Graphical Abstract</jats:title><jats:p>Three anti-SARS-CoV-2 potentials of artemisinin and artesunate. Artemisinin (ART) and artesunate (AS) may (1) block interaction of viral spike protein with the human ACE2 receptors, preventing viral endocytosis and activation of the NF-κB signaling pathway, (2) ART and AS may block activation of NF-κB signaling pathway by IKK, or (3) may interfere directly with p50/p65 transcriptional activity in human cells.</jats:p><jats:p />",
"alternative-id": [
"10.3389/fpls.2022.780257"
],
"author": [
{
"affiliation": [],
"family": "Farmanpour-Kalalagh",
"given": "Karim",
"sequence": "first"
},
{
"affiliation": [],
"family": "Beyraghdar Kashkooli",
"given": "Arman",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Babaei",
"given": "Alireza",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Rezaei",
"given": "Ali",
"sequence": "additional"
},
{
"affiliation": [],
"family": "van der Krol",
"given": "Alexander R.",
"sequence": "additional"
}
],
"container-title": "Frontiers in Plant Science",
"container-title-short": "Front. Plant Sci.",
"content-domain": {
"crossmark-restriction": true,
"domain": [
"frontiersin.org"
]
},
"created": {
"date-parts": [
[
2022,
2,
17
]
],
"date-time": "2022-02-17T17:17:21Z",
"timestamp": 1645118241000
},
"deposited": {
"date-parts": [
[
2022,
2,
17
]
],
"date-time": "2022-02-17T17:17:48Z",
"timestamp": 1645118268000
},
"indexed": {
"date-parts": [
[
2024,
11,
19
]
],
"date-time": "2024-11-19T18:33:59Z",
"timestamp": 1732041239524
},
"is-referenced-by-count": 22,
"issued": {
"date-parts": [
[
2022,
2,
7
]
]
},
"license": [
{
"URL": "https://creativecommons.org/licenses/by/4.0/",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2022,
2,
7
]
],
"date-time": "2022-02-07T00:00:00Z",
"timestamp": 1644192000000
}
}
],
"link": [
{
"URL": "https://www.frontiersin.org/articles/10.3389/fpls.2022.780257/full",
"content-type": "unspecified",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "1965",
"original-title": [],
"prefix": "10.3389",
"published": {
"date-parts": [
[
2022,
2,
7
]
]
},
"published-online": {
"date-parts": [
[
2022,
2,
7
]
]
},
"publisher": "Frontiers Media SA",
"reference": [
{
"DOI": "10.1007/s11703-011-1065-7",
"article-title": "Optimizing nitrogen levels combined with gibberellic acid for enhanced yield, photosynthetic attributes, enzyme activities, and artemisinin content of Artemisia annua.",
"author": "Aftab",
"doi-asserted-by": "publisher",
"first-page": "51",
"journal-title": "Front. Agric. China",
"key": "B1",
"volume": "5",
"year": "2011"
},
{
"DOI": "10.1007/s12892-010-0040-3",
"article-title": "Salicylic acid acts as potent enhancer of growth, photosynthesis and artemisinin production in Artemisia annua L.",
"author": "Aftab",
"doi-asserted-by": "publisher",
"first-page": "183",
"journal-title": "J. Crop Sci. Biotechnol.",
"key": "B2",
"volume": "13",
"year": "2010"
},
{
"DOI": "10.1016/j.biotechadv.2021.107759",
"article-title": "Synthetic biology-inspired strategies and tools for engineering of microbial natural product biosynthetic pathways.",
"author": "Alam",
"doi-asserted-by": "publisher",
"journal-title": "Biotechnol. Adv.",
"key": "B3",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.1007/s00299-011-1099-6",
"article-title": "Over-expression of HMG-CoA reductase and amorpha-4,11-diene synthase genes in Artemisia annua L. and its influence on artemisinin content.",
"author": "Alam",
"doi-asserted-by": "publisher",
"first-page": "1919",
"journal-title": "Plant Cell Rep.",
"key": "B4",
"volume": "30",
"year": "2011"
},
{
"DOI": "10.1002/jat.1734",
"article-title": "In vitro evaluation of the cytotoxic and genotoxic effects of artemether, an antimalarial drug, in a gastric cancer cell line (PG100).",
"author": "Alcântara",
"doi-asserted-by": "publisher",
"first-page": "151",
"journal-title": "J. Appl. Toxicol.",
"key": "B5",
"volume": "33",
"year": "2013"
},
{
"DOI": "10.1016/S0014-5793(03)00905-0",
"article-title": "Artemisinin inhibits inducible nitric oxide synthase and nuclear factor NF-kB activation.",
"author": "Aldieri",
"doi-asserted-by": "publisher",
"first-page": "141",
"journal-title": "FEBS Lett.",
"key": "B6",
"volume": "552",
"year": "2003"
},
{
"DOI": "10.1016/j.jbiotec.2010.09.708",
"article-title": "Mutational approach for enhancement of artemisinin in Artemisia annua.",
"author": "Al-Qurainy",
"doi-asserted-by": "publisher",
"first-page": "1714",
"journal-title": "J. Med. Plants Res.",
"key": "B7",
"volume": "4",
"year": "2010"
},
{
"DOI": "10.1038/sj.tpj.6500371",
"article-title": "Microarray expression profiles of angiogenesis-related genes predict tumor cell response to artemisinins.",
"author": "Anfosso",
"doi-asserted-by": "publisher",
"first-page": "269",
"journal-title": "Pharmacogenomics J.",
"key": "B8",
"volume": "6",
"year": "2006"
},
{
"DOI": "10.1016/j.ymben.2008.07.007",
"article-title": "Optimization of the mevalonate-based isoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarial drug precursor amorpha-4,11-diene.",
"author": "Anthony",
"doi-asserted-by": "publisher",
"first-page": "13",
"journal-title": "Metab. Eng.",
"key": "B9",
"volume": "11",
"year": "2009"
},
{
"DOI": "10.1093/jac/dkt486",
"article-title": "Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential.",
"author": "Antoine",
"doi-asserted-by": "publisher",
"first-page": "1005",
"journal-title": "J. Antimicrob. Chemother.",
"key": "B10",
"volume": "69",
"year": "2014"
},
{
"DOI": "10.1055/s-0029-1185775",
"article-title": "Overexpression of the HMG-CoA reductase gene leads to enhanced artemisinin biosynthesis in transgenic Artemisia annua plants.",
"author": "Aquil",
"doi-asserted-by": "publisher",
"first-page": "1453",
"journal-title": "Planta Med.",
"key": "B11",
"volume": "75",
"year": "2009"
},
{
"DOI": "10.1016/j.pt.2020.10.00",
"article-title": "Repurposing antimalarials to tackle the COVID-19 pandemic.",
"author": "Krishna",
"doi-asserted-by": "publisher",
"first-page": "8",
"journal-title": "Trends Parasitol.",
"key": "B12",
"volume": "37",
"year": "2021"
},
{
"DOI": "10.1002/ptr.6776",
"article-title": "Cytokine storm in COVID-19 and parthenolide: preclinical evidence.",
"author": "Bahrami",
"doi-asserted-by": "publisher",
"first-page": "2429",
"journal-title": "Phyther. Res.",
"key": "B13",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.1016/j.pharmthera.2020.107618",
"article-title": "Glycyrrhizin: an alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome?",
"author": "Bailly",
"doi-asserted-by": "publisher",
"journal-title": "Pharmacol. Ther.",
"key": "B14",
"volume": "214",
"year": "2020"
},
{
"DOI": "10.1007/s11240-010-9775-8",
"article-title": "Overexpression of farnesyl pyrophosphate synthase (FPS) gene affected artemisinin content and growth of Artemisia annua L.",
"author": "Banyai",
"doi-asserted-by": "publisher",
"first-page": "255",
"journal-title": "Plant Cell. Tissue Organ Cult.",
"key": "B15",
"volume": "103",
"year": "2010"
},
{
"DOI": "10.1093/carcin/bgv098",
"article-title": "Artesunate induces ROS- and p38 MAPK-mediated apoptosis and counteracts tumor growth in vivo in embryonal rhabdomyosarcoma cells.",
"author": "Beccafico",
"doi-asserted-by": "publisher",
"first-page": "1071",
"journal-title": "Carcinogenesis",
"key": "B16",
"volume": "36",
"year": "2015"
},
{
"DOI": "10.1016/j.compbiomed.2021.104758",
"article-title": "Camphor, artemisinin and sumac phytochemicals as inhibitors against COVID-19: computational approach.",
"author": "Belhassan",
"doi-asserted-by": "publisher",
"journal-title": "Comput. Biol. Med.",
"key": "B17",
"volume": "136",
"year": "2021"
},
{
"DOI": "10.1158/1535-7163.MCT-11-0534",
"article-title": "Artesunate induces oxidative DNA damage, sustained DNA double-strand breaks, and the ATM/ATR damage response in cancer cells.",
"author": "Berdelle",
"doi-asserted-by": "publisher",
"first-page": "2224",
"journal-title": "Mol. Cancer Ther.",
"key": "B18",
"volume": "10",
"year": "2011"
},
{
"DOI": "10.1055/s-2005-837749",
"article-title": "Identification of intermediates and enzymes involved in the early steps of artemisinin biosynthesis in Artemisia annua.",
"author": "Bertea",
"doi-asserted-by": "publisher",
"first-page": "40",
"journal-title": "Planta Med.",
"key": "B19",
"volume": "71",
"year": "2005"
},
{
"DOI": "10.3217/978-3-85125-593-5-1",
"article-title": "Terpenoid biosynthesis in plants",
"author": "Beyraghdar Kashkooli",
"doi-asserted-by": "publisher",
"first-page": "3",
"journal-title": "Flavour Sci., Verlag der Technischen Universität Graz",
"key": "B20",
"year": "2018"
},
{
"DOI": "10.1016/j.ymben.2019.01.007",
"article-title": "Substrate promiscuity of enzymes from the sesquiterpene biosynthetic pathways from Artemisia annua and Tanacetum parthenium allows for novel combinatorial sesquiterpene production.",
"author": "Beyraghdar Kashkooli",
"doi-asserted-by": "publisher",
"first-page": "12",
"journal-title": "Metab. Eng.",
"key": "B21",
"volume": "54",
"year": "2019"
},
{
"DOI": "10.1016/j.bmc.2013.04.059",
"article-title": "Novel artemisinin derivatives with potential usefulness against liver/colon cancer and viral hepatitis.",
"author": "Blazquez",
"doi-asserted-by": "publisher",
"first-page": "4432",
"journal-title": "Bioorganic Med. Chem.",
"key": "B22",
"volume": "21",
"year": "2013"
},
{
"DOI": "10.1038/s41467-018-06221-1",
"article-title": "Artemisinin kills malaria parasites by damaging proteins and inhibiting the proteasome.",
"author": "Bridgford",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Nat. Commun.",
"key": "B23",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1016/j.biotechadv.2008.03.001",
"article-title": "Functions of rol genes in plant secondary metabolism.",
"author": "Bulgakov",
"doi-asserted-by": "publisher",
"first-page": "318",
"journal-title": "Biotechnol. Adv.",
"key": "B24",
"volume": "26",
"year": "2008"
},
{
"DOI": "10.1021/ACSINFECDIS.0C00522",
"article-title": "Anti-SARS-CoV-2 potential of artemisinins in vitro.",
"author": "Cao",
"doi-asserted-by": "publisher",
"first-page": "2524",
"journal-title": "ACS Infect. Dis.",
"key": "B25",
"volume": "6",
"year": "2020"
},
{
"DOI": "10.1016/j.intimp.2019.01.041",
"article-title": "Artemisinin enhances the anti-tumor immune response in 4T1 breast cancer cells in vitro and in vivo.",
"author": "Cao",
"doi-asserted-by": "publisher",
"first-page": "110",
"journal-title": "Int. Immunopharmacol.",
"key": "B26",
"volume": "70",
"year": "2019"
},
{
"DOI": "10.1016/j.copbio.2019.11.017",
"article-title": "Beyond the semi-synthetic artemisinin: metabolic engineering of plant-derived anti-cancer drugs.",
"author": "Carqueijeiro",
"doi-asserted-by": "publisher",
"first-page": "17",
"journal-title": "Curr. Opin. Biotechnol.",
"key": "B27",
"volume": "65",
"year": "2020"
},
{
"article-title": "Cytotoxic activity of artemisinin derivatives against cholangiocarcinoma (CL-6) and hepatocarcinoma (Hep-G2) cell lines.",
"author": "Chaijaroenkul",
"first-page": "55",
"journal-title": "Asian Pacific J. Cancer Prev.",
"key": "B28",
"volume": "12",
"year": "2011"
},
{
"DOI": "10.1080/10412905.1991.9697903",
"article-title": "Characterization of the essential oil of Artemisia annua L.",
"author": "Charles",
"doi-asserted-by": "publisher",
"first-page": "33",
"journal-title": "J. Essent. Oil Res.",
"key": "B29",
"volume": "3",
"year": "1991"
},
{
"DOI": "10.1016/j.apsb.2019.05.001",
"article-title": "Synergistic antitumor activity of artesunate and HDAC inhibitors through elevating heme synthesis via synergistic upregulation of ALAS1 expression.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "937",
"journal-title": "Acta Pharm. Sin. B",
"key": "B30",
"volume": "9",
"year": "2019"
},
{
"DOI": "10.1016/S0168-9452(00)00217-X",
"article-title": "Expression of a chimeric farnesyl diphosphate synthase gene in Artemisia annua L. transgenic plants via Agrobacterium tumefaciens-mediated transformation.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "179",
"journal-title": "Plant Sci.",
"key": "B31",
"volume": "155",
"year": "2000"
},
{
"DOI": "10.1016/j.plantsci.2018.08.007",
"article-title": "Type VI glandular trichome density and their derived volatiles are differently induced by jasmonic acid in developing and fully developed tomato leaves: implications for thrips resistance.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "87",
"journal-title": "Plant Sci.",
"key": "B32",
"volume": "276",
"year": "2018"
},
{
"DOI": "10.1097/CAD.0b013e3283212ade",
"article-title": "Dihydroartemisinin inhibits growth of pancreatic cancer cells in vitro and in vivo.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "131",
"journal-title": "Anticancer. Drugs",
"key": "B33",
"volume": "20",
"year": "2009"
},
{
"DOI": "10.1007/s00432-009-0731-0",
"article-title": "Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "897",
"journal-title": "J. Cancer Res. Clin. Oncol.",
"key": "B34",
"volume": "136",
"year": "2010"
},
{
"DOI": "10.1016/S1043-6618(03)00107-5",
"article-title": "Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "231",
"journal-title": "Pharmacol. Res.",
"key": "B35",
"volume": "48",
"year": "2003"
},
{
"DOI": "10.1097/CAD.0000000000000089",
"article-title": "Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "652",
"journal-title": "Anticancer. Drugs",
"key": "B36",
"volume": "25",
"year": "2014"
},
{
"DOI": "10.3390/molecules22081272",
"article-title": "Artesunate activates the intrinsic apoptosis of HCT116 cells through the suppression of fatty acid synthesis and the NF-κB pathway.",
"author": "Chen",
"doi-asserted-by": "publisher",
"journal-title": "Molecules",
"key": "B37",
"volume": "22",
"year": "2017"
},
{
"DOI": "10.1590/1414-431x20197992",
"article-title": "Artesunate promotes Th1 differentiation from CD4+ T cells to enhance cell apoptosis in ovarian cancer via miR-142.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Brazilian J. Med. Biol. Res.",
"key": "B38",
"volume": "52",
"year": "2019"
},
{
"DOI": "10.1007/s11816-012-0262-z",
"article-title": "The stacked over-expression of FPS, CYP71AV1 and CPR genes leads to the increase of artemisinin level in Artemisia annua L.",
"author": "Chen",
"doi-asserted-by": "publisher",
"first-page": "287",
"journal-title": "Plant Biotechnol. Rep.",
"key": "B39",
"volume": "7",
"year": "2013"
},
{
"DOI": "10.1016/j.phrs.2020.104901",
"article-title": "Anti-malarial drug, artemisinin and its derivatives for the treatment of respiratory diseases.",
"author": "Cheong",
"doi-asserted-by": "publisher",
"journal-title": "Pharmacol. Res.",
"key": "B40",
"volume": "158",
"year": "2020"
},
{
"DOI": "10.23812/Editorial-Conti-3",
"article-title": "Coronavirus COV-19/SARS-CoV-2 affects women less than men: clinical response to viral infection.",
"author": "Conti",
"doi-asserted-by": "publisher",
"first-page": "339",
"journal-title": "J. Biol. Regul. Homeost. Agents",
"key": "B41",
"volume": "34",
"year": "2020"
},
{
"DOI": "10.1016/j.phytochem.2008.10.001",
"article-title": "Making artemisinin.",
"author": "Covello",
"doi-asserted-by": "publisher",
"first-page": "2881",
"journal-title": "Phytochemistry",
"key": "B42",
"volume": "69",
"year": "2008"
},
{
"DOI": "10.1016/j.intimp.2015.05.004",
"article-title": "Artesunate down-regulates immunosuppression from colorectal cancer Colon26 and RKO cells in vitro by decreasing transforming growth factor β1 and interleukin-10.",
"author": "Cui",
"doi-asserted-by": "publisher",
"first-page": "110",
"journal-title": "Int. Immunopharmacol.",
"key": "B43",
"volume": "27",
"year": "2015"
},
{
"DOI": "10.3390/microorganisms8010085",
"article-title": "The use of antimalarial drugs against viral infection.",
"author": "D’alessandro",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Microorganisms",
"key": "B44",
"volume": "8",
"year": "2020"
},
{
"DOI": "10.1093/aob/mcp126",
"article-title": "Enhancement of artemisinin concentration and yield in response to optimization of nitrogen and potassium supply to Artemisia annua.",
"author": "Davies",
"doi-asserted-by": "publisher",
"first-page": "315",
"journal-title": "Ann. Bot.",
"key": "B45",
"volume": "104",
"year": "2009"
},
{
"DOI": "10.1186/s43094-021-00334-z",
"article-title": "Computational approach towards the design of artemisinin-thymoquinone hybrids against main protease of SARS-COV-2.",
"author": "de Oliveira",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Futur. J. Pharm. Sci.",
"key": "B46",
"volume": "7",
"year": "2021"
},
{
"DOI": "10.1002/9780470742761",
"author": "Dewick",
"doi-asserted-by": "crossref",
"journal-title": "Medicinal Natural Products: A Biosynthetic Approach",
"key": "B47",
"year": "2009"
},
{
"DOI": "10.1021/cb900006h",
"article-title": "A novel semi-biosynthetic route for artemisinin production using engineered substrate-promiscuous P450BM3.",
"author": "Dietrich",
"doi-asserted-by": "publisher",
"first-page": "261",
"journal-title": "ACS Chem. Biol.",
"key": "B48",
"volume": "4",
"year": "2009"
},
{
"DOI": "10.1186/s12936-015-0951-5",
"article-title": "Enhanced artemisinin yield by expression of rol genes in Artemisia annua.",
"author": "Dilshad",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Malar. J.",
"key": "B49",
"volume": "14",
"year": "2015"
},
{
"DOI": "10.1158/0008-5472.CAN-05-1216",
"article-title": "Dihydroartemisinin is cytotoxic to papillomavirus-expressing epithelial cells in vitro and in vivo.",
"author": "Disbrow",
"doi-asserted-by": "publisher",
"first-page": "10854",
"journal-title": "Cancer Res.",
"key": "B50",
"volume": "65",
"year": "2005"
},
{
"DOI": "10.4161/15384047.2014.955728",
"article-title": "Dihydroartemisinin targets VEGFR2 via the NF-κB pathway in endothelial cells to inhibit angiogenesis.",
"author": "Dong",
"doi-asserted-by": "publisher",
"first-page": "1479",
"journal-title": "Cancer Biol. Ther.",
"key": "B51",
"volume": "15",
"year": "2014"
},
{
"DOI": "10.3978/j.issn.1000-9604.2014.04.07",
"article-title": "Antitumor effects of artesunate on human breast carcinoma MCF-7 cells and IGF-IR expression in nude mice xenografts.",
"author": "Dong",
"doi-asserted-by": "publisher",
"first-page": "200",
"journal-title": "Chin. J. Cancer Res.",
"key": "B52",
"volume": "26",
"year": "2014"
},
{
"DOI": "10.5582/ddt.2020.01012",
"article-title": "Discovering drugs to treat coronavirus disease 2019 (COVID-19).",
"author": "Dong",
"doi-asserted-by": "publisher",
"first-page": "58",
"journal-title": "Drug Discov. Ther.",
"key": "B53",
"volume": "14",
"year": "2020"
},
{
"DOI": "10.1007/s00280-009-1095-5",
"article-title": "Artesunate induces oncosis-like cell death in vitro and has antitumor activity against pancreatic cancer xenografts in vivo.",
"author": "Du",
"doi-asserted-by": "publisher",
"first-page": "895",
"journal-title": "Cancer Chemother. Pharmacol.",
"key": "B54",
"volume": "65",
"year": "2010"
},
{
"DOI": "10.1016/j.nano.2015.07.010",
"article-title": "In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells.",
"author": "Dwivedi",
"doi-asserted-by": "publisher",
"first-page": "2041",
"journal-title": "Nanomed. Nanotechnol. Biol. Med.",
"key": "B55",
"volume": "11",
"year": "2015"
},
{
"DOI": "10.1016/j.biotechadv.2018.01.001",
"article-title": "Beyond malaria: the inhibition of viruses by artemisinin-type compounds.",
"author": "Efferth",
"doi-asserted-by": "publisher",
"first-page": "1730",
"journal-title": "Biotechnol. Adv.",
"key": "B56",
"volume": "36",
"year": "2018"
},
{
"DOI": "10.1016/j.freeradbiomed.2004.06.023",
"article-title": "Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron.",
"author": "Efferth",
"doi-asserted-by": "publisher",
"first-page": "998",
"journal-title": "Free Radic. Biol. Med.",
"key": "B57",
"volume": "37",
"year": "2004"
},
{
"DOI": "10.1007/s00109-001-0300-8",
"article-title": "Antiviral activity of artesunate towards wild-type, recombinant, and ganciclovir-resistant human cytomegaloviruses.",
"author": "Efferth",
"doi-asserted-by": "publisher",
"first-page": "233",
"journal-title": "J. Mol. Med.",
"key": "B58",
"volume": "80",
"year": "2002"
},
{
"DOI": "10.1002/med.21842",
"article-title": "The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases.",
"author": "Efferth",
"doi-asserted-by": "publisher",
"first-page": "3023",
"journal-title": "Med. Res. Rev.",
"key": "B59",
"volume": "41",
"year": "2021"
},
{
"DOI": "10.1086/591195",
"article-title": "The antiviral activities of artemisinin and artesunate.",
"author": "Efferth",
"doi-asserted-by": "publisher",
"first-page": "804",
"journal-title": "Clin. Infect. Dis.",
"key": "B60",
"volume": "47",
"year": "2008"
},
{
"DOI": "10.18632/oncoscience.160",
"article-title": "Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells.",
"author": "Eling",
"doi-asserted-by": "publisher",
"first-page": "517",
"journal-title": "Oncoscience",
"key": "B61",
"volume": "2",
"year": "2015"
},
{
"DOI": "10.1038/nbt.2054",
"article-title": "Generation of the potent anti-malarial drug artemisinin in tobacco.",
"author": "Farhi",
"doi-asserted-by": "publisher",
"first-page": "1072",
"journal-title": "Nat. Biotechnol.",
"key": "B62",
"volume": "29",
"year": "2011"
},
{
"DOI": "10.1016/j.jphs.2018.09.011",
"article-title": "Artesunate enhances radiosensitivity of esophageal cancer cells by inhibiting the repair of DNA damage.",
"author": "Fei",
"doi-asserted-by": "publisher",
"first-page": "131",
"journal-title": "J. Pharmacol. Sci.",
"key": "B63",
"volume": "138",
"year": "2018"
},
{
"DOI": "10.1079/pgr200585",
"article-title": "Cultivation and genetics of Artemisia annua L. for increased production of the antimalarial artemisinin.",
"author": "Ferreira",
"doi-asserted-by": "publisher",
"first-page": "206",
"journal-title": "Plant Genet. Resour.",
"key": "B64",
"volume": "3",
"year": "2005"
},
{
"DOI": "10.1021/acsptsci.0c00222",
"article-title": "Repurposing quinoline and artemisinin antimalarials as therapeutics for SARS-CoV-2: rationale and implications.",
"author": "Firestone",
"doi-asserted-by": "publisher",
"first-page": "613",
"journal-title": "ACS Pharmacol. Transl. Sci.",
"key": "B65",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1021/acsmedchemlett.8b00381",
"article-title": "Synthesis of artemisinin-estrogen hybrids highly active against HCMV, P. falciparum, and cervical and breast Cancer.",
"author": "Fröhlich",
"doi-asserted-by": "publisher",
"first-page": "1128",
"journal-title": "ACS Med. Chem. Lett.",
"key": "B66",
"volume": "9",
"year": "2018"
},
{
"DOI": "10.1002/cmdc.201600594",
"article-title": "Synthesis of novel hybrids of thymoquinone and artemisinin with hig activity and selectivity against colon cancer.",
"author": "Fröhlich",
"doi-asserted-by": "publisher",
"first-page": "226",
"journal-title": "Chem. Med. Chem.",
"key": "B67",
"volume": "12",
"year": "2017"
},
{
"DOI": "10.7554/eLife.13664",
"article-title": "A new synthetic biology approach allows transfer of an entire metabolic pathway from a medicinal plant to a biomass crop.",
"author": "Fuentes",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Elife",
"key": "B68",
"volume": "5",
"year": "2016"
},
{
"DOI": "10.1016/j.joim.2021.07.003",
"article-title": "An overview of the anti-SARS-CoV-2 properties of Artemisia annua, its antiviral action, protein-associated mechanisms, and repurposing for COVID-19 treatment.",
"author": "Fuzimoto",
"doi-asserted-by": "publisher",
"first-page": "375",
"journal-title": "J. Integr. Med.",
"key": "B69",
"volume": "19",
"year": "2021"
},
{
"DOI": "10.1016/j.ijid.2020.08.032",
"article-title": "Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: in vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate.",
"author": "Gendrot",
"doi-asserted-by": "publisher",
"first-page": "437",
"journal-title": "Int. J. Infect. Dis.",
"key": "B70",
"volume": "99",
"year": "2020"
},
{
"article-title": "Effects of transferrin conjugates of artemisinin and artemisinin dimer on breast cancer cell lines.",
"author": "Gong",
"first-page": "123",
"journal-title": "Anticancer Res.",
"key": "B71",
"volume": "33",
"year": "2013"
},
{
"DOI": "10.1126/science.1182612",
"article-title": "The genetic map of Artemisia annua L identifies loci affecting yield of the antimalarial drug artemisinin.",
"author": "Graham",
"doi-asserted-by": "publisher",
"first-page": "328",
"journal-title": "Science",
"key": "B72",
"volume": "327",
"year": "2010"
},
{
"DOI": "10.1007/s00280-010-1355-4",
"article-title": "In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents.",
"author": "Gravett",
"doi-asserted-by": "publisher",
"first-page": "569",
"journal-title": "Cancer Chemother. Pharmacol.",
"key": "B73",
"volume": "67",
"year": "2011"
},
{
"DOI": "10.1002/mc.22474",
"article-title": "Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate.",
"author": "Greenshields",
"doi-asserted-by": "publisher",
"first-page": "75",
"journal-title": "Mol. Carcinog",
"key": "B74",
"volume": "56",
"year": "2017"
},
{
"DOI": "10.1620/tjem.227.161",
"article-title": "Artemisinin attenuates post-infarct myocardial remodeling by down-regulating the NF-κB pathway.",
"author": "Gu",
"doi-asserted-by": "publisher",
"first-page": "161",
"journal-title": "Tohoku J. Exp. Med.",
"key": "B75",
"volume": "227",
"year": "2012"
},
{
"DOI": "10.1093/cid/ciaa321",
"article-title": "Could chloroquine/hydroxychloroquine be harmful in coronavirus disease 2019 (COVID-19) treatment?",
"author": "Guastalegname",
"doi-asserted-by": "publisher",
"first-page": "888",
"journal-title": "Clin. Infect. Dis.",
"key": "B76",
"volume": "71",
"year": "2020"
},
{
"DOI": "10.1074/jbc.M110.210047",
"article-title": "Artesunate activates mitochondrial apoptosis in breast cancer cells via iron-catalyzed lysosomal reactive oxygen species production.",
"author": "Hamacher-Brady",
"doi-asserted-by": "publisher",
"first-page": "6587",
"journal-title": "J. Biol. Chem.",
"key": "B77",
"volume": "286",
"year": "2011"
},
{
"DOI": "10.1016/j.molp.2016.03.004",
"article-title": "Promoting artemisinin biosynthesis in Artemisia annua plants by substrate channeling.",
"author": "Han",
"doi-asserted-by": "publisher",
"first-page": "946",
"journal-title": "Mol. Plant",
"key": "B78",
"volume": "9",
"year": "2016"
},
{
"DOI": "10.2147/IJN.S242032",
"article-title": "PH-responsive artesunate polymer prodrugs with enhanced ablation effect on rodent xenograft colon cancer.",
"author": "Hao",
"doi-asserted-by": "publisher",
"first-page": "1771",
"journal-title": "Int. J. Nanomedicine",
"key": "B79",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1038/s41598-021-90551-6",
"article-title": "The efficacy and safety of favipiravir in treatment of COVID-19: a systematic review and meta-analysis of clinical trials.",
"author": "Hassanipour",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "B80",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/S0140-6736(20)30374-3",
"article-title": "COVID-19: what is next for public health?",
"author": "Heymann",
"doi-asserted-by": "publisher",
"first-page": "542",
"journal-title": "Lancet",
"key": "B81",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1016/j.canlet.2013.09.035",
"article-title": "Dihydroartemisinin induces autophagy by suppressing NF-κB activation.",
"author": "Hu",
"doi-asserted-by": "publisher",
"first-page": "239",
"journal-title": "Cancer Lett.",
"key": "B82",
"volume": "343",
"year": "2014"
},
{
"DOI": "10.3389/fcimb.2021.680127",
"article-title": "Artemether, artesunate, arteannuin B, echinatin, licochalcone B and andrographolide effectively inhibit SARS-CoV-2 and related viruses in vitro.",
"author": "Hu",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Cell Infect. Microbiol.",
"key": "B83",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.3389/fphar.2020.588508",
"article-title": "Current prevention of COVID-19: natural products and herbal medicine.",
"author": "Huang",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Pharmacol.",
"key": "B84",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/j.bcp.2010.02.003",
"article-title": "Suppression of PMA-induced tumor cell invasion by dihydroartemisinin via inhibition of PKCα/Raf/MAPKs and NF-κB/AP-1-dependent mechanisms.",
"author": "Hwang",
"doi-asserted-by": "publisher",
"first-page": "1714",
"journal-title": "Biochem. Pharmacol.",
"key": "B85",
"volume": "79",
"year": "2010"
},
{
"DOI": "10.1016/j.scienta.2019.108854",
"article-title": "The “polyploid effect” in the breeding of aromatic and medicinal species.",
"author": "Iannicelli",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Hortic.",
"key": "B86",
"volume": "260",
"year": "2020"
},
{
"DOI": "10.3390/molecules24213822",
"article-title": "Insights into heterologous biosynthesis of arteannuin B and artemisinin in physcomitrella patens.",
"author": "Ikram",
"doi-asserted-by": "publisher",
"journal-title": "Molecules",
"key": "B87",
"volume": "24",
"year": "2019"
},
{
"DOI": "10.3389/fbioe.2017.00047",
"article-title": "Stable production of the antimalarial drug artemisinin in the moss physcomitrella patens.",
"author": "Ikram",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Bioeng. Biotechnol.",
"key": "B88",
"volume": "5",
"year": "2017"
},
{
"DOI": "10.3389/fpls.2017.01966",
"article-title": "A review of biotechnological artemisinin production in plants.",
"author": "Ikram",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Plant Sci.",
"key": "B89",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.1016/j.biopha.2016.04.061",
"article-title": "Artesunate obliterates experimental hepatocellular carcinoma in rats through suppression of IL-6-JAK-STAT signalling.",
"author": "Ilamathi",
"doi-asserted-by": "publisher",
"first-page": "72",
"journal-title": "Biomed. Pharmacother.",
"key": "B90",
"volume": "82",
"year": "2016"
},
{
"DOI": "10.3389/fmicb.2013.00075",
"article-title": "Microbial production of isoprenoids enabled by synthetic biology.",
"author": "Immethun",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Microbiol.",
"key": "B91",
"volume": "4",
"year": "2013"
},
{
"DOI": "10.1016/j.ejphar.2020.172953",
"article-title": "Evaluation of artesunate for the treatment of adult T-cell leukemia/lymphoma.",
"author": "Ishikawa",
"doi-asserted-by": "publisher",
"journal-title": "Eur. J. Pharmacol.",
"key": "B92",
"volume": "872",
"year": "2020"
},
{
"DOI": "10.15171/ijb.1567",
"article-title": "Induction of apoptosis in human breast cancer MCF-7 cells by a semi- synthetic derivative of artemisinin: a caspase-related mechanism.",
"author": "Jamalzadeh",
"doi-asserted-by": "publisher",
"first-page": "157",
"journal-title": "Iran. J. Biotechnol.",
"key": "B93",
"volume": "15",
"year": "2017"
},
{
"DOI": "10.3389/fpls.2020.601335",
"article-title": "Carvacrol, a plant metabolite targeting viral protease (Mpro) and ACE2 in host cells can be a possible candidate for COVID-19.",
"author": "Javed",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Plant Sci.",
"key": "B94",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.5897/JMPR11.1053",
"article-title": "New cultivation approaches of Artemisia annua L. for a sustainable production of the antimalarial drug artemisinin.",
"author": "Jelodar",
"doi-asserted-by": "publisher",
"first-page": "441",
"journal-title": "J. Med. Plants Res.",
"key": "B95",
"volume": "8",
"year": "2014"
},
{
"DOI": "10.1016/j.indcrop.2010.12.011",
"article-title": "Impact of organic manure and chemical fertilizers on artemisinin content and yield in Artemisia annua L.",
"author": "Jha",
"doi-asserted-by": "publisher",
"first-page": "296",
"journal-title": "Int. Crop. Prod.",
"key": "B96",
"volume": "33",
"year": "2011"
},
{
"DOI": "10.3892/ijmm.2018.3712",
"article-title": "Artesunate induces apoptosis and autophagy in HCT116 colon cancer cells, and autophagy inhibition enhances the artesunate-induced apoptosis.",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "1295",
"journal-title": "Int. J. Mol. Med.",
"key": "B97",
"volume": "42",
"year": "2018"
},
{
"DOI": "10.18632/oncotarget.13536",
"article-title": "Repurposing the anti-malarial drug dihydroartemisinin suppresses metastasis of non-small-cell lung cancer via inhibiting NF-κB/GLUT1 axis.",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "87271",
"journal-title": "Oncotarget",
"key": "B98",
"volume": "7",
"year": "2016"
},
{
"DOI": "10.1155/2016/7314971",
"article-title": "Overexpression of AaWRKY1 leads to an enhanced content of artemisinin in Artemisia annua.",
"author": "Jiang",
"doi-asserted-by": "publisher",
"journal-title": "Biomed Res. Int.",
"key": "B99",
"volume": "2016",
"year": "2016"
},
{
"DOI": "10.7314/APJCP.2013.14.8.4615",
"article-title": "The synergistic anticancer effect of artesunate combined with allicin in osteosarcoma cell line in vitro and in vivo.",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "4615",
"journal-title": "Asian Pacific J. Cancer Prev.",
"key": "B100",
"volume": "14",
"year": "2013"
},
{
"DOI": "10.1097/CAD.0b013e328350e8ac",
"article-title": "Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells.",
"author": "Jiang",
"doi-asserted-by": "publisher",
"first-page": "606",
"journal-title": "Anticancer. Drugs",
"key": "B101",
"volume": "23",
"year": "2012"
},
{
"DOI": "10.1111/j.1745-7254.2007.00612.x",
"article-title": "Dihydroartemisinin is an inhibitor of ovarian cancer cell growth.",
"author": "Jiao",
"doi-asserted-by": "publisher",
"first-page": "1045",
"journal-title": "Acta Pharmacol. Sin.",
"key": "B102",
"volume": "28",
"year": "2007"
},
{
"DOI": "10.1016/j.molp.2019.02.011",
"article-title": "Artemisinin biosynthesis in non-glandular trichome cells of Artemisia annua.",
"author": "Judd",
"doi-asserted-by": "publisher",
"first-page": "704",
"journal-title": "Mol. Plant",
"key": "B103",
"volume": "12",
"year": "2019"
},
{
"DOI": "10.4269/ajtmh.20-0820",
"article-title": "Artemisia spp. derivatives for COVID-19 treatment: anecdotal use, political hype, treatment potential, challenges, and road map to randomized clinical trials.",
"author": "Kapepula",
"doi-asserted-by": "publisher",
"first-page": "960",
"journal-title": "Am. J. Trop. Med. Hyg.",
"key": "B104",
"volume": "103",
"year": "2020"
},
{
"DOI": "10.1186/s12936-016-1312-8",
"article-title": "Cellular engineering of Artemisia annua and Artemisia dubia with the rol ABC genes for enhanced production of potent anti-malarial drug artemisinin.",
"author": "Kiani",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Malar. J.",
"key": "B105",
"volume": "15",
"year": "2016"
},
{
"DOI": "10.1126/science.3887571",
"article-title": "Qinghaosu (artemisinin): an antimalarial drug from china. Published by: American.",
"author": "Klayman",
"doi-asserted-by": "crossref",
"first-page": "1049",
"journal-title": "Science",
"key": "B106",
"volume": "228",
"year": "1985"
},
{
"DOI": "10.1039/d0ob00919a",
"article-title": "A fully synthetic 6-aza-artemisinin bearing an amphiphilic chain generates aggregates and exhibits anti-cancer activities.",
"author": "Koi",
"doi-asserted-by": "publisher",
"first-page": "5339",
"journal-title": "Org. Biomol. Chem.",
"key": "B107",
"volume": "18",
"year": "2020"
},
{
"DOI": "10.1016/j.curtheres.2020.100602",
"article-title": "Nigella sativa L as a potential phytotherapy for coronavirus disease 2019: a mini review of in silico studies.",
"author": "Koshak",
"doi-asserted-by": "publisher",
"journal-title": "Curr. Ther. Res.",
"key": "B108",
"volume": "93",
"year": "2020"
},
{
"DOI": "10.1016/j.ebiom.2014.11.010",
"article-title": "A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer.",
"author": "Krishna",
"doi-asserted-by": "publisher",
"first-page": "82",
"journal-title": "EBioMedicine",
"key": "B109",
"volume": "2",
"year": "2015"
},
{
"DOI": "10.3390/medicina57030217",
"article-title": "Antiviral and immunomodulation effects of Artemisia.",
"author": "Kshirsagar",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Medicine",
"key": "B110",
"volume": "57",
"year": "2021"
},
{
"DOI": "10.1002/ddr.21590",
"article-title": "Artesunate suppresses inflammation and oxidative stress in a rat model of colorectal cancer.",
"author": "Kumar",
"doi-asserted-by": "publisher",
"first-page": "1089",
"journal-title": "Drug Dev. Res.",
"key": "B111",
"volume": "80",
"year": "2019"
},
{
"DOI": "10.1016/j.ijantimicag.2020.105924",
"article-title": "Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): the epidemic and the challenges.",
"author": "Lai",
"doi-asserted-by": "publisher",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "B112",
"volume": "55",
"year": "2020"
},
{
"article-title": "Artemisinin-transferrin conjugate retards growth of breast tumors in the rat.",
"author": "Lai",
"first-page": "3807",
"journal-title": "Anticancer Res.",
"key": "B113",
"volume": "29",
"year": "2009"
},
{
"DOI": "10.1016/j.lfs.2004.08.020",
"article-title": "Effects of artemisinin-tagged holotransferrin on cancer cells.",
"author": "Lai",
"doi-asserted-by": "publisher",
"first-page": "1267",
"journal-title": "Life Sci.",
"key": "B114",
"volume": "76",
"year": "2005"
},
{
"DOI": "10.1016/j.canlet.2005.01.019",
"article-title": "Oral artemisinin prevents and delays the development of 7,12-dimethylbenz[a]anthracene (DMBA)-induced breast cancer in the rat.",
"author": "Lai",
"doi-asserted-by": "publisher",
"first-page": "43",
"journal-title": "Cancer Lett.",
"key": "B115",
"volume": "231",
"year": "2006"
},
{
"DOI": "10.1016/j.ejphar.2015.08.040",
"article-title": "Artesunate alleviates hepatic fibrosis induced by multiple pathogenic factors and inflammation through the inhibition of LPS/TLR4/NF-κB signaling pathway in rats.",
"author": "Lai",
"doi-asserted-by": "publisher",
"first-page": "234",
"journal-title": "Eur. J. Pharmacol.",
"key": "B116",
"volume": "765",
"year": "2015"
},
{
"DOI": "10.1016/j.intimp.2010.06.005",
"article-title": "A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model.",
"author": "Langroudi",
"doi-asserted-by": "publisher",
"first-page": "1055",
"journal-title": "Int. Immunopharmacol.",
"key": "B117",
"volume": "10",
"year": "2010"
},
{
"DOI": "10.1002/cbin.11220",
"article-title": "Artesunate inhibits myofibroblast formation via induction of apoptosis and antagonism of pro-fibrotic gene expression in human dermal fibroblasts.",
"author": "Larson",
"doi-asserted-by": "publisher",
"first-page": "1317",
"journal-title": "Cell Biol. Int.",
"key": "B118",
"volume": "43",
"year": "2019"
},
{
"DOI": "10.1016/j.indcrop.2010.10.001",
"article-title": "Foliar application of chitosan activates artemisinin biosynthesis in artemisia.",
"author": "Lei",
"doi-asserted-by": "publisher",
"first-page": "176",
"journal-title": "Int. Crop. Prod.",
"key": "B119",
"volume": "33",
"year": "2011"
},
{
"article-title": "Ethyl methane sulfonate (Ems) enhanced the formation of leaf glandular trichomes and the production of artemisinin in Artemisia annua L.",
"author": "Leow",
"first-page": "1",
"journal-title": "Asia Pacific J. Sci. Technol.",
"key": "B120",
"volume": "25",
"year": "2020"
},
{
"DOI": "10.1093/abbs/gmy125",
"article-title": "Artemisinin derivatives inhibit epithelial ovarian cancer cells via autophagy-mediated cell cycle arrest.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "1227",
"journal-title": "Acta Biochim. Biophys. Sin.",
"key": "B121",
"volume": "50",
"year": "2018"
},
{
"DOI": "10.1016/j.ijantimicag.2020.106216",
"article-title": "Safety and efficacy of artemisinin-piperaquine for treatment of COVID-19: an open-label, non-randomised and controlled trial.",
"author": "Li",
"doi-asserted-by": "publisher",
"journal-title": "Int. J. Antimicrob. Agents",
"key": "B122",
"volume": "57",
"year": "2020"
},
{
"DOI": "10.3892/ol.2019.10810",
"article-title": "Artesunate and sorafenib: combinatorial inhibition of liver cancer cell growth.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "4735",
"journal-title": "Oncol. Lett.",
"key": "B123",
"volume": "18",
"year": "2019"
},
{
"DOI": "10.1002/jcp.27875",
"article-title": "Artemisinin inhibits breast cancer-induced osteolysis by inhibiting osteoclast formation and breast cancer cell proliferation.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "12663",
"journal-title": "J. Cell. Physiol.",
"key": "B124",
"volume": "234",
"year": "2019"
},
{
"DOI": "10.1002/ijc.22804",
"article-title": "Artesunate attenuates the growth of human colorectal carcinoma and inhibits hyperactive Wnt/β-catenin pathway.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "1360",
"journal-title": "Int. J. Cancer",
"key": "B125",
"volume": "121",
"year": "2007"
},
{
"DOI": "10.1016/j.ejphar.2008.03.041",
"article-title": "Differential sensitivity of colorectal cancer cell lines to artesunate is associated with expression of beta-catenin and E-cadherin.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Eur. J. Pharmacol.",
"key": "B126",
"volume": "588",
"year": "2008"
},
{
"DOI": "10.1016/j.gene.2020.145134",
"article-title": "Artesunate exhibits synergistic anti-cancer effects with cisplatin on lung cancer A549 cells by inhibiting MAPK pathway.",
"author": "Li",
"doi-asserted-by": "publisher",
"journal-title": "Gene",
"key": "B127",
"volume": "766",
"year": "2021"
},
{
"DOI": "10.1038/celldisc.2017.42",
"article-title": "Dihydroartemisinin selectively inhibits PDGFRα-positive ovarian cancer growth and metastasis through inducing degradation of PDGFRá protein.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Cell. Discov.",
"key": "B128",
"volume": "3",
"year": "2017"
},
{
"DOI": "10.1016/j.etap.2017.12.004",
"article-title": "The selectivity of artemisinin-based drugs on human lung normal and cancer cells.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "86",
"journal-title": "Environ. Toxicol. Pharmacol.",
"key": "B129",
"volume": "57",
"year": "2018"
},
{
"DOI": "10.1159/000492541",
"article-title": "Dihydroartemisinin increases the sensitivity of photodynamic therapy via NF-κB/HIF-1α/VEGF pathway in esophageal cancer cell in vitro and in vivo.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "2035",
"journal-title": "Cell Physiol. Biochem.",
"key": "B130",
"volume": "48",
"year": "2018"
},
{
"DOI": "10.1159/000358716",
"article-title": "Dihydroartemisinin accentuates the anti-tumor effects of photodynamic therapy via inactivation of NF-κB in Eca109 and Ec9706 esophageal cancer cells.",
"author": "Li",
"doi-asserted-by": "publisher",
"first-page": "1527",
"journal-title": "Cell Physiol. Biochem.",
"key": "B131",
"volume": "33",
"year": "2014"
},
{
"DOI": "10.3892/ol.2019.10608",
"article-title": "Artemisinin induced reversal of EMT affects the molecular biological activity of ovarian cancer SKOV3 cell lines.",
"author": "Liang",
"doi-asserted-by": "publisher",
"first-page": "3407",
"journal-title": "Oncol. Lett.",
"key": "B132",
"volume": "18",
"year": "2019"
},
{
"DOI": "10.1016/j.biotechadv.2016.03.005",
"article-title": "The potential of the mevalonate pathway for enhanced isoprenoid production.",
"author": "Liao",
"doi-asserted-by": "publisher",
"first-page": "697",
"journal-title": "Biotechnol. Adv.",
"key": "B133",
"volume": "34",
"year": "2016"
},
{
"DOI": "10.1002/bab.13",
"article-title": "Enhancement of artemisinin content in tetraploid Artemisia annua plants by modulating the expression of genes in artemisinin biosynthetic pathway.",
"author": "Lin",
"doi-asserted-by": "publisher",
"first-page": "50",
"journal-title": "Biotechnol. Appl. Biochem.",
"key": "B134",
"volume": "58",
"year": "2011"
},
{
"DOI": "10.1007/s10529-006-0015-6",
"article-title": "Production of the artemisinin precursor amorpha-4,11-diene by engineered Saccharomyces cerevisiae.",
"author": "Lindahl",
"doi-asserted-by": "publisher",
"first-page": "571",
"journal-title": "Biotechnol. Lett.",
"key": "B135",
"volume": "28",
"year": "2006"
},
{
"DOI": "10.1007/s00299-010-0967-9",
"article-title": "Metabolic engineering of artemisinin biosynthesis in Artemisia annua L.",
"author": "Liu",
"doi-asserted-by": "publisher",
"first-page": "689",
"journal-title": "Plant Cell Rep.",
"key": "B136",
"volume": "30",
"year": "2011"
},
{
"DOI": "10.1007/PL00009041",
"article-title": "Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor.",
"author": "Liu",
"doi-asserted-by": "publisher",
"first-page": "161",
"journal-title": "Bioproc. Eng.",
"key": "B137",
"volume": "20",
"year": "1999"
},
{
"DOI": "10.15252/emmm.202012421",
"article-title": "The role of interleukin-6 in monitoring severe case of coronavirus disease 2019.",
"author": "Liu",
"doi-asserted-by": "publisher",
"journal-title": "EMBO Mol. Med.",
"key": "B138",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1038/sigtrans.2017.23",
"article-title": "NF-κB signaling in inflammation.",
"author": "Liu",
"doi-asserted-by": "publisher",
"journal-title": "Signal Transduct. Target. Ther.",
"key": "B139",
"volume": "2",
"year": "2017"
},
{
"DOI": "10.1002/cam4.1827",
"article-title": "Dihydroartemisinin induces apoptosis and inhibits proliferation, migration, and invasion in epithelial ovarian cancer via inhibition of the hedgehog signaling pathway.",
"author": "Liu",
"doi-asserted-by": "publisher",
"first-page": "5704",
"journal-title": "Cancer Med.",
"key": "B140",
"volume": "7",
"year": "2018"
},
{
"DOI": "10.1007/s10637-010-9481-8",
"article-title": "The anti-cancer activity of dihydroartemisinin is associated with induction of iron-dependent endoplasmic reticulum stress in colorectal carcinoma HCT116 cells.",
"author": "Lu",
"doi-asserted-by": "publisher",
"first-page": "1276",
"journal-title": "Invest. New Drugs",
"key": "B141",
"volume": "29",
"year": "2011"
},
{
"DOI": "10.1016/S0140-6736(20)30251-8",
"article-title": "Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.",
"author": "Lu",
"doi-asserted-by": "publisher",
"first-page": "565",
"journal-title": "Lancet",
"key": "B142",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1186/1748-717X-9-84",
"article-title": "Artemisinin derivative artesunate induces radiosensitivity in cervical cancer cells in vitro and in vivo.",
"author": "Luo",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Radiat. Oncol.",
"key": "B143",
"volume": "9",
"year": "2014"
},
{
"DOI": "10.1080/15592324.2017.1366398",
"article-title": "New insights into artemisinin regulation.",
"author": "Lv",
"doi-asserted-by": "publisher",
"journal-title": "Plant Signal. Behav.",
"key": "B144",
"volume": "12",
"year": "2017"
},
{
"DOI": "10.1016/j.apsb.2021.09.008",
"article-title": "Traditional chinese medicine in COVID-19.",
"author": "Lyu",
"doi-asserted-by": "publisher",
"first-page": "3337",
"journal-title": "Acta Pharm. Sin. B",
"key": "B145",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1111/tpj.13583",
"article-title": "Overexpression of a type-I isopentenyl pyrophosphate isomerase of Artemisia annua in the cytosol leads to high arteannuin B production and artemisinin increase.",
"author": "Ma",
"doi-asserted-by": "publisher",
"first-page": "466",
"journal-title": "Plant J.",
"key": "B146",
"volume": "91",
"year": "2017"
},
{
"DOI": "10.1093/pcp/pcp149",
"article-title": "Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regulates the amorpha-4,11-diene synthase gene, a key gene of artemisinin biosynthesis.",
"author": "Ma",
"doi-asserted-by": "publisher",
"first-page": "2146",
"journal-title": "Plant Cell Physiol.",
"key": "B147",
"volume": "50",
"year": "2009"
},
{
"DOI": "10.1016/j.molp.2015.07.004",
"article-title": "A genome-wide scenario of terpene pathways in self-pollinated Artemisia annua.",
"author": "Ma",
"doi-asserted-by": "publisher",
"first-page": "1580",
"journal-title": "Mol. Plant",
"key": "B148",
"volume": "8",
"year": "2015"
},
{
"DOI": "10.3390/molecules161210556",
"article-title": "The effects of artesunate on the expression of EGFR and ABCG2 in A549 human lung cancer cells and a xenograft model.",
"author": "Ma",
"doi-asserted-by": "publisher",
"first-page": "10556",
"journal-title": "Molecules",
"key": "B149",
"volume": "16",
"year": "2011"
},
{
"DOI": "10.1126/sciadv.aas9357",
"article-title": "Jasmonate promotes artemisinin biosynthesis by activating the TCP14-ORA complex in Artemisia annua.",
"author": "Ma",
"doi-asserted-by": "publisher",
"journal-title": "Sci. Adv.",
"key": "B150",
"volume": "4",
"year": "2018"
},
{
"DOI": "10.1016/j.molp.2016.09.013",
"article-title": "Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells.",
"author": "Malhotra",
"doi-asserted-by": "publisher",
"first-page": "1464",
"journal-title": "Mol. Plant",
"key": "B151",
"volume": "9",
"year": "2016"
},
{
"DOI": "10.1007/s00572-014-0614-3",
"article-title": "Arbuscular mycorrhiza increase artemisinin accumulation in Artemisia annua by higher expression of key biosynthesis genes via enhanced jasmonic acid levels.",
"author": "Mandal",
"doi-asserted-by": "publisher",
"journal-title": "Mycorrhiza",
"key": "B152",
"volume": "25",
"year": "2014"
},
{
"DOI": "10.1016/j.virusres.2020.197989",
"article-title": "Natural product-derived phytochemicals as potential agents against coronaviruses: a review.",
"author": "Mani",
"doi-asserted-by": "publisher",
"journal-title": "Virus Res.",
"key": "B153",
"volume": "284",
"year": "2020"
},
{
"DOI": "10.3892/ijmm.2012.1176",
"article-title": "Involvement of the mitochondrial pathway and Bim/Bcl-2 balance in dihydroartemisinin-induced apoptosis in human breast cancer in vitro.",
"author": "Mao",
"doi-asserted-by": "publisher",
"first-page": "213",
"journal-title": "Int. J. Mol. Med.",
"key": "B154",
"volume": "31",
"year": "2013"
},
{
"DOI": "10.1038/nbt833",
"article-title": "Engineering a mevalonate pathway in Escherichia coli for production of terpenoids.",
"author": "Martin",
"doi-asserted-by": "publisher",
"first-page": "796",
"journal-title": "Nat. Biotechnol.",
"key": "B155",
"volume": "21",
"year": "2003"
},
{
"DOI": "10.1038/nature14412",
"article-title": "A molecular mechanism of artemisinin resistance in Plasmodium falciparum malaria.",
"author": "Mbengue",
"doi-asserted-by": "publisher",
"first-page": "683",
"journal-title": "Nature",
"key": "B156",
"volume": "520",
"year": "2015"
},
{
"DOI": "10.3390/diagnostics11030395",
"article-title": "Preclinical evaluation of artesunate as an antineoplastic agent in ovarian cancer treatment.",
"author": "McDowell",
"doi-asserted-by": "publisher",
"journal-title": "Diagnostics",
"key": "B157",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.1016/S0140-6736(20)30628-0",
"article-title": "COVID-19: consider cytokine storm syndromes and immunosuppression.",
"author": "Mehta",
"doi-asserted-by": "publisher",
"first-page": "1033",
"journal-title": "Lancet",
"key": "B158",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1006/abbi.2000.1962",
"article-title": "Molecular cloning, expression, and characterization of amorpha-4,11-diene synthase, a key enzyme of artemisinin biosynthesis in Artemisia annua L.",
"author": "Mercke",
"doi-asserted-by": "publisher",
"first-page": "173",
"journal-title": "Arch. Biochem. Biophys.",
"key": "B159",
"volume": "381",
"year": "2000"
},
{
"DOI": "10.1300/J044v09n04_20",
"article-title": "The effects of different plant densities on yield, yield components and quality of Artemisia annua L. ecotypes.",
"author": "Mert",
"doi-asserted-by": "publisher",
"first-page": "413",
"journal-title": "J. Herbs. Spices Med. Plants",
"key": "B160",
"volume": "9",
"year": "2002"
},
{
"DOI": "10.1016/j.bcp.2009.08.013",
"article-title": "Anti-cancer effects of artesunate in a panel of chemoresistant neuroblastoma cell lines.",
"author": "Michaelis",
"doi-asserted-by": "publisher",
"first-page": "130",
"journal-title": "Biochem. Pharmacol.",
"key": "B161",
"volume": "79",
"year": "2010"
},
{
"DOI": "10.1126/science.1260403",
"article-title": "Population transcriptomics of human malaria parasites reveals the mechanism of artemisinin resistance.",
"author": "Mok",
"doi-asserted-by": "publisher",
"first-page": "431",
"journal-title": "Science",
"key": "B162",
"volume": "347",
"year": "2015"
},
{
"DOI": "10.1002/jcb.25152",
"article-title": "Artemisinin represses telomerase subunits and induces apoptosis in HPV-39 Infected human cervical cancer cells.",
"author": "Mondal",
"doi-asserted-by": "publisher",
"first-page": "1968",
"journal-title": "J. Cell. Biochem.",
"key": "B163",
"volume": "116",
"year": "2015"
},
{
"DOI": "10.1016/j.biotechadv.2020.107555",
"article-title": "Production of plant natural products through engineered Yarrowia lipolytica.",
"author": "Muhammad",
"doi-asserted-by": "publisher",
"journal-title": "Biotechnol. Adv.",
"key": "B164",
"volume": "43",
"year": "2020"
},
{
"DOI": "10.1007/s11816-010-0156-x",
"article-title": "Enhancement of artemisinin content by constitutive expression of the HMG-CoA reductase gene in high-yielding strain of Artemisia annua L.",
"author": "Nafis",
"doi-asserted-by": "publisher",
"first-page": "53",
"journal-title": "Plant Biotechnol. Rep.",
"key": "B165",
"volume": "5",
"year": "2011"
},
{
"DOI": "10.1016/j.jep.2021.114797",
"article-title": "Artemisia annua L. hot-water extracts show potent activity in vitro against Covid-19 variants including delta.",
"author": "Nair",
"doi-asserted-by": "publisher",
"journal-title": "J. Ethnopharmacol.",
"key": "B166",
"volume": "284",
"year": "2022"
},
{
"DOI": "10.1016/j.canlet.2008.09.023",
"article-title": "Transferrin receptor-dependent cytotoxicity of artemisinin-transferrin conjugates on prostate cancer cells and induction of apoptosis.",
"author": "Nakase",
"doi-asserted-by": "publisher",
"first-page": "290",
"journal-title": "Cancer Lett.",
"key": "B167",
"volume": "274",
"year": "2009"
},
{
"DOI": "10.1002/ptr.6895",
"article-title": "Revisiting pharmacological potentials of Nigella sativa seed: a promising option for COVID-19 prevention and cure.",
"author": "Nazrul Islam",
"doi-asserted-by": "publisher",
"first-page": "1329",
"journal-title": "Phyther. Res.",
"key": "B168",
"volume": "35",
"year": "2021"
},
{
"DOI": "10.1002/bit.21017",
"article-title": "High-level production of amorpha-4,11-diene in a two-phase partitioning bioreactor of metabolically engineered Escherichia coli.",
"author": "Newman",
"doi-asserted-by": "publisher",
"first-page": "684",
"journal-title": "Biotechnol. Bioeng.",
"key": "B169",
"volume": "95",
"year": "2006"
},
{
"DOI": "10.1186/s12985-021-01651-8",
"article-title": "In vitro efficacy of artemisia extracts against SARS-CoV-2.",
"author": "Nie",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Virol. J.",
"key": "B170",
"volume": "18",
"year": "2021"
},
{
"DOI": "10.1016/j.neo.2017.02.002",
"article-title": "Targeting NF-kappa B signaling by artesunate restores sensitivity of castrate-resistant prostate cancer cells to antiandrogens.",
"author": "Nunes",
"doi-asserted-by": "publisher",
"first-page": "333",
"journal-title": "Neoplasia",
"key": "B171",
"volume": "19",
"year": "2017"
},
{
"article-title": "Effect of hyperbaric oxygen on the anticancer effect of artemisinin on molt-4 human leukemia cells.",
"author": "Ohgami",
"first-page": "4467",
"journal-title": "Anticancer Res.",
"key": "B172",
"volume": "30",
"year": "2010"
},
{
"DOI": "10.3390/molecules15031705",
"article-title": "The molecular mechanism of action of artemisinin-the debate continues.",
"author": "O’Neill",
"doi-asserted-by": "publisher",
"first-page": "1705",
"journal-title": "Molecules",
"key": "B173",
"volume": "15",
"year": "2010"
},
{
"DOI": "10.1016/j.phymed.2015.08.002",
"article-title": "Artemisinin derivatives induce iron-dependent cell death (ferroptosis) in tumor cells.",
"author": "Ooko",
"doi-asserted-by": "publisher",
"first-page": "1045",
"journal-title": "Phytomedicine",
"key": "B174",
"volume": "22",
"year": "2015"
},
{
"DOI": "10.1007/s13596-021-00576-5",
"article-title": "Artemisia and artemisia-based products for COVID-19 management: current state and future perspective.",
"author": "Orege",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Adv. Tradit. Med.",
"key": "B175",
"volume": "5",
"year": "2021"
},
{
"DOI": "10.3390/molecules22040533",
"article-title": "Artesunate enhances the cytotoxicity of 5-aminolevulinic acid-based sonodynamic therapy against mouse mammary tumor cells in vitro.",
"author": "Osaki",
"doi-asserted-by": "publisher",
"journal-title": "Molecules",
"key": "B176",
"volume": "22",
"year": "2017"
},
{
"DOI": "10.1038/nrmicro3240",
"article-title": "Semi-synthetic artemisinin: a model for the use of synthetic biology in pharmaceutical development.",
"author": "Paddon",
"doi-asserted-by": "publisher",
"first-page": "355",
"journal-title": "Nat. Rev. Microbiol.",
"key": "B177",
"volume": "12",
"year": "2014"
},
{
"DOI": "10.1038/nature12051",
"article-title": "High-level semi-synthetic production of the potent antimalarial artemisinin.",
"author": "Paddon",
"doi-asserted-by": "publisher",
"first-page": "528",
"journal-title": "Nature",
"key": "B178",
"volume": "496",
"year": "2013"
},
{
"DOI": "10.1038/sj.onc.1203239",
"article-title": "Activators and target genes of Rel/NF-κB transcription factors.",
"author": "Pahl",
"doi-asserted-by": "publisher",
"first-page": "6853",
"journal-title": "Oncogene",
"key": "B179",
"volume": "18",
"year": "1999"
},
{
"DOI": "10.1007/s11240-013-0413-0",
"article-title": "Short term UV-B radiation-mediated transcriptional responses and altered secondary metabolism of in vitro propagated plantlets of Artemisia annua L.",
"author": "Pandey",
"doi-asserted-by": "publisher",
"first-page": "371",
"journal-title": "Plant Cell, Tissue Organ Cult.",
"key": "B180",
"volume": "116",
"year": "2014"
},
{
"DOI": "10.1002/bit.21766",
"article-title": "Redirection of flux through the FPP branch-point in Saccharomyces cerevisiae by down-regulating squalene synthase.",
"author": "Paradise",
"doi-asserted-by": "publisher",
"first-page": "371",
"journal-title": "Biotechnol. Bioeng.",
"key": "B181",
"volume": "100",
"year": "2008"
},
{
"DOI": "10.1016/j.biotechadv.2012.03.010",
"article-title": "Microbial transformation of antimalarial terpenoids.",
"author": "Parshikov",
"doi-asserted-by": "publisher",
"first-page": "1516",
"journal-title": "Biotechnol. Adv.",
"key": "B182",
"volume": "30",
"year": "2012"
},
{
"DOI": "10.1016/j.ijbiomac.2020.08.198",
"article-title": "Artesunate, as a HSP70 ATPase activity inhibitor, induces apoptosis in breast cancer cells.",
"author": "Pirali",
"doi-asserted-by": "publisher",
"first-page": "3369",
"journal-title": "Int. J. Biol. Macromol.",
"key": "B183",
"volume": "164",
"year": "2020"
},
{
"DOI": "10.1016/j.ymben.2006.11.002",
"article-title": "Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli.",
"author": "Pitera",
"doi-asserted-by": "publisher",
"first-page": "193",
"journal-title": "Metab. Eng.",
"key": "B184",
"volume": "9",
"year": "2007"
},
{
"DOI": "10.1016/j.biotechadv.2015.04.002",
"article-title": "Modularization of genetic elements promotes synthetic metabolic engineering.",
"author": "Qi",
"doi-asserted-by": "publisher",
"first-page": "1412",
"journal-title": "Biotechnol. Adv.",
"key": "B185",
"volume": "33",
"year": "2015"
},
{
"DOI": "10.1002/ijc.25315",
"article-title": "First evidence that the antimalarial drug artesunate inhibits invasion and in vivo metastasis in lung cancer by targeting essential extracellular proteases.",
"author": "Rasheed",
"doi-asserted-by": "publisher",
"first-page": "1475",
"journal-title": "Int. J. Cancer",
"key": "B186",
"volume": "127",
"year": "2010"
},
{
"DOI": "10.4236/oalib.1102189",
"article-title": "Enhancement of artemisinin in Artemisia annua L. through induced mutation.",
"author": "Raymond",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "OALib",
"key": "B187",
"volume": "2",
"year": "2015"
},
{
"DOI": "10.1038/s41598-017-08058-y",
"article-title": "Connexin-43 enhances tumor suppressing activity of artesunate via gap junction-dependent as well as independent pathways in human breast cancer cells.",
"author": "Raza",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "B188",
"volume": "7",
"year": "2017"
},
{
"DOI": "10.1016/j.ymben.2017.06.012",
"article-title": "A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules.",
"author": "Reed",
"doi-asserted-by": "publisher",
"first-page": "185",
"journal-title": "Metab. Eng.",
"key": "B189",
"volume": "42",
"year": "2017"
},
{
"DOI": "10.1080/14786419.2021.1925894",
"article-title": "Computational and experimental insights on the interaction of artemisinin, dihydroartemisinin and chloroquine with SARS-CoV-2 spike protein receptor-binding domain (RBD).",
"author": "Ribaudo",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Nat. Prod. Res.",
"key": "B190",
"volume": "33",
"year": "2021"
},
{
"DOI": "10.1111/j.1476-5381.2009.00117.x",
"article-title": "Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1α and P-glycoprotein overexpression.",
"author": "Riganti",
"doi-asserted-by": "publisher",
"first-page": "1054",
"journal-title": "Br. J. Pharmacol.",
"key": "B191",
"volume": "156",
"year": "2009"
},
{
"DOI": "10.1186/1472-6750-8-83",
"article-title": "Induction of multiple pleiotropic drug resistance genes in yeast engineered to produce an increased level of anti-malarial drug precursor, artemisinic acid.",
"author": "Ro",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "BMC Biotechnol.",
"key": "B192",
"volume": "8",
"year": "2008"
},
{
"DOI": "10.1038/nature04640",
"article-title": "Production of the antimalarial drug precursor artemisinic acid in engineered yeast.",
"author": "Ro",
"doi-asserted-by": "publisher",
"first-page": "940",
"journal-title": "Nature",
"key": "B193",
"volume": "440",
"year": "2006"
},
{
"DOI": "10.1016/j.redox.2016.12.010",
"article-title": "Nrf2 inhibition reverses the resistance of cisplatin-resistant head and neck cancer cells to artesunate-induced ferroptosis.",
"author": "Roh",
"doi-asserted-by": "publisher",
"first-page": "254",
"journal-title": "Redox Biol.",
"key": "B194",
"volume": "11",
"year": "2017"
},
{
"DOI": "10.21203/rs.3.rs-30938/v1",
"article-title": "Phytocompounds of Rheum emodi, Thymus serpyllum and Artemisia annua inhibit COVID-19 binding to ACE2 receptor: in silico approach.",
"author": "Rolta",
"doi-asserted-by": "publisher",
"journal-title": "Curr. Pharmacol. Rep.",
"key": "B195",
"year": "2020"
},
{
"DOI": "10.1016/S0168-9452(00)00453-2",
"article-title": "Effects of ipt gene expression on the physiological and chemical characteristics of Artemisia annua L.",
"author": "Sa",
"doi-asserted-by": "publisher",
"first-page": "691",
"journal-title": "Plant Sci.",
"key": "B196",
"volume": "160",
"year": "2001"
},
{
"DOI": "10.3390/cancers12040919",
"article-title": "Artesunate affects T antigen expression and survival of virus-positive merkel cell carcinoma.",
"author": "Sarma",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Cancers",
"key": "B197",
"volume": "12",
"year": "2020"
},
{
"DOI": "10.1016/j.phytochem.2009.10.015",
"article-title": "Artemisinin biosynthesis in growing plants of Artemisia annua. a 13CO2 study.",
"author": "Schramek",
"doi-asserted-by": "publisher",
"first-page": "179",
"journal-title": "Phytochemistry",
"key": "B198",
"volume": "71",
"year": "2010"
},
{
"DOI": "10.1080/07391102.2020.1796809",
"article-title": "Antimalarial-agent artemisinin and derivatives portray more potent binding to Lys353 and Lys31-binding hotspots of SARS-CoV-2 spike protein than hydroxychloroquine: potential repurposing of artenimol for COVID-19.",
"author": "Sehailia",
"doi-asserted-by": "publisher",
"first-page": "6184",
"journal-title": "J. Biomol. Struct. Dyn.",
"key": "B199",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.1038/srep02513",
"article-title": "A plausible mechanism for the antimalarial activity of artemisinin: a computational approach.",
"author": "Shandilya",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "B200",
"volume": "3",
"year": "2013"
},
{
"DOI": "10.4238/2012.September.12.13",
"article-title": "Overexpression of the cytochrome P450 monooxygenase (cyp71av1) and cytochrome P450 reductase (cpr) genes increased artemisinin content in Artemisia annua (asteraceae).",
"author": "Shen",
"doi-asserted-by": "publisher",
"first-page": "3298",
"journal-title": "Genet. Mol. Res.",
"key": "B201",
"volume": "11",
"year": "2012"
},
{
"DOI": "10.1007/s11434-015-0983-9",
"article-title": "Transcriptional regulation of artemisinin biosynthesis in Artemisia annua L.",
"author": "Shen",
"doi-asserted-by": "publisher",
"first-page": "18",
"journal-title": "Sci. Bull.",
"key": "B202",
"volume": "61",
"year": "2016"
},
{
"DOI": "10.3892/ol.2015.2982",
"article-title": "Artesunate altered cellular mechanical properties leading to deregulation of cell proliferation and migration in esophageal squamous cell carcinoma.",
"author": "Shi",
"doi-asserted-by": "publisher",
"first-page": "2249",
"journal-title": "Oncol. Lett.",
"key": "B203",
"volume": "9",
"year": "2015"
},
{
"article-title": "Artemisinin induces apoptosis in human cancer cells.",
"author": "Singh",
"first-page": "2277",
"journal-title": "Anticancer Res.",
"key": "B204",
"volume": "24",
"year": "2004"
},
{
"DOI": "10.2298/AOO0204279S",
"article-title": "Case report of a laryngeal squamous cell carcinoma treated with artesunate.",
"author": "Singh",
"doi-asserted-by": "publisher",
"first-page": "279",
"journal-title": "Arch. Oncol.",
"key": "B205",
"volume": "10",
"year": "2002"
},
{
"DOI": "10.1007/s12098-020-03263-6",
"article-title": "A review of coronavirus disease-2019 (COVID-19).",
"author": "Singhal",
"doi-asserted-by": "publisher",
"first-page": "281",
"journal-title": "Indian J. Pediatr.",
"key": "B206",
"volume": "87",
"year": "2020"
},
{
"DOI": "10.1016/j.bcp.2020.114302",
"article-title": "The comprehensive study on the therapeutic effects of baicalein for the treatment of COVID-19 in vivo and in vitro.",
"author": "Song",
"doi-asserted-by": "publisher",
"journal-title": "Biochem. Pharmacol.",
"key": "B207",
"volume": "183",
"year": "2021"
},
{
"article-title": "Influence of micronutrient imbalance on growth and artemisinin content in Artemisia annua.",
"author": "Srivastava",
"first-page": "225",
"journal-title": "Indian J. Pharm. Sci.",
"key": "B208",
"volume": "52",
"year": "1990"
},
{
"DOI": "10.1016/j.phymed.2019.152968",
"article-title": "Artemisinin and its derivatives prevent helicobacter pylori-induced gastric carcinogenesis via inhibition of NF-κB signaling.",
"author": "Su",
"doi-asserted-by": "publisher",
"journal-title": "Phytomedicine",
"key": "B209",
"volume": "63",
"year": "2019"
},
{
"DOI": "10.1016/j.bbrc.2016.06.128",
"article-title": "High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: involvement of mitochondrial metabolism.",
"author": "Subedi",
"doi-asserted-by": "publisher",
"first-page": "737",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "B210",
"volume": "477",
"year": "2016"
},
{
"DOI": "10.1093/carcin/bgn214",
"article-title": "Artemisinin selectively decreases functional levels of estrogen receptor-alpha and ablates estrogen-induced proliferation in human breast cancer cells.",
"author": "Sundar",
"doi-asserted-by": "publisher",
"first-page": "2252",
"journal-title": "Carcinogenesis",
"key": "B211",
"volume": "29",
"year": "2008"
},
{
"DOI": "10.1101/cshperspect.a016295",
"article-title": "IL-6 in inflammation, immunity, and disease.",
"author": "Tanaka",
"doi-asserted-by": "crossref",
"journal-title": "Cold Spring Harb. Perspect. Biol.",
"key": "B212",
"volume": "6",
"year": "2014"
},
{
"DOI": "10.1007/s00299-014-1566-y",
"article-title": "Transgenic approach to increase artemisinin content in Artemisia annua L.",
"author": "Tang",
"doi-asserted-by": "publisher",
"first-page": "605",
"journal-title": "Plant Cell Rep.",
"key": "B213",
"volume": "33",
"year": "2014"
},
{
"DOI": "10.1016/j.febslet.2006.01.065",
"article-title": "Artemisia annua L. (asteraceae) trichome-specific cDNAs reveal CYP71AV1, a cytochrome P450 with a key role in the biosynthesis of the antimalarial sesquiterpene lactone artemisinin.",
"author": "Teoh",
"doi-asserted-by": "publisher",
"first-page": "1411",
"journal-title": "FEBS Lett.",
"key": "B214",
"volume": "580",
"year": "2006"
},
{
"DOI": "10.3892/ijo.2011.1017",
"article-title": "Artesunate enhances TRAIL-induced apoptosis in human cervical carcinoma cells through inhibition of the NF-κB and PI3K/Akt signaling pathways.",
"author": "Thanaketpaisarn",
"doi-asserted-by": "publisher",
"first-page": "279",
"journal-title": "Int. J. Oncol.",
"key": "B215",
"volume": "39",
"year": "2011"
},
{
"DOI": "10.1016/j.pt.2016.05.010",
"article-title": "Artemisinin action and resistance in Plasmodium falciparum.",
"author": "Tilley",
"doi-asserted-by": "publisher",
"first-page": "682",
"journal-title": "Trends Parasitol.",
"key": "B216",
"volume": "32",
"year": "2016"
},
{
"DOI": "10.1097/CAD.0b013e32834f6ea8",
"article-title": "Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes.",
"author": "Tin",
"doi-asserted-by": "publisher",
"first-page": "370",
"journal-title": "Anticancer. Drugs",
"key": "B217",
"volume": "23",
"year": "2012"
},
{
"DOI": "10.1111/nph.12274",
"article-title": "The metabolite chemotype of Nicotiana benthamiana transiently expressing artemisinin biosynthetic pathway genes is a function of CYP71AV1 type and relative gene dosage.",
"author": "Ting",
"doi-asserted-by": "publisher",
"first-page": "352",
"journal-title": "New Phytol.",
"key": "B218",
"volume": "199",
"year": "2013"
},
{
"DOI": "10.18632/oncotarget.8920",
"article-title": "Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling.",
"author": "Tong",
"doi-asserted-by": "publisher",
"first-page": "31413",
"journal-title": "Oncotarget",
"key": "B219",
"volume": "7",
"year": "2016"
},
{
"DOI": "10.1097/CAD.0000000000000054",
"article-title": "Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling.",
"author": "Tran",
"doi-asserted-by": "publisher",
"first-page": "270",
"journal-title": "Anticancer. Drugs",
"key": "B220",
"volume": "25",
"year": "2014"
},
{
"DOI": "10.3109/21691401.2015.1129616",
"article-title": "Enhancing activity of artesunate against breast cancer cells via induced-apoptosis pathway by loading into lipid carriers.",
"author": "Tran",
"doi-asserted-by": "publisher",
"first-page": "1979",
"journal-title": "Artif. Cells Nanomed. Biotechnol.",
"key": "B221",
"volume": "44",
"year": "2016"
},
{
"DOI": "10.1371/journal.pone.0004489",
"article-title": "High-level production of amorpha-4, 11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli.",
"author": "Tsuruta",
"doi-asserted-by": "publisher",
"journal-title": "PLoS One",
"key": "B222",
"volume": "4",
"year": "2009"
},
{
"DOI": "10.1038/nm.2471",
"article-title": "The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine.",
"author": "Tu",
"doi-asserted-by": "publisher",
"first-page": "1217",
"journal-title": "Nat. Med.",
"key": "B223",
"volume": "17",
"year": "2011"
},
{
"DOI": "10.3389/fphar.2021.649532",
"article-title": "Repurposing anti-malaria phytomedicine artemisinin as a COVID-19 drug.",
"author": "Uckun",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Pharmacol.",
"key": "B224",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1016/j.medmal.2020.04.002",
"article-title": "Interleukin-6 as a potential biomarker of COVID-19 progression.",
"author": "Ulhaq",
"doi-asserted-by": "publisher",
"first-page": "382",
"journal-title": "Med. Mal. Infect.",
"key": "B225",
"volume": "50",
"year": "2020"
},
{
"DOI": "10.1186/s13020-020-00336-8",
"article-title": "Artesunate: could be an alternative drug to chloroquine in COVID-19 treatment?",
"author": "Uzun",
"doi-asserted-by": "publisher",
"journal-title": "Chin. Med.",
"key": "B226",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1371/journal.pone.0014222",
"article-title": "Nicotiana benthamiana as a production platform for artemisinin precursors.",
"author": "van Herpen",
"doi-asserted-by": "publisher",
"journal-title": "PLoS One",
"key": "B227",
"volume": "5",
"year": "2010"
},
{
"DOI": "10.1186/s13045-018-0561-0",
"article-title": "Artesunate shows potent anti-tumor activity in B-cell lymphoma.",
"author": "Våtsveen",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "J. Hematol. Oncol.",
"key": "B228",
"volume": "11",
"year": "2018"
},
{
"DOI": "10.3389/fmicb.2019.01057",
"article-title": "The role of interleukin 6 during viral infections.",
"author": "Velazquez-Salinas",
"doi-asserted-by": "publisher",
"first-page": "6",
"journal-title": "Front. Microbiol.",
"key": "B229",
"volume": "10",
"year": "2019"
},
{
"DOI": "10.1101/gad.9.22.2723",
"article-title": "Rel/NF-kappa B/I kappa B family: intimate tales of association and dissociation.",
"author": "Verma",
"doi-asserted-by": "crossref",
"first-page": "2723",
"journal-title": "Genes Dev.",
"key": "B230",
"volume": "9",
"year": "1995"
},
{
"DOI": "10.1016/j.cbi.2017.10.011",
"article-title": "Chemoprevention by artesunate in a preclinical model of colorectal cancer involves down regulation of β-catenin, suppression of angiogenesis, cellular proliferation and induction of apoptosis.",
"author": "Verma",
"doi-asserted-by": "publisher",
"first-page": "84",
"journal-title": "Chem. Biol. Interact.",
"key": "B231",
"volume": "278",
"year": "2017"
},
{
"DOI": "10.3389/fphar.2020.561334",
"article-title": "Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19).",
"author": "Verma",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Pharmacol.",
"key": "B232",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1016/S0958-1669(02)00308-7",
"article-title": "Engineering secondary metabolite production in plants.",
"author": "Verpoorte",
"doi-asserted-by": "publisher",
"first-page": "181",
"journal-title": "Curr. Opin. Biotechnol.",
"key": "B233",
"volume": "13",
"year": "2002"
},
{
"DOI": "10.1146/annurev-arplant-050312-120116",
"article-title": "Network analysis of the MVA and MEP pathways for isoprenoid synthesis.",
"author": "Vranová",
"doi-asserted-by": "publisher",
"first-page": "665",
"journal-title": "Annu. Rev. Plant Biol.",
"key": "B234",
"volume": "64",
"year": "2013"
},
{
"DOI": "10.1007/s004250000428",
"article-title": "Amorpha-4,11-diene synthase: cloning and functional expression of a key enzyme in the biosynthetic pathway of the novel antimalarial drug artemisinin.",
"author": "Wallaart",
"doi-asserted-by": "publisher",
"first-page": "460",
"journal-title": "Planta",
"key": "B235",
"volume": "212",
"year": "2001"
},
{
"DOI": "10.1016/j.ymben.2016.07.004",
"article-title": "Transient production of artemisinin in Nicotiana benthamiana is boosted by a specific lipid transfer protein from a. annua.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "159",
"journal-title": "Metab. Eng.",
"key": "B236",
"volume": "38",
"year": "2016"
},
{
"DOI": "10.1080/15384047.2015.1071738",
"article-title": "Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "1548",
"journal-title": "Cancer Biol. Ther.",
"key": "B237",
"volume": "16",
"year": "2015"
},
{
"DOI": "10.1371/journal.pone.0009582",
"article-title": "Artemisinin directly targets malarial mitochondria through its specific mitochondrial activation.",
"author": "Wang",
"doi-asserted-by": "publisher",
"journal-title": "PLoS One",
"key": "B238",
"volume": "5",
"year": "2010"
},
{
"DOI": "10.1038/ncomms10111",
"article-title": "Haem-activated promiscuous targeting of artemisinin in Plasmodium falciparum.",
"author": "Wang",
"doi-asserted-by": "publisher",
"journal-title": "Nat. Commun.",
"key": "B239",
"volume": "6",
"year": "2015"
},
{
"DOI": "10.1080/21655979.2020.1834727",
"article-title": "Artesunate inhibits epithelial-mesenchymal transition in non-small-cell lung cancer (NSCLC) cells by down-regulating the expression of BTBD7.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "1197",
"journal-title": "Bioengineered",
"key": "B240",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.2147/DDDT.S199459",
"article-title": "Role of GRP78 inhibiting artesunate-induced ferroptosis in KRAS mutant pancreatic cancer cells.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "2135",
"journal-title": "Drug Des. Devel. Ther.",
"key": "B241",
"volume": "13",
"year": "2019"
},
{
"DOI": "10.1016/j.phymed.2018.09.221",
"article-title": "Antimalarial dihydroartemisinin triggers autophagy within HeLa cells of human cervical cancer through Bcl-2 phosphorylation at Ser70.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "147",
"journal-title": "Phytomedicine",
"key": "B242",
"volume": "52",
"year": "2019"
},
{
"DOI": "10.1016/j.arcmed.2018.03.004",
"article-title": "Inhibitory effect of artesunate on growth and apoptosis of gastric cancer cells.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "623",
"journal-title": "Arch. Med. Res.",
"key": "B243",
"volume": "48",
"year": "2017"
},
{
"DOI": "10.1016/j.canlet.2010.01.001",
"article-title": "Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both in vitro and in vivo.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "99",
"journal-title": "Cancer Lett.",
"key": "B244",
"volume": "293",
"year": "2010"
},
{
"DOI": "10.1007/s00280-011-1643-7",
"article-title": "Dihydroartemisinin inhibits angiogenesis in pancreatic cancer by targeting the NF-κB pathway.",
"author": "Wang",
"doi-asserted-by": "publisher",
"first-page": "1421",
"journal-title": "Cancer Chemother. Pharmacol.",
"key": "B245",
"volume": "68",
"year": "2011"
},
{
"DOI": "10.1007/s00425-021-03676-3",
"article-title": "Enhancing artemisinin content in and delivery from Artemisia annua: a review of alternative, classical, and transgenic approaches.",
"author": "Wani",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Planta",
"key": "B246",
"volume": "254",
"year": "2021"
},
{
"DOI": "10.1007/s00299-003-0587-8",
"article-title": "Tetraploid Artemisia annua hairy roots produce more artemisinin than diploids.",
"author": "Weathers",
"doi-asserted-by": "publisher",
"first-page": "809",
"journal-title": "Plant Cell Rep.",
"key": "B247",
"volume": "21",
"year": "2003"
},
{
"DOI": "10.1079/IVP2004604",
"article-title": "The effect of phytohormones on growth and artemisinin production in Artemisia annua hairy roots.",
"author": "Weathers",
"doi-asserted-by": "publisher",
"first-page": "47",
"journal-title": "Vitr. Cell. Dev. Biol. Plant",
"key": "B248",
"volume": "41",
"year": "2005"
},
{
"DOI": "10.1007/s12282-018-0873-5",
"article-title": "Artesunate promotes G2/M cell cycle arrest in MCF7 breast cancer cells through ATM activation.",
"author": "Wen",
"doi-asserted-by": "publisher",
"first-page": "681",
"journal-title": "Breast Cancer",
"key": "B249",
"volume": "25",
"year": "2018"
},
{
"DOI": "10.1073/pnas.1110740109",
"article-title": "Production of amorphadiene in yeast, and its conversion to dihydroartemisinic acid, precursor to the antimalarial agent artemisinin.",
"author": "Westfall",
"doi-asserted-by": "publisher",
"first-page": "111",
"journal-title": "Proc. Natl. Acad. Sci. U.S.A.",
"key": "B250",
"volume": "109",
"year": "2012"
},
{
"DOI": "10.1016/j.bcp.2020.114123",
"article-title": "Testing of natural products in clinical trials targeting the SARS-CoV-2 (Covid-19) viral spike protein-angiotensin converting enzyme-2 (ACE2) interaction.",
"author": "Williamson",
"doi-asserted-by": "publisher",
"journal-title": "Biochem. Pharmacol.",
"key": "B251",
"volume": "178",
"year": "2020"
},
{
"DOI": "10.1074/jbc.M804491200",
"article-title": "Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the cyclin-dependent kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression.",
"author": "Willoughby",
"doi-asserted-by": "publisher",
"first-page": "2203",
"journal-title": "J. Biol. Chem.",
"key": "B252",
"volume": "284",
"year": "2009"
},
{
"DOI": "10.1002/jcb.23114",
"article-title": "Down-regulation of BMI-1 cooperates with artemisinin on growth inhibition of nasopharyngeal carcinoma cells.",
"author": "Wu",
"doi-asserted-by": "publisher",
"first-page": "1938",
"journal-title": "J. Cell. Biochem.",
"key": "B253",
"volume": "112",
"year": "2011"
},
{
"DOI": "10.1155/2019/9581327",
"article-title": "Dihydroartemisinin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cell by upregulating tumor necrosis factor via JNK/NF-κB pathways. evidence-based Complement.",
"author": "Wu",
"doi-asserted-by": "publisher",
"journal-title": "Altern. Med.",
"key": "B254",
"volume": "2019",
"year": "2019"
},
{
"article-title": "Biosynthesis of amorpha-4,11-diene, a precursor of the antimalarial agent artemisinin, in Escherichia coli through introducing mevalonate pathway.",
"author": "Wu",
"first-page": "1040",
"journal-title": "Shengwu Gongcheng Xuebao/Chinese J. Biotechnol.",
"key": "B255",
"volume": "27",
"year": "2011"
},
{
"DOI": "10.1007/s11101-016-9480-2",
"article-title": "Artemisinin biosynthesis in Artemisia annua and metabolic engineering: questions, challenges, and perspectives.",
"author": "Xie",
"doi-asserted-by": "publisher",
"first-page": "1093",
"journal-title": "Phytochem. Rev.",
"key": "B256",
"volume": "15",
"year": "2016"
},
{
"DOI": "10.1016/j.ejphar.2010.09.018",
"article-title": "Artemisinin, an anti-malarial agent, inhibits rat cardiac hypertrophy via inhibition of NF-κB signaling.",
"author": "Xiong",
"doi-asserted-by": "publisher",
"first-page": "277",
"journal-title": "Eur. J. Pharmacol.",
"key": "B257",
"volume": "649",
"year": "2010"
},
{
"DOI": "10.1093/rheumatology/kem014",
"article-title": "Anti-malarial agent artesunate inhibits TNF-α-induced production of proinflammatory cytokines via inhibition of NF-κB and PI3 kinase/Akt signal pathway in human rheumatoid arthritis fibroblast-like synoviocytes.",
"author": "Xu",
"doi-asserted-by": "publisher",
"first-page": "920",
"journal-title": "Rheumatology",
"key": "B258",
"volume": "46",
"year": "2007"
},
{
"DOI": "10.1016/j.jphotobiol.2012.04.011",
"article-title": "The responses of trichome mutants to enhanced ultraviolet-B radiation in Arabidopsis thaliana.",
"author": "Yan",
"doi-asserted-by": "publisher",
"first-page": "29",
"journal-title": "J. Photochem. Photobiol. B Biol.",
"key": "B259",
"volume": "113",
"year": "2012"
},
{
"DOI": "10.1111/j.1744-7909.2012.01161.x",
"article-title": "Transcriptional regulation of plant secondary metabolism.",
"author": "Yang",
"doi-asserted-by": "publisher",
"first-page": "703",
"journal-title": "J. Integr. Plant Biol.",
"key": "B260",
"volume": "54",
"year": "2012"
},
{
"DOI": "10.1074/jbc.M114.564567",
"article-title": "Artesunate induces cell death in human cancer cells via enhancing lysosomal function and lysosomal degradation of ferritin.",
"author": "Yang",
"doi-asserted-by": "publisher",
"first-page": "33425",
"journal-title": "J. Biol. Chem.",
"key": "B261",
"volume": "289",
"year": "2014"
},
{
"DOI": "10.1055/s-2008-1081333",
"article-title": "Quantitative transcript profiling reveals down-regulation of a sterol pathway relevant gene and overexpression of artemisinin biogenetic genes in transgenic Artemisia annua plants.",
"author": "Yang",
"doi-asserted-by": "publisher",
"first-page": "1510",
"journal-title": "Planta Med.",
"key": "B262",
"volume": "74",
"year": "2008"
},
{
"DOI": "10.1016/j.bbrc.2018.05.026",
"article-title": "Dihydroartemisinin potentiates antitumor activity of 5-fluorouracil against a resistant colorectal cancer cell line.",
"author": "Yao",
"doi-asserted-by": "publisher",
"first-page": "636",
"journal-title": "Biochem. Biophys. Res. Commun.",
"key": "B263",
"volume": "501",
"year": "2018"
},
{
"DOI": "10.1002/biot.201100289",
"article-title": "Metabolic engineering for the production of clinically important molecules: omega-3 fatty acids, artemisinin, and taxol.",
"author": "Ye",
"doi-asserted-by": "publisher",
"first-page": "20",
"journal-title": "Biotechnol. J.",
"key": "B264",
"volume": "7",
"year": "2012"
},
{
"DOI": "10.1177/0960327120937331",
"article-title": "Antimalarial agent artesunate induces G0/G1 cell cycle arrest and apoptosis via increasing intracellular ROS levels in normal liver cells.",
"author": "Yin",
"doi-asserted-by": "publisher",
"first-page": "1681",
"journal-title": "Hum. Exp. Toxicol.",
"key": "B265",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.3389/fcell.2020.606969",
"article-title": "Artesunate suppresses the proliferation and development of estrogen receptor-α-positive endometrial cancer in HAND2-dependent pathway.",
"author": "Yin",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Front. Cell Dev. Biol.",
"key": "B266",
"volume": "8",
"year": "2021"
},
{
"DOI": "10.1016/j.biopha.2019.109383",
"article-title": "Inhibition of AKT enhances the anti-cancer effects of artemisinin in clear cell renal cell carcinoma.",
"author": "Yu",
"doi-asserted-by": "publisher",
"journal-title": "Biomed. Pharmacother.",
"key": "B267",
"volume": "118",
"year": "2019"
},
{
"DOI": "10.1007/s40618-015-0328-1",
"article-title": "Artesunate protects pancreatic beta cells against cytokine-induced damage via SIRT1 inhibiting NF-κB activation.",
"author": "Yu",
"doi-asserted-by": "publisher",
"first-page": "83",
"journal-title": "J. Endocrinol. Invest.",
"key": "B268",
"volume": "39",
"year": "2016"
},
{
"DOI": "10.1002/bab.1234",
"article-title": "Overexpression of artemisinic aldehyde Δ11 (13) reductase gene-enhanced artemisinin and its relative metabolite biosynthesis in transgenic Artemisia annua L.",
"author": "Yuan",
"doi-asserted-by": "publisher",
"first-page": "17",
"journal-title": "Biotechnol. Appl. Biochem.",
"key": "B269",
"volume": "62",
"year": "2015"
},
{
"DOI": "10.1016/j.niox.2010.12.005",
"article-title": "Artesunate mitigates proliferation of tumor cells by alkylating heme-harboring nitric oxide synthase.",
"author": "Zeng",
"doi-asserted-by": "publisher",
"first-page": "110",
"journal-title": "Nitric Oxide Biol. Chem.",
"key": "B270",
"volume": "24",
"year": "2011"
},
{
"DOI": "10.1016/j.bcp.2016.10.007",
"article-title": "Artesunate suppresses RANKL-induced osteoclastogenesis through inhibition of PLCγ1-Ca2+–NFATc1 signaling pathway and prevents ovariectomy-induced bone loss.",
"author": "Zeng",
"doi-asserted-by": "publisher",
"first-page": "57",
"journal-title": "Biochem. Pharmacol.",
"key": "B271",
"volume": "124",
"year": "2017"
},
{
"DOI": "10.1002/cbin.10244",
"article-title": "Artemisinin inhibits gastric cancer cell proliferation through upregulation of p53.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "639",
"journal-title": "Tumor Biol.",
"key": "B272",
"volume": "38",
"year": "2014"
},
{
"DOI": "10.1016/j.redox.2018.07.025",
"article-title": "Artesunate-induced mitophagy alters cellular redox status.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "263",
"journal-title": "Redox Biol.",
"key": "B273",
"volume": "19",
"year": "2018"
},
{
"DOI": "10.1042/BA20080068",
"article-title": "Development of transgenic Artemisia annua (chinese wormwood) plants with an enhanced content of artemisinin, an effective anti-malarial drug, by hairpin-RNA-mediated gene silencing.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"journal-title": "Biotechnol. Appl. Biochem.",
"key": "B274",
"volume": "52",
"year": "2009"
},
{
"DOI": "10.1002/cbin.10244",
"article-title": "Artesunate exerts an anti-immunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression.",
"author": "Zhang",
"doi-asserted-by": "crossref",
"first-page": "639",
"journal-title": "Cell Biol. Int.",
"key": "B275",
"volume": "38",
"year": "2014"
},
{
"DOI": "10.2147/OTT.S81041",
"article-title": "Artesunate inhibits the growth and induces apoptosis of human gastric cancer cells by downregulating COX-2.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "845",
"journal-title": "Onco. Targets. Ther.",
"key": "B276",
"volume": "8",
"year": "2015"
},
{
"DOI": "10.1111/j.1467-7652.2010.00556.x",
"article-title": "The production of artemisinin precursors in tobacco.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "445",
"journal-title": "Plant Biotechnol. J.",
"key": "B277",
"volume": "9",
"year": "2011"
},
{
"DOI": "10.1074/jbc.M803090200",
"article-title": "The molecular cloning of artemisinic aldehyde Δ11(13) reductase and its role in glandular trichome-dependent biosynthesis of artemisinin in Artemisia annua.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "21501",
"journal-title": "J. Biol. Chem.",
"key": "B278",
"volume": "283",
"year": "2008"
},
{
"DOI": "10.1007/s11183-005-0009-6",
"article-title": "Exogenous GA3 and flowering induce the conversion of artemisinic acid to artemisinin in Artemisia annua plants.",
"author": "Zhang",
"doi-asserted-by": "publisher",
"first-page": "58",
"journal-title": "Russ. J. Plant Physiol.",
"key": "B279",
"volume": "52",
"year": "2005"
},
{
"DOI": "10.3390/cells9122643",
"article-title": "Artesunate impairs growth in cisplatin-resistant bladder cancer cells by cell cycle arrest, apoptosis and autophagy induction.",
"author": "Zhao",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Cells",
"key": "B280",
"volume": "9",
"year": "2020"
},
{
"DOI": "10.1016/j.biotechadv.2005.01.003",
"article-title": "Elicitor signal transduction leading to production of plant secondary metabolites.",
"author": "Zhao",
"doi-asserted-by": "publisher",
"first-page": "283",
"journal-title": "Biotechnol. Adv.",
"key": "B281",
"volume": "23",
"year": "2005"
},
{
"DOI": "10.1016/j.intimp.2011.08.017",
"article-title": "Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G 2/M phase.",
"author": "Zhao",
"doi-asserted-by": "publisher",
"first-page": "2039",
"journal-title": "Int. Immunopharmacol.",
"key": "B282",
"volume": "11",
"year": "2011"
},
{
"DOI": "10.1038/s41569-020-0360-5",
"article-title": "COVID-19 and the cardiovascular system.",
"author": "Zheng",
"doi-asserted-by": "publisher",
"first-page": "259",
"journal-title": "Nat. Rev. Cardiol.",
"key": "B283",
"volume": "17",
"year": "2020"
},
{
"DOI": "10.1016/j.vph.2007.05.002",
"article-title": "Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"first-page": "131",
"journal-title": "Vascul. Pharmacol.",
"key": "B284",
"volume": "47",
"year": "2007"
},
{
"DOI": "10.1016/j.biotechadv.2016.02.004",
"article-title": "Jasmonate-responsive transcription factors regulating plant secondary metabolism.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"first-page": "441",
"journal-title": "Biotechnol. Adv.",
"key": "B285",
"volume": "34",
"year": "2016"
},
{
"DOI": "10.1016/j.cbi.2020.109273",
"article-title": "Artesunate induces autophagy dependent apoptosis through upregulating ROS and activating AMPK-mTOR-ULK1 axis in human bladder cancer cells.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"journal-title": "Chem. Biol. Interact.",
"key": "B286",
"volume": "331",
"year": ""
},
{
"DOI": "10.1097/CAD.0b013e328364a109",
"article-title": "Artesunate inhibits the growth of gastric cancer cells through the mechanism of promoting oncosis both in vitro and in vivo.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"first-page": "920",
"journal-title": "Anticancer. Drugs",
"key": "B287",
"volume": "24",
"year": "2013"
},
{
"DOI": "10.3390/cancers12092514",
"article-title": "Artemisinin derivatives stimulate DR5-specific TRAIL-induced apoptosis by regulating wildtype P53.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"journal-title": "Cancers (Basel).",
"key": "B288",
"volume": "12",
"year": ""
},
{
"DOI": "10.1038/s41598-021-93361-y",
"article-title": "In vitro efficacy of artemisinin-based treatments against SARS-CoV-2.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"first-page": "1",
"journal-title": "Sci. Rep.",
"key": "B289",
"volume": "11",
"year": "2021"
},
{
"DOI": "10.18632/oncotarget.15353",
"article-title": "Artesunate suppresses the viability and mobility of prostate cancer cells through UCA1, the sponge of miR-184.",
"author": "Zhou",
"doi-asserted-by": "publisher",
"first-page": "18260",
"journal-title": "Oncotarget",
"key": "B290",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.3892/or.2014.3323",
"article-title": "Artemisinin reduces cell proliferation and induces apoptosis in neuroblastoma.",
"author": "Zhu",
"doi-asserted-by": "publisher",
"first-page": "1094",
"journal-title": "Oncol. Rep.",
"key": "B291",
"volume": "32",
"year": "2014"
},
{
"DOI": "10.1016/j.ijid.2020.04.041",
"article-title": "Clinical value of immune-inflammatory parameters to assess the severity of coronavirus disease 2019.",
"author": "Zhu",
"doi-asserted-by": "publisher",
"first-page": "332",
"journal-title": "Int. J. Infect. Dis.",
"key": "B292",
"volume": "95",
"year": "2020"
},
{
"DOI": "10.3390/ijms150814298",
"article-title": "Artesunate induces apoptosis of bladder cancer cells by miR-16 regulation of COX-2 expression.",
"author": "Zuo",
"doi-asserted-by": "publisher",
"first-page": "14298",
"journal-title": "Int. J. Mol. Sci.",
"key": "B293",
"volume": "15",
"year": "2014"
}
],
"reference-count": 293,
"references-count": 293,
"relation": {},
"resource": {
"primary": {
"URL": "https://www.frontiersin.org/articles/10.3389/fpls.2022.780257/full"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Artemisinins in Combating Viral Infections Like SARS-CoV-2, Inflammation and Cancers and Options to Meet Increased Global Demand",
"type": "journal-article",
"update-policy": "http://dx.doi.org/10.3389/crossmark-policy",
"volume": "13"
}