Ultraviolet A radiation and COVID‐19 deaths in the USA with replication studies in England and Italy*
M Cherrie, T Clemens, C Colandrea, Z Feng, D J Webb, R B Weller, C Dibben
British Journal of Dermatology, doi:10.1111/bjd.20093
Background Understanding factors impacting deaths from COVID-19 is of the highest priority. Seasonal variation in environmental meteorological conditions affects the incidence of many infectious diseases and may also affect COVID-19. Ultraviolet (UV) A (UVA) radiation induces release of cutaneous photolabile nitric oxide (NO) impacting the cardiovascular system and metabolic syndrome, both COVID-19 risk factors. NO also inhibits the replication of SARS-CoV2. Objectives To investigate the relationship between ambient UVA radiation and COVID-19 deaths. Methods COVID-19 deaths at the county level, across the USA, were modelled in a zero-inflated negative-binomial model with a random effect for states adjusting for confounding by demographic, socioeconomic and long-term environmental variables. Only those areas where UVB was too low to induce significant cutaneous vitamin D3 synthesis were modelled. We used satellite-derived estimates of UVA, UVB and temperature and relative humidity. Replication models were undertaken using comparable data for England and Italy.
Results The mortality rate ratio (MRR) in the USA falls by 29% [95% confidence interval (CI) 40% to 15%) per 100 kJ m -2 increase in mean daily UVA. We replicated this in independent studies in Italy and England and estimate a pooled decline in MRR of 32% (95% CI 48% to 12%) per 100 kJ m -2 across the three studies. Conclusions Our analysis suggests that higher ambient UVA exposure is associated with lower COVID-19-specific mortality. Further research on the mechanism may indicate novel treatments. Optimized UVA exposure may have population health benefits. What is already known about this topic? • Infectious disease often shows seasonality. • Cutaneous production of nitric oxide (NO) following ultraviolet A (UVA) exposure reduces blood pressure, a cardiovascular risk factor. • Comorbid cardiovascular disease worsens COVID-19 outcomes. • NO limits SARS-CoV and SARS-CoV2 replication in vitro. What does this study add? • Higher ambient UVA is associated with lower risk of COVID-19 death in three countries, when vitamin D synthesis would have been limited. • Sun exposure may reduce death from COVID-19 independently of vitamin D.
Supporting Information Additional Supporting Information may be found in the online version of this article at the publisher's website: Powerpoint S1 Journal Club Slide Set.
References
Akaberi, Krambrich, Ling, Mitigation of the replication of SARS-CoV-2 by nitric oxide in vitro, Redox Biol
Akerstr€ Om, Gunalan, Keng, Dual effect of nitric oxide on SARS-CoV replication: viral RNA production and palmitoylation of the S protein are affected, Virology
Akerstr€ Om, Mousavi-Jazi, Klingstr€, Nitric oxide inhibits the replication cycle of severe acute respiratory syndrome coronavirus, J Virol
Alfredsson, Armstrong, Butterfield, Insufficient sun exposure has become a real public health problem, Int J Environ Res Public Health
Bolker, Brooks, Clark, Generalized linear mixed models: a practical guide for ecology and evolution, Trends Ecol Evol
Bouillon, Eisman, Garabedian, International Commission on Illumination (CIE). Action Spectrum for the Production of Previtamin D3 in Human Skin
Brooks, Kristensen, Van Benthem, glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling, R Journal
Caranci, Biggeri, Grisotto, L'indice di deprivazione italiano a livello di sezione di censimento: definizione, descrizione e associazione con la mortalit a, Epidemiol Prev
Carleton, Cornetet, Huybers, Global evidence for ultraviolet radiation decreasing COVID-19 growth rates, Proc Natl Acad Sci
Charland, Buckeridge, Sturtevant, Effect of environmental factors on the spatio-temporal patterns of influenza spread, Epidemiol Infect
Chen, Glymour, Catalano, Excess mortality in California during the coronavirus disease 2019 pandemic, March to August 2020, JAMA Intern Med
Chin-Hong, Alexander, Haynes, Pulling at the heart: COVID-19, race/ethnicity and ongoing disparities, Nat Rev Cardiol
Darnell, Subbarao, Feinstone, Taylor, Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV, J Virol Methods
Dong, Du, Gardner, An interactive web-based dashboard to track COVID-19 in real time, Lancet Infect Dis
Earn, He, Loeb, Effects of school closure on incidence of pandemic influenza in Alberta, Canada, Ann Intern Med
Fisman, Seasonality of viral infections: mechanisms and unknowns, Clin Microbiol Infect
Gao, Cai, Zhang, Association of hypertension and antihypertensive treatment with COVID-19 mortality: a retrospective observational study, Eur Heart J
Geldenhuys, Hart, Endersby, Ultraviolet radiation suppresses obesity and symptoms of metabolic syndrome independently of vitamin D in mice fed a high-fat diet, Diabetes
Grifoni, Sidney, Zhang, A sequence homology and bioinformatic approach can predict candidate targets for immune responses to SARS-CoV-2, Cell Host Microbe
Guan, Liang, Zhao, on behalf of the China Medical Treatment Expert Group for COVID-19. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis, Eur Respir J
Holick, High prevalence of vitamin D inadequacy and implications for health, Mayo Clinic Proc
Lee-Taylor, Madronich, Climatology of UV-A, UV-B, and Erythemal Radiation at the Earth's Surface,
doi:10.5065/D62J68SZ
Lenth, Buerkner, Herve, emmeans: Estimated marginal means, aka least-squares means
Lindqvist, The winding path towards an inverse relationship between sun exposure and all-cause mortality, Anticancer Res
Liu, Fernandez, Hamilton, UVA irradiation of human skin vasodilates arterial vasculature and lowers blood pressure independently of nitric oxide synthase, J Invest Dermatol
Lock-Andersen, Wulf, Seasonal variation of skin pigmentation, Acta Derm Venereol
Ltd, OpenLandMap long-term land surface temperature daytime monthly median
Ma, Zhao, Liu, Effects of temperature variation and humidity on the death of COVID-19 in Wuhan, China, Sci Total Environ
Mackay, Clemens, Hastie, UVA and seasonal patterning of 56 370 myocardial infarctions across Scotland, 2000-2011, J Am Heart Assoc
Paulo, Correia-Neves, Domingos, Influenza infectious dose may explain the high mortality of the second and third wave of 1918-1919 influenza pandemic, PLOS ONE
Ratnesar-Shumate, Williams, Green, Simulated sunlight rapidly inactivates SARS-CoV-2 on surfaces, J Infect Dis
Saigusa, Ichii, Murakami, Impact of meteorological anomalies in the 2003 summer on Gross Primary Productivity in East Asia, Biogeosciences
Shaman, Pitzer, Viboud, Absolute humidity and the seasonal onset of influenza in the continental United States, PLoS Biol
Skoglund, Mathieson, Ancient genomics of modern humans: the first decade, Annu Rev Genomics Hum Genet
Teuwen, Geldhof, Pasut, Carmeliet, COVID-19: the vasculature unleashed, Nat Rev Immunol
Uyoga, Adetifa, Karanja, Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Kenyan blood donors, Science
Viechtbauer, Meta-analysis package for R (metafor)
Weller, Wang, He, Does incident solar ultraviolet radiation lower blood pressure?, J Am Heart Assoc
Wrapp, Wang, Corbett, Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation, Science
Wu, Mcgoogan, Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention, JAMA
Wu, Nethery, Sabath, Air pollution and COVID-19 mortality in the United States: strengths and limitations of an ecological regression analysis, Sci Adv
Yu, Sun, Shi, SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression, Crit Care
{ 'indexed': {'date-parts': [[2022, 12, 3]], 'date-time': '2022-12-03T11:57:22Z', 'timestamp': 1670068642322},
'reference-count': 51,
'publisher': 'Wiley',
'issue': '2',
'license': [ { 'start': { 'date-parts': [[2021, 5, 31]],
'date-time': '2021-05-31T00:00:00Z',
'timestamp': 1622419200000},
'content-version': 'vor',
'delay-in-days': 0,
'URL': 'http://creativecommons.org/licenses/by-nc/4.0/'},
{ 'start': { 'date-parts': [[2021, 5, 31]],
'date-time': '2021-05-31T00:00:00Z',
'timestamp': 1622419200000},
'content-version': 'tdm',
'delay-in-days': 0,
'URL': 'http://doi.wiley.com/10.1002/tdm_license_1.1'}],
'content-domain': {'domain': ['onlinelibrary.wiley.com'], 'crossmark-restriction': True},
'published-print': {'date-parts': [[2021, 8]]},
'DOI': '10.1111/bjd.20093',
'type': 'journal-article',
'created': {'date-parts': [[2021, 4, 9]], 'date-time': '2021-04-09T00:10:17Z', 'timestamp': 1617927017000},
'page': '363-370',
'update-policy': 'http://dx.doi.org/10.1002/crossmark_policy',
'source': 'Crossref',
'is-referenced-by-count': 20,
'title': 'Ultraviolet A radiation and COVID‐19 deaths in the USA with replication studies in England and '
'Italy*',
'prefix': '10.1111',
'volume': '185',
'author': [ { 'given': 'M.',
'family': 'Cherrie',
'sequence': 'first',
'affiliation': [{'name': 'School of Geosciences University of Edinburgh EdinburghUK'}]},
{ 'given': 'T.',
'family': 'Clemens',
'sequence': 'additional',
'affiliation': [{'name': 'School of Geosciences University of Edinburgh EdinburghUK'}]},
{ 'given': 'C.',
'family': 'Colandrea',
'sequence': 'additional',
'affiliation': [{'name': 'School of Geosciences University of Edinburgh EdinburghUK'}]},
{ 'given': 'Z.',
'family': 'Feng',
'sequence': 'additional',
'affiliation': [{'name': 'School of Geosciences University of Edinburgh EdinburghUK'}]},
{ 'given': 'D.J.',
'family': 'Webb',
'sequence': 'additional',
'affiliation': [ { 'name': 'Centre for Cardiovascular Science University of Edinburgh '
'EdinburghUK'}]},
{ 'ORCID': 'http://orcid.org/0000-0003-2550-9586',
'authenticated-orcid': False,
'given': 'R.B.',
'family': 'Weller',
'sequence': 'additional',
'affiliation': [ { 'name': 'Centre for Inflammation Research University of Edinburgh '
'Edinburgh UK'}]},
{ 'given': 'C.',
'family': 'Dibben',
'sequence': 'additional',
'affiliation': [{'name': 'School of Geosciences University of Edinburgh EdinburghUK'}]}],
'member': '311',
'published-online': {'date-parts': [[2021, 5, 31]]},
'reference': [ { 'key': 'e_1_2_8_2_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1111/j.1469-0691.2012.03968.x'},
{ 'key': 'e_1_2_8_3_1',
'doi-asserted-by': 'publisher',
'DOI': '10.7326/0003-4819-156-3-201202070-00005'},
{ 'key': 'e_1_2_8_4_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pbio.1000316'},
{'key': 'e_1_2_8_5_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1017/S0950268809002283'},
{'key': 'e_1_2_8_6_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/jid.2014.27'},
{'key': 'e_1_2_8_7_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1161/JAHA.119.013837'},
{'key': 'e_1_2_8_8_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1161/JAHA.119.012551'},
{'key': 'e_1_2_8_9_1', 'doi-asserted-by': 'publisher', 'DOI': '10.2337/db13-1675'},
{'key': 'e_1_2_8_10_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/infdis/jiaa274'},
{ 'key': 'e_1_2_8_11_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1371/journal.pone.0011655'},
{'key': 'e_1_2_8_12_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1186/s13054-020-02893-8'},
{'key': 'e_1_2_8_13_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1073/pnas.2012370118'},
{ 'key': 'e_1_2_8_14_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.jviromet.2004.06.006'},
{'key': 'e_1_2_8_15_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1093/eurheartj/ehaa433'},
{ 'key': 'e_1_2_8_16_1',
'first-page': '1173',
'article-title': 'The winding path towards an inverse relationship between sun exposure '
'and all‐cause mortality',
'volume': '38',
'author': 'Lindqvist PG',
'year': '2018',
'journal-title': 'Anticancer Res'},
{ 'key': 'e_1_2_8_17_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1128/JVI.79.3.1966-1969.2005'},
{ 'key': 'e_1_2_8_18_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.redox.2020.101734'},
{ 'key': 'e_1_2_8_19_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.virol.2009.09.007'},
{'key': 'e_1_2_8_20_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.chom.2020.03.002'},
{'key': 'e_1_2_8_21_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abb2507'},
{'key': 'e_1_2_8_22_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1001/jama.2020.2648'},
{ 'key': 'e_1_2_8_23_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1183/13993003.00547-2020'},
{ 'key': 'e_1_2_8_24_1',
'volume-title': 'Action Spectrum for the Production of Previtamin D3 in Human Skin',
'author': 'Bouillon R',
'year': '2006'},
{ 'key': 'e_1_2_8_25_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/S1473-3099(20)30120-1'},
{ 'key': 'e_1_2_8_26_1',
'volume-title': 'Deaths Involving COVID‐19 by Local Area and Socioeconomic Deprivation: '
'Deaths occurring between 1 March and 17 April 2020',
'author': 'Office for National Statistics'},
{ 'key': 'e_1_2_8_27_1',
'unstructured': 'Italian Institute of Statistics [ISTAT].Deaths and causes of death: what '
'ISTAT produces.2020. Available '
'at:https://www.istat.it/it/archivio/240401(last accessed 19 April '
'2021).'},
{'key': 'e_1_2_8_28_1', 'doi-asserted-by': 'publisher', 'DOI': '10.5194/bg-7-641-2010'},
{ 'key': 'e_1_2_8_29_1',
'volume-title': 'Climatology of UV‐A, UV‐B, and Erythemal Radiation at the Earth’s '
'Surface, 1979–2000',
'author': 'Lee‐Taylor J',
'year': '2007'},
{'key': 'e_1_2_8_30_1', 'doi-asserted-by': 'publisher', 'DOI': '10.4065/81.3.353'},
{ 'key': 'e_1_2_8_31_1',
'unstructured': 'Centers for Disease Control and Prevention.People at increased risk and '
'other people who need to take extra precautions.2020. Available '
'at:https://www.cdc.gov/coronavirus/2019‐ncov/need‐extra‐precautions/index.html?CDC_AA_refVal=https%3A%2F%2Fwww.cdc.gov%2Fcoronavirus%2F2019‐ncov%2Fneed‐extra‐precautions%2Fpeople‐at‐increased‐risk.html(last '
'accessed 19 April 2021).'},
{ 'key': 'e_1_2_8_32_1',
'doi-asserted-by': 'crossref',
'unstructured': 'HanY LiVOK LamJCKet\xa0al.Who is more susceptible to Covid‐19 infection '
'and mortality in the '
'States?medRxiv2020.https://doi.org/10.1101/2020.05.01.20087403(preprint).',
'DOI': '10.1101/2020.05.01.20087403'},
{ 'key': 'e_1_2_8_33_1',
'volume-title': 'English Indices of Deprivation 2019',
'author': 'Ministry of Housing, Communities & Local Government',
'year': '2019'},
{ 'key': 'e_1_2_8_34_1',
'first-page': '167',
'article-title': 'L’indice di deprivazione italiano a livello di sezione di censimento: '
'definizione, descrizione e associazione con la mortalità',
'volume': '34',
'author': 'Caranci N',
'year': '2010',
'journal-title': 'Epidemiol Prev'},
{'key': 'e_1_2_8_35_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/sciadv.abd4049'},
{ 'key': 'e_1_2_8_36_1',
'unstructured': 'Atmospheric Composition Analysis Group.Surface PM2.5.2020. Available '
'at:http://fizz.phys.dal.ca/~atmos/martin/?page_id=140(last accessed 19 '
'April 2021).'},
{ 'key': 'e_1_2_8_37_1',
'unstructured': 'Department for Environment Food & Rural Affairs.Modelled background '
'pollution data.2020. Available '
'at:https://uk‐air.defra.gov.uk/data/pcm‐data(last accessed 19 April '
'2021).'},
{ 'key': 'e_1_2_8_38_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1016/j.scitotenv.2020.138226'},
{ 'key': 'e_1_2_8_39_1',
'unstructured': 'University of Idaho. GRIDMET: University of Idaho Gridded Surface '
'Meteorological Dataset. Earth Engine Data Catalog 2020. Available '
'at:https://developers.google.com/earth‐engine/datasets/catalog/IDAHO_EPSCOR_GRIDMET(last '
'accessed 19 April 2021).'},
{ 'key': 'e_1_2_8_40_1',
'unstructured': 'Centre for Environmental Data Analysis (CEDA).HadUK‐Grid gridded and '
'regional average climate observations for the UK.2020. Available '
'at:http://data.ceda.ac.uk/badc/ukmo‐hadobs/data/insitu/MOHC/HadOBS/HadUK‐Grid/v1.0.1.0/1km/tas/mon‐30y/v20190808(last '
'accessed 19 April 2021).'},
{ 'key': 'e_1_2_8_41_1',
'unstructured': 'EnvirometriX Ltd.OpenLandMap long‐term land surface temperature daytime '
'monthly median. Earth Engine Data Catalog 2021. Available '
'at:https://developers.google.com/earth‐engine/datasets/catalog/OpenLandMap_CLM_CLM_LST_MOD11A2‐DAY_M_v01(last '
'accessed 19 April 2021).'},
{'key': 'e_1_2_8_42_1', 'doi-asserted-by': 'publisher', 'DOI': '10.32614/RJ-2017-066'},
{'key': 'e_1_2_8_43_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1016/j.tree.2008.10.008'},
{ 'key': 'e_1_2_8_44_1',
'unstructured': 'LenthRV BuerknerP HerveMet\xa0al.emmeans: Estimated marginal means aka '
'least‐squares means. Available '
'at:https://cran.r‐project.org/web/packages/emmeans/index.html(last '
'accessed 19 April 2021).'},
{ 'key': 'e_1_2_8_45_1',
'unstructured': 'ViechtbauerW.Meta‐analysis package for R (metafor).2020. Available '
'at:http://www.metafor‐project.org;https://github.com/wviechtb/metafor(last '
'accessed 19 April 2021).'},
{'key': 'e_1_2_8_46_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41577-020-0343-0'},
{'key': 'e_1_2_8_47_1', 'doi-asserted-by': 'publisher', 'DOI': '10.3390/ijerph17145014'},
{ 'key': 'e_1_2_8_48_1',
'first-page': '219',
'article-title': 'Seasonal variation of skin pigmentation',
'volume': '77',
'author': 'Lock‐Andersen J',
'year': '1997',
'journal-title': 'Acta Derm Venereol'},
{ 'key': 'e_1_2_8_49_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1001/jamainternmed.2020.7578'},
{'key': 'e_1_2_8_50_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1038/s41569-020-0416-6'},
{ 'key': 'e_1_2_8_51_1',
'doi-asserted-by': 'publisher',
'DOI': '10.1146/annurev-genom-083117-021749'},
{'key': 'e_1_2_8_52_1', 'doi-asserted-by': 'publisher', 'DOI': '10.1126/science.abe1916'}],
'container-title': 'British Journal of Dermatology',
'original-title': [],
'language': 'en',
'link': [ { 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjd.20093',
'content-type': 'application/pdf',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://onlinelibrary.wiley.com/doi/full-xml/10.1111/bjd.20093',
'content-type': 'application/xml',
'content-version': 'vor',
'intended-application': 'text-mining'},
{ 'URL': 'https://onlinelibrary.wiley.com/doi/pdf/10.1111/bjd.20093',
'content-type': 'unspecified',
'content-version': 'vor',
'intended-application': 'similarity-checking'}],
'deposited': { 'date-parts': [[2022, 9, 30]],
'date-time': '2022-09-30T12:46:14Z',
'timestamp': 1664541974000},
'score': 1,
'resource': {'primary': {'URL': 'https://onlinelibrary.wiley.com/doi/10.1111/bjd.20093'}},
'subtitle': [],
'short-title': [],
'issued': {'date-parts': [[2021, 5, 31]]},
'references-count': 51,
'journal-issue': {'issue': '2', 'published-print': {'date-parts': [[2021, 8]]}},
'alternative-id': ['10.1111/bjd.20093'],
'URL': 'http://dx.doi.org/10.1111/bjd.20093',
'relation': {},
'ISSN': ['0007-0963', '1365-2133'],
'subject': ['Dermatology'],
'container-title-short': 'Br J Dermatol',
'published': {'date-parts': [[2021, 5, 31]]},
'assertion': [ { 'value': '2021-03-29',
'order': 1,
'name': 'accepted',
'label': 'Accepted',
'group': {'name': 'publication_history', 'label': 'Publication History'}},
{ 'value': '2021-05-31',
'order': 2,
'name': 'published',
'label': 'Published',
'group': {'name': 'publication_history', 'label': 'Publication History'}}]}