Pathways in the brain, heart and lung influenced by SARS-CoV-2 NSP6 and SARS-CoV-2 regulated miRNAs: an in silico study hinting cancer incidence
et al., Cardio-Oncology, doi:10.1186/s40959-025-00387-6, Oct 2025
In silico study identifying potential therapeutic targets for COVID-19 by analyzing tissue-specific pathways influenced by SARS-CoV-2 non-structural protein 6 (NSP6) in brain, heart, and lung tissues.
Chatterjee et al., 22 Oct 2025, peer-reviewed, 4 authors.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
DOI record:
{
"DOI": "10.1186/s40959-025-00387-6",
"ISSN": [
"2057-3804"
],
"URL": "http://dx.doi.org/10.1186/s40959-025-00387-6",
"alternative-id": [
"387"
],
"article-number": "94",
"assertion": [
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Received",
"name": "received",
"order": 1,
"value": "12 February 2025"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "Accepted",
"name": "accepted",
"order": 2,
"value": "27 August 2025"
},
{
"group": {
"label": "Article History",
"name": "ArticleHistory"
},
"label": "First Online",
"name": "first_online",
"order": 3,
"value": "22 October 2025"
},
{
"group": {
"label": "Declarations",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 1
},
{
"group": {
"label": "Ethics approval and consent to participate",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 2,
"value": "Ethical approval was not necessary for this work as re-analyses performed in this work were with publicly available data. Information regarding accessing data are cited in the manuscript."
},
{
"group": {
"label": "Competing interest",
"name": "EthicsHeading"
},
"name": "Ethics",
"order": 3,
"value": "The authors declare no competing interests."
}
],
"author": [
{
"affiliation": [],
"family": "Chatterjee",
"given": "Shrabonti",
"sequence": "first"
},
{
"affiliation": [],
"family": "Mahata",
"given": "Joydeep",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Kateriya",
"given": "Suneel",
"sequence": "additional"
},
{
"affiliation": [],
"family": "Anirudhan",
"given": "Gireesh",
"sequence": "additional"
}
],
"container-title": "Cardio-Oncology",
"container-title-short": "Cardio-Oncology",
"content-domain": {
"crossmark-restriction": false,
"domain": [
"link.springer.com"
]
},
"created": {
"date-parts": [
[
2025,
10,
22
]
],
"date-time": "2025-10-22T08:44:10Z",
"timestamp": 1761122650000
},
"deposited": {
"date-parts": [
[
2025,
10,
22
]
],
"date-time": "2025-10-22T08:44:16Z",
"timestamp": 1761122656000
},
"indexed": {
"date-parts": [
[
2025,
10,
22
]
],
"date-time": "2025-10-22T23:25:59Z",
"timestamp": 1761175559940,
"version": "build-2065373602"
},
"is-referenced-by-count": 0,
"issue": "1",
"issued": {
"date-parts": [
[
2025,
10,
22
]
]
},
"journal-issue": {
"issue": "1",
"published-online": {
"date-parts": [
[
2025,
12
]
]
}
},
"language": "en",
"license": [
{
"URL": "https://creativecommons.org/licenses/by-nc-nd/4.0",
"content-version": "tdm",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
10,
22
]
],
"date-time": "2025-10-22T00:00:00Z",
"timestamp": 1761091200000
}
},
{
"URL": "https://creativecommons.org/licenses/by-nc-nd/4.0",
"content-version": "vor",
"delay-in-days": 0,
"start": {
"date-parts": [
[
2025,
10,
22
]
],
"date-time": "2025-10-22T00:00:00Z",
"timestamp": 1761091200000
}
}
],
"link": [
{
"URL": "https://link.springer.com/content/pdf/10.1186/s40959-025-00387-6.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/article/10.1186/s40959-025-00387-6/fulltext.html",
"content-type": "text/html",
"content-version": "vor",
"intended-application": "text-mining"
},
{
"URL": "https://link.springer.com/content/pdf/10.1186/s40959-025-00387-6.pdf",
"content-type": "application/pdf",
"content-version": "vor",
"intended-application": "similarity-checking"
}
],
"member": "297",
"original-title": [],
"prefix": "10.1186",
"published": {
"date-parts": [
[
2025,
10,
22
]
]
},
"published-online": {
"date-parts": [
[
2025,
10,
22
]
]
},
"publisher": "Springer Science and Business Media LLC",
"reference": [
{
"DOI": "10.3390/v13061149",
"author": "M Dróżdż",
"doi-asserted-by": "publisher",
"first-page": "1149",
"issue": "6",
"journal-title": "Viruses",
"key": "387_CR1",
"unstructured": "Dróżdż M, Krzyżek P, Dudek B, Makuch S, Janczura A, Paluch E. Current state of knowledge about role of pets in zoonotic transmission of SARS-CoV-2. Viruses. 2021;13(6):1149. https://doi.org/10.3390/v13061149.",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.3390/v13101993",
"author": "DA Meekins",
"doi-asserted-by": "publisher",
"first-page": "1993",
"issue": "10",
"journal-title": "Viruses",
"key": "387_CR2",
"unstructured": "Meekins DA, Gaudreault NN, Richt JA. Natural and experimental SARS-CoV-2 infection in domestic and wild animals. Viruses. 2021;13(10):1993. https://doi.org/10.3390/v13101993.",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.3390/v13030494",
"author": "T Prince",
"doi-asserted-by": "publisher",
"first-page": "494",
"issue": "3",
"journal-title": "Viruses",
"key": "387_CR3",
"unstructured": "Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for study. Viruses. 2021;13(3):494. https://doi.org/10.3390/v13030494.",
"volume": "13",
"year": "2021"
},
{
"DOI": "10.1080/01652176.2020.1867776",
"author": "K Sharun",
"doi-asserted-by": "publisher",
"first-page": "50",
"issue": "1",
"journal-title": "Vet Q",
"key": "387_CR4",
"unstructured": "Sharun K, Tiwari R, Natesan S, Dhama K. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the one health approach during the ongoing COVID-19 pandemic. Vet Q. 2021;41(1):50–60. https://doi.org/10.1080/01652176.2020.1867776.",
"volume": "41",
"year": "2021"
},
{
"DOI": "10.1371/journal.ppat.1009952",
"author": "CD Eckstrand",
"doi-asserted-by": "publisher",
"issue": "11",
"journal-title": "PLoS Pathog",
"key": "387_CR5",
"unstructured": "Eckstrand CD, Baldwin TJ, Rood KA, Clayton MJ, Lott JK, Wolking RM, et al. An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLoS Pathog. 2021;17(11):e1009952. https://doi.org/10.1371/journal.ppat.1009952.",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.1002/ajp.23654",
"author": "EA Diaz",
"doi-asserted-by": "publisher",
"issue": "8",
"journal-title": "Am J Primatol",
"key": "387_CR6",
"unstructured": "Diaz EA, Sáenz C, Cabrera F, Rodríguez J, Carvajal M, Barragán V. COVID-19 in a common woolly monkey (Lagothrix lagothricha): first evidence of fatal outcome in a nonhuman primate after natural SARS-CoV-2 infection. Am J Primatol. 2024;86(8):e23654. https://doi.org/10.1002/ajp.23654.",
"volume": "86",
"year": "2024"
},
{
"DOI": "10.1128/spectrum.02741-23",
"author": "M Carvajal",
"doi-asserted-by": "publisher",
"first-page": "e02741",
"issue": "4",
"journal-title": "Microbiol Spectr",
"key": "387_CR7",
"unstructured": "Carvajal M, Saenz C, Fuentes N, Guevara R, Muñoz E, Prado-Vivar B, et al. SARS-CoV-2 Infection in Brown-Headed Spider Monkeys ( Ateles Fusciceps ) at a Wildlife Rescue Center on the Coast of Ecuador—South America. Microbiol Spectr. 2024;12(4):e02741-e2823. https://doi.org/10.1128/spectrum.02741-23.",
"volume": "12",
"year": "2024"
},
{
"DOI": "10.3201/eid3006.231247",
"doi-asserted-by": "publisher",
"key": "387_CR8",
"unstructured": "Cano-Terriza D, Beato-Benítez A, Fernández-Bastit L, Segalés J, Vergara-Alert J, Martínez-Nevado, E, et al. SARS-CoV-2 in Captive Nonhuman Primates, Spain, 2020–2023. Emerg Infect Dis. 2024:30(6). https://doi.org/10.3201/eid3006.231247."
},
{
"DOI": "10.2807/1560-7917.ES.2021.26.5.210009",
"doi-asserted-by": "publisher",
"key": "387_CR9",
"unstructured": "Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, et al. Preliminary Report of an Outbreak of SARS-CoV-2 in Mink and Mink Farmers Associated with Community Spread, Denmark, June to November 2020. Eurosurveillance. 2021;26(5). https://doi.org/10.2807/1560-7917.ES.2021.26.5.210009."
},
{
"DOI": "10.1371/journal.ppat.1012039",
"author": "TB Rasmussen",
"doi-asserted-by": "publisher",
"issue": "7",
"journal-title": "PLoS Pathog",
"key": "387_CR10",
"unstructured": "Rasmussen TB, Qvesel AG, Pedersen AG, Olesen AS, Fonager J, Rasmussen M, et al. Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, june-november 2020. PLoS Pathog. 2024;20(7):e1012039. https://doi.org/10.1371/journal.ppat.1012039.",
"volume": "20",
"year": "2024"
},
{
"DOI": "10.1038/s41579-022-00846-2",
"author": "HE Davis",
"doi-asserted-by": "publisher",
"first-page": "133",
"issue": "3",
"journal-title": "Nat Rev Microbiol",
"key": "387_CR11",
"unstructured": "Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–46. https://doi.org/10.1038/s41579-022-00846-2.",
"volume": "21",
"year": "2023"
},
{
"DOI": "10.1038/s41467-021-26513-3",
"author": "Y Xie",
"doi-asserted-by": "publisher",
"first-page": "6571",
"issue": "1",
"journal-title": "Nat Commun",
"key": "387_CR12",
"unstructured": "Xie Y, Bowe B, Al-Aly Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat Commun. 2021;12(1):6571. https://doi.org/10.1038/s41467-021-26513-3.",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1038/s41586-021-03553-9",
"author": "Z Al-Aly",
"doi-asserted-by": "publisher",
"first-page": "259",
"issue": "7862",
"journal-title": "Nature",
"key": "387_CR13",
"unstructured": "Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–64. https://doi.org/10.1038/s41586-021-03553-9.",
"volume": "594",
"year": "2021"
},
{
"DOI": "10.1038/s41591-022-01689-3",
"author": "Y Xie",
"doi-asserted-by": "publisher",
"first-page": "583",
"issue": "3",
"journal-title": "Nat Med",
"key": "387_CR14",
"unstructured": "Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3.",
"volume": "28",
"year": "2022"
},
{
"DOI": "10.1038/s41591-022-02051-3",
"author": "B Bowe",
"doi-asserted-by": "publisher",
"first-page": "2398",
"issue": "11",
"journal-title": "Nat Med",
"key": "387_CR15",
"unstructured": "Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med. 2022;28(11):2398–405. https://doi.org/10.1038/s41591-022-02051-3.",
"volume": "28",
"year": "2022"
},
{
"DOI": "10.1038/s41467-022-31897-x",
"author": "AIV Sørensen",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Nat Commun",
"key": "387_CR16",
"unstructured": "Sørensen AIV, Spiliopoulos L, Bager P, Nielsen NM, Hansen JV, Koch A, et al. A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark. Nat Commun. 2022;13(1):4213. https://doi.org/10.1038/s41467-022-31897-x.",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1038/s41598-023-35591-w",
"author": "T Meister",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Sci Rep",
"key": "387_CR17",
"unstructured": "Meister T, Kolde A, Fischer K, Pisarev H, Kolde R, Kalda R, et al. A retrospective cohort study of incidence and risk factors for severe SARS-CoV-2 breakthrough infection among fully vaccinated people. Sci Rep. 2023;13(1):8531. https://doi.org/10.1038/s41598-023-35591-w.",
"volume": "13",
"year": "2023"
},
{
"DOI": "10.1001/jamanetworkopen.2021.7498",
"author": "TM Tu",
"doi-asserted-by": "publisher",
"issue": "4",
"journal-title": "JAMA Netw Open",
"key": "387_CR18",
"unstructured": "Tu TM, Seet CYH, Koh JS, Tham CH, Chiew HJ, De Leon JA, et al. Acute ischemic stroke during the convalescent phase of asymptomatic COVID-2019 infection in men. JAMA Netw Open. 2021;4(4):e217498. https://doi.org/10.1001/jamanetworkopen.2021.7498.",
"volume": "4",
"year": "2021"
},
{
"DOI": "10.1186/s12883-021-02075-1",
"author": "ME Ramos-Araque",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "BMC Neurol",
"key": "387_CR19",
"unstructured": "Ramos-Araque ME, Siegler JE, Ribo M, Requena M, López C, De Lera M, et al. Stroke etiologies in patients with COVID-19: the SVIN COVID-19 multinational registry. BMC Neurol. 2021;21(1):43. https://doi.org/10.1186/s12883-021-02075-1.",
"volume": "21",
"year": "2021"
},
{
"DOI": "10.1016/j.radcr.2020.07.009",
"author": "SS Al Mazrouei",
"doi-asserted-by": "publisher",
"first-page": "1646",
"issue": "9",
"journal-title": "Radiol Case Rep",
"key": "387_CR20",
"unstructured": "Al Mazrouei SS, Saeed GA, Al Helali AA, Ahmed M. COVID-19-associated encephalopathy: neurological manifestation of COVID-19. Radiol Case Rep. 2020;15(9):1646–9. https://doi.org/10.1016/j.radcr.2020.07.009.",
"volume": "15",
"year": "2020"
},
{
"DOI": "10.1148/radiol.2020202222",
"doi-asserted-by": "publisher",
"key": "387_CR21",
"unstructured": "Kremer S, Lersy F, De Sèze J, Ferré, J-C, Maamar A, Carsin-Nicol B, et al. Cotton, F. Brain MRI Findings in Severe COVID-19: A Retrospective Observational Study. Radiol. 2020;297(2): E242–51. https://doi.org/10.1148/radiol.2020202222."
},
{
"DOI": "10.1038/s41591-022-02001-z",
"author": "E Xu",
"doi-asserted-by": "publisher",
"first-page": "2406",
"issue": "11",
"journal-title": "Nat Med",
"key": "387_CR22",
"unstructured": "Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022;28(11):2406–15. https://doi.org/10.1038/s41591-022-02001-z.",
"volume": "28",
"year": "2022"
},
{
"DOI": "10.1038/s41586-020-2286-9",
"author": "DE Gordon",
"doi-asserted-by": "publisher",
"first-page": "459",
"issue": "7816",
"journal-title": "Nature",
"key": "387_CR23",
"unstructured": "Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.",
"volume": "583",
"year": "2020"
},
{
"DOI": "10.1126/science.abe9403",
"doi-asserted-by": "publisher",
"key": "387_CR24",
"unstructured": "Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, et al. Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan-Viral Disease Mechanisms. Sci. 2020;370(6521):eabe9403. https://doi.org/10.1126/science.abe9403."
},
{
"DOI": "10.1016/S0140-6736(20)30251-8",
"author": "R Lu",
"doi-asserted-by": "publisher",
"first-page": "565",
"issue": "10224",
"journal-title": "Lancet",
"key": "387_CR25",
"unstructured": "Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8.",
"volume": "395",
"year": "2020"
},
{
"DOI": "10.1038/s41586-020-2008-3",
"author": "F Wu",
"doi-asserted-by": "publisher",
"first-page": "265",
"issue": "7798",
"journal-title": "Nature",
"key": "387_CR26",
"unstructured": "Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. https://doi.org/10.1038/s41586-020-2008-3.",
"volume": "579",
"year": "2020"
},
{
"DOI": "10.1007/s11427-021-1964-4",
"author": "C Bai",
"doi-asserted-by": "publisher",
"first-page": "280",
"issue": "2",
"journal-title": "Sci China Life Sci",
"key": "387_CR27",
"unstructured": "Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280–94. https://doi.org/10.1007/s11427-021-1964-4.",
"volume": "65",
"year": "2022"
},
{
"DOI": "10.1038/s41586-022-04835-6",
"author": "S Ricciardi",
"doi-asserted-by": "publisher",
"first-page": "761",
"issue": "7915",
"journal-title": "Nature",
"key": "387_CR28",
"unstructured": "Ricciardi S, Guarino AM, Giaquinto L, Polishchuk EV, Santoro M, Di Tullio G, et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature. 2022;606(7915):761–8. https://doi.org/10.1038/s41586-022-04835-6.",
"volume": "606",
"year": "2022"
},
{
"DOI": "10.1016/j.virol.2022.06.008",
"author": "A Abdelkader",
"doi-asserted-by": "publisher",
"first-page": "96",
"journal-title": "Virology",
"key": "387_CR29",
"unstructured": "Abdelkader A, Elzemrany AA, El-Nadi M, Elsabbagh SA, Shehata MA, Eldehna WM, et al. In-silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology. 2022;573:96–110. https://doi.org/10.1016/j.virol.2022.06.008.",
"volume": "573",
"year": "2022"
},
{
"DOI": "10.1089/cmb.2020.0627",
"author": "S Thomas",
"doi-asserted-by": "publisher",
"first-page": "909",
"issue": "9",
"journal-title": "J Comput Biol",
"key": "387_CR30",
"unstructured": "Thomas S. Mapping the nonstructural transmembrane proteins of Severe Acute Respiratory Syndrome Coronavirus 2. J Comput Biol. 2021;28(9):909–21. https://doi.org/10.1089/cmb.2020.0627.",
"volume": "28",
"year": "2021"
},
{
"DOI": "10.1016/j.jinf.2020.03.058",
"author": "D Benvenuto",
"doi-asserted-by": "publisher",
"first-page": "e24",
"issue": "1",
"journal-title": "J Infect",
"key": "387_CR31",
"unstructured": "Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Infect. 2020;81(1):e24–7. https://doi.org/10.1016/j.jinf.2020.03.058.",
"volume": "81",
"year": "2020"
},
{
"DOI": "10.1007/s10930-020-09901-4",
"author": "FK Yoshimoto",
"doi-asserted-by": "publisher",
"first-page": "198",
"issue": "3",
"journal-title": "Protein J",
"key": "387_CR32",
"unstructured": "Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39(3):198–216. https://doi.org/10.1007/s10930-020-09901-4.",
"volume": "39",
"year": "2020"
},
{
"DOI": "10.1099/jgv.0.001584",
"doi-asserted-by": "publisher",
"key": "387_CR33",
"unstructured": "Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 One Year on: Evidence for Ongoing Viral Adaptation. J Gen Virol. 2021;102(4). https://doi.org/10.1099/jgv.0.001584."
},
{
"DOI": "10.1038/s41586-023-05697-2",
"author": "D-Y Chen",
"doi-asserted-by": "publisher",
"first-page": "143",
"issue": "7950",
"journal-title": "Nature",
"key": "387_CR34",
"unstructured": "Chen D-Y, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, et al. Spike and Nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023;615(7950):143–50. https://doi.org/10.1038/s41586-023-05697-2.",
"volume": "615",
"year": "2023"
},
{
"DOI": "10.1080/22221751.2023.2209208",
"author": "CJ Bills",
"doi-asserted-by": "publisher",
"first-page": "2209208",
"issue": "1",
"journal-title": "Emerg Microbes Infect",
"key": "387_CR35",
"unstructured": "Bills CJ, Xia H, Chen JY-C, Yeung J, Kalveram BK, Walker D, et al. Mutations in SARS-CoV-2 variant Nsp6 enhance type-I interferon antagonism. Emerg Microbes Infect. 2023;12(1):2209208. https://doi.org/10.1080/22221751.2023.2209208.",
"volume": "12",
"year": "2023"
},
{
"DOI": "10.1080/15548627.2021.2021496",
"author": "X Sun",
"doi-asserted-by": "publisher",
"first-page": "2246",
"issue": "9",
"journal-title": "Autophagy",
"key": "387_CR36",
"unstructured": "Sun X, Yu J, Wong SH, Chan MTV, Zhang L, Wu WKK. SARS-CoV-2 targets the lysosome to mediate airway inflammatory cell death. Autophagy. 2022;18(9):2246–8. https://doi.org/10.1080/15548627.2021.2021496.",
"volume": "18",
"year": "2022"
},
{
"DOI": "10.1016/j.cell.2020.10.039",
"doi-asserted-by": "publisher",
"key": "387_CR37",
"unstructured": "Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, et al. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell. 2020;183(6):1520-35.e14. https://doi.org/10.1016/j.cell.2020.10.039."
},
{
"DOI": "10.1186/s13287-023-03485-3",
"author": "J Liu",
"doi-asserted-by": "publisher",
"first-page": "249",
"issue": "1",
"journal-title": "Stem Cell Res Ther",
"key": "387_CR38",
"unstructured": "Liu J, Wu S, Zhang Y, Wang C, Liu S, Wan J, et al. SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2023;14(1):249. https://doi.org/10.1186/s13287-023-03485-3.",
"volume": "14",
"year": "2023"
},
{
"DOI": "10.1038/s42003-022-03986-6",
"author": "J Zhu",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Commun Biol",
"key": "387_CR39",
"unstructured": "Zhu J, Wang G, Huang X, Lee H, Lee J-G, Yang P, et al. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Commun Biol. 2022;5(1):1039. https://doi.org/10.1038/s42003-022-03986-6.",
"volume": "5",
"year": "2022"
},
{
"DOI": "10.3390/cells13020123",
"author": "E Gavilán",
"doi-asserted-by": "publisher",
"first-page": "123",
"issue": "2",
"journal-title": "Cells",
"key": "387_CR40",
"unstructured": "Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein quality control systems and ER stress as key players in SARS-CoV-2-induced neurodegeneration. Cells. 2024;13(2):123. https://doi.org/10.3390/cells13020123.",
"volume": "13",
"year": "2024"
},
{
"DOI": "10.1093/nar/gkv1115",
"author": "M Kotlyar",
"doi-asserted-by": "publisher",
"first-page": "D536",
"issue": "D1",
"journal-title": "Nucleic Acids Res",
"key": "387_CR41",
"unstructured": "Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 2016;44(D1):D536-541. https://doi.org/10.1093/nar/gkv1115.",
"volume": "44",
"year": "2016"
},
{
"DOI": "10.1016/j.stem.2020.09.016",
"doi-asserted-by": "publisher",
"key": "387_CR42",
"unstructured": "Jacob F, Pather SR, Huang W-K, Zhang F, Wong SZH, Zhou H, et al. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell. 2020;27(6):937–50.e9. https://doi.org/10.1016/j.stem.2020.09.016."
},
{
"DOI": "10.1038/s41586-021-03570-8",
"author": "TM Delorey",
"doi-asserted-by": "publisher",
"first-page": "107",
"issue": "7865",
"journal-title": "Nature",
"key": "387_CR43",
"unstructured": "Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–13. https://doi.org/10.1038/s41586-021-03570-8.",
"volume": "595",
"year": "2021"
},
{
"DOI": "10.3390/genes11070760",
"author": "R Vishnubalaji",
"doi-asserted-by": "publisher",
"first-page": "760",
"issue": "7",
"journal-title": "Genes",
"key": "387_CR44",
"unstructured": "Vishnubalaji R, Shaath H, Alajez NM. Protein coding and long noncoding RNA (lncrna) transcriptional landscape in SARS-CoV-2 infected bronchial epithelial cells highlight a role for interferon and inflammatory response. Genes. 2020;11(7):760. https://doi.org/10.3390/genes11070760.",
"volume": "11",
"year": "2020"
},
{
"DOI": "10.1101/2020.03.02.972935",
"doi-asserted-by": "publisher",
"key": "387_CR45",
"unstructured": "Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel S, Kumar Murray J, et al. Isolation and Characterization of SARS-CoV-2 from the First US COVID-19 Patient. bioRxiv. 2020, 2020.03.02.972935. https://doi.org/10.1101/2020.03.02.972935."
},
{
"DOI": "10.1056/NEJMoa2001191",
"author": "ML Holshue",
"doi-asserted-by": "publisher",
"first-page": "929",
"issue": "10",
"journal-title": "N Engl J Med",
"key": "387_CR46",
"unstructured": "Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–36. https://doi.org/10.1056/NEJMoa2001191.",
"volume": "382",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2020.04.026",
"author": "D Blanco-Melo",
"doi-asserted-by": "publisher",
"first-page": "1036",
"issue": "5",
"journal-title": "Cell",
"key": "387_CR47",
"unstructured": "Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.",
"volume": "181",
"year": "2020"
},
{
"DOI": "10.1186/1471-2105-15-293",
"author": "P Bardou",
"doi-asserted-by": "publisher",
"first-page": "293",
"issue": "1",
"journal-title": "BMC Bioinformatics",
"key": "387_CR48",
"unstructured": "Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. Jvenn: an interactive venn diagram viewer. BMC Bioinformatics. 2014;15(1):293. https://doi.org/10.1186/1471-2105-15-293.",
"volume": "15",
"year": "2014"
},
{
"DOI": "10.1093/nar/gkac1000",
"author": "D Szklarczyk",
"doi-asserted-by": "publisher",
"first-page": "D638",
"issue": "D1",
"journal-title": "Nucleic Acids Res",
"key": "387_CR49",
"unstructured": "Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46. https://doi.org/10.1093/nar/gkac1000.",
"volume": "51",
"year": "2023"
},
{
"DOI": "10.1101/gr.1239303",
"author": "P Shannon",
"doi-asserted-by": "publisher",
"first-page": "2498",
"issue": "11",
"journal-title": "Genome Res",
"key": "387_CR50",
"unstructured": "Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.",
"volume": "13",
"year": "2003"
},
{
"DOI": "10.1186/1752-0509-8-S4-S11",
"author": "C-H Chin",
"doi-asserted-by": "publisher",
"first-page": "S11",
"issue": "S4",
"journal-title": "BMC Syst Biol",
"key": "387_CR51",
"unstructured": "Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(S4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.",
"volume": "8",
"year": "2014"
},
{
"DOI": "10.1093/bioinformatics/btp101",
"author": "G Bindea",
"doi-asserted-by": "publisher",
"first-page": "1091",
"issue": "8",
"journal-title": "Bioinformatics",
"key": "387_CR52",
"unstructured": "Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.",
"volume": "25",
"year": "2009"
},
{
"DOI": "10.1093/nar/gkaa1084",
"author": "SL Freshour",
"doi-asserted-by": "publisher",
"first-page": "D1144",
"issue": "D1",
"journal-title": "Nucleic Acids Res",
"key": "387_CR53",
"unstructured": "Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144–51. https://doi.org/10.1093/nar/gkaa1084.",
"volume": "49",
"year": "2021"
},
{
"DOI": "10.1093/nar/gkad1040",
"doi-asserted-by": "publisher",
"key": "387_CR54",
"unstructured": "Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. Rebuilding the Drug–Gene Interaction Database for Precision Medicine and Drug Discovery Platforms. Nucleic Acids Res. 2023:gkad1040. https://doi.org/10.1093/nar/gkad1040."
},
{
"DOI": "10.1089/omi.2011.0118",
"author": "G Yu",
"doi-asserted-by": "publisher",
"first-page": "284",
"issue": "5",
"journal-title": "OMICS",
"key": "387_CR55",
"unstructured": "Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.",
"volume": "16",
"year": "2012"
},
{
"DOI": "10.1002/wics.147",
"author": "H Wickham",
"doi-asserted-by": "publisher",
"first-page": "180",
"issue": "2",
"journal-title": "WIREs Computational Stats",
"key": "387_CR56",
"unstructured": "Wickham H. Ggplot2. WIREs Computational Stats. 2011;3(2):180–5. https://doi.org/10.1002/wics.147.",
"volume": "3",
"year": "2011"
},
{
"DOI": "10.1093/nar/gkaa467",
"author": "L Chang",
"doi-asserted-by": "publisher",
"first-page": "W244",
"issue": "W1",
"journal-title": "Nucleic Acids Res",
"key": "387_CR57",
"unstructured": "Chang L, Zhou G, Soufan O, Xia J. MiRnet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–51. https://doi.org/10.1093/nar/gkaa467.",
"volume": "48",
"year": "2020"
},
{
"DOI": "10.3389/fimmu.2022.968991",
"author": "A Giannella",
"doi-asserted-by": "publisher",
"journal-title": "Front Immunol",
"key": "387_CR58",
"unstructured": "Giannella A, Riccetti S, Sinigaglia A, Piubelli C, Razzaboni E, Di Battista P, et al. Circulating microrna signatures associated with disease severity and outcome in COVID-19 patients. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.968991.",
"year": "2022"
},
{
"DOI": "10.1371/journal.ppat.1009759",
"author": "RJ Farr",
"doi-asserted-by": "publisher",
"issue": "7",
"journal-title": "PLoS Pathog",
"key": "387_CR59",
"unstructured": "Farr RJ, Rootes CL, Rowntree LC, Nguyen THO, Hensen L, Kedzierski L, et al. Altered microrna expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021;17(7):e1009759. https://doi.org/10.1371/journal.ppat.1009759.",
"volume": "17",
"year": "2021"
},
{
"DOI": "10.7150/thno.78164",
"author": "Y Liang",
"doi-asserted-by": "publisher",
"first-page": "125",
"issue": "1",
"journal-title": "Theranostics",
"key": "387_CR60",
"unstructured": "Liang Y, Fang D, Gao X, Deng X, Chen N, Wu J, et al. Circulating micrornas as emerging regulators of COVID-19. Theranostics. 2023;13(1):125–47. https://doi.org/10.7150/thno.78164.",
"volume": "13",
"year": "2023"
},
{
"DOI": "10.4161/auto.7.11.16642",
"author": "EM Cottam",
"doi-asserted-by": "publisher",
"first-page": "1335",
"issue": "11",
"journal-title": "Autophagy",
"key": "387_CR61",
"unstructured": "Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, et al. Coronavirus Nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011;7(11):1335–47. https://doi.org/10.4161/auto.7.11.16642.",
"volume": "7",
"year": "2011"
},
{
"DOI": "10.1038/s41418-021-00916-7",
"author": "X Sun",
"doi-asserted-by": "publisher",
"first-page": "1240",
"issue": "6",
"journal-title": "Cell Death Differ",
"key": "387_CR62",
"unstructured": "Sun X, Liu Y, Huang Z, Xu W, Hu W, Yi L, et al. SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ. 2022;29(6):1240–54. https://doi.org/10.1038/s41418-021-00916-7.",
"volume": "29",
"year": "2022"
},
{
"DOI": "10.1073/pnas.2106950118",
"author": "JF Hevler",
"doi-asserted-by": "publisher",
"issue": "39",
"journal-title": "Proc Natl Acad Sci U S A",
"key": "387_CR63",
"unstructured": "Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 2021;118(39):e2106950118. https://doi.org/10.1073/pnas.2106950118.",
"volume": "118",
"year": "2021"
},
{
"DOI": "10.1016/j.ebiom.2022.104211",
"author": "G Lucchese",
"doi-asserted-by": "publisher",
"journal-title": "EBioMedicine",
"key": "387_CR64",
"unstructured": "Lucchese G, Vogelgesang A, Boesl F, Raafat D, Holtfreter S, Bröker BM, et al. Anti-neuronal antibodies against brainstem antigens are associated with COVID-19. EBioMedicine. 2022;83:104211. https://doi.org/10.1016/j.ebiom.2022.104211.",
"volume": "83",
"year": "2022"
},
{
"DOI": "10.1038/s41420-022-01158-3",
"author": "Y Hou",
"doi-asserted-by": "publisher",
"first-page": "1",
"issue": "1",
"journal-title": "Cell Death Discov",
"key": "387_CR65",
"unstructured": "Hou Y, Wang T, Ding Y, Yu T, Cui Y, Nie H. Expression profiles of respiratory V-ATPase and calprotectin in SARS-CoV-2 infection. Cell Death Discov. 2022;8(1):1–7. https://doi.org/10.1038/s41420-022-01158-3.",
"volume": "8",
"year": "2022"
},
{
"DOI": "10.1016/j.tice.2022.101906",
"author": "X Li",
"doi-asserted-by": "publisher",
"journal-title": "Tissue Cell",
"key": "387_CR66",
"unstructured": "Li X, Xiao S, Li F, Fang K, Wen J, Gong H. Max interacting protein 1 induces IL-17-producing T helper/regulatory T imbalance in osteoarthritis by upregulating tectonic family member 2. Tissue Cell. 2022;78:101906. https://doi.org/10.1016/j.tice.2022.101906.",
"volume": "78",
"year": "2022"
},
{
"DOI": "10.1016/j.cell.2008.12.002",
"author": "T Kawase",
"doi-asserted-by": "publisher",
"first-page": "535",
"issue": "3",
"journal-title": "Cell",
"key": "387_CR67",
"unstructured": "Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, et al. PH domain-only protein PHLDA3 is a P53-regulated repressor of Akt. Cell. 2009;136(3):535–50. https://doi.org/10.1016/j.cell.2008.12.002.",
"volume": "136",
"year": "2009"
},
{
"DOI": "10.1128/mbio.00971-22",
"doi-asserted-by": "publisher",
"key": "387_CR68",
"unstructured": "Nishitsuji H, Iwahori S, Ohmori M, Shimotohno K, Murata T. Ubiquitination of SARS-CoV-2 NSP6 and ORF7a Facilitates NF-κB Activation. mBio. 2022;13(4):e00971–22. https://doi.org/10.1128/mbio.00971-22."
},
{
"DOI": "10.1016/j.ejphar.2019.172811",
"author": "S He",
"doi-asserted-by": "publisher",
"journal-title": "Eur J Pharmacol",
"key": "387_CR69",
"unstructured": "He S, Chen M, Lin X, Lv Z, Liang R, Huang L. Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway. Eur J Pharmacol. 2020;867:172811. https://doi.org/10.1016/j.ejphar.2019.172811.",
"volume": "867",
"year": "2020"
},
{
"DOI": "10.1080/21655979.2022.2043099",
"author": "X Wang",
"doi-asserted-by": "publisher",
"first-page": "6866",
"issue": "3",
"journal-title": "Bioengineered",
"key": "387_CR70",
"unstructured": "Wang X, Liu X, Yang Y, Yang D. Cyclin D1 mediated by the nuclear translocation of nuclear factor kappa B exerts an oncogenic role in lung cancer. Bioengineered. 2022;13(3):6866–79. https://doi.org/10.1080/21655979.2022.2043099.",
"volume": "13",
"year": "2022"
},
{
"DOI": "10.1186/s12890-024-02921-1",
"author": "H Luo",
"doi-asserted-by": "publisher",
"first-page": "112",
"issue": "1",
"journal-title": "BMC Pulm Med",
"key": "387_CR71",
"unstructured": "Luo H, Yan J, Gong R, Zhang D, Zhou X, Wang X. Identification of biomarkers and pathways for the SARS-CoV-2 infections in obstructive sleep apnea patients based on machine learning and proteomic analysis. BMC Pulm Med. 2024;24(1):112. https://doi.org/10.1186/s12890-024-02921-1.",
"volume": "24",
"year": "2024"
},
{
"DOI": "10.1016/j.humimm.2024.110801",
"author": "M Tahoun",
"doi-asserted-by": "publisher",
"issue": "3",
"journal-title": "Hum Immunol",
"key": "387_CR72",
"unstructured": "Tahoun M, Sadaka AS. Deregulated expression of autophagy genes; PIK3C3 and RAB7A in COVID-19 patients. Hum Immunol. 2024;85(3):110801. https://doi.org/10.1016/j.humimm.2024.110801.",
"volume": "85",
"year": "2024"
},
{
"DOI": "10.1016/j.cell.2020.10.030",
"author": "Z Daniloski",
"doi-asserted-by": "publisher",
"first-page": "92",
"issue": "1",
"journal-title": "Cell",
"key": "387_CR73",
"unstructured": "Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell. 2021;184(1):92-105.e16. https://doi.org/10.1016/j.cell.2020.10.030.",
"volume": "184",
"year": "2021"
},
{
"DOI": "10.7150/ijbs.78864",
"author": "L Beltrán-Camacho",
"doi-asserted-by": "publisher",
"first-page": "1664",
"issue": "6",
"journal-title": "Int J Biol Sci",
"key": "387_CR74",
"unstructured": "Beltrán-Camacho L, Bhosale SD, Sánchez-Morillo D, Sánchez-Gomar I, Rojas-Torres M, Eslava-Alcón S, et al. Cardiovascular-related proteomic changes in ECFCs exposed to the serum of COVID-19 patients. Int J Biol Sci. 2023;19(6):1664–80. https://doi.org/10.7150/ijbs.78864.",
"volume": "19",
"year": "2023"
},
{
"DOI": "10.1038/s41591-023-02521-2",
"author": "B Bowe",
"doi-asserted-by": "publisher",
"first-page": "2347",
"issue": "9",
"journal-title": "Nat Med",
"key": "387_CR75",
"unstructured": "Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023;29(9):2347–57. https://doi.org/10.1038/s41591-023-02521-2.",
"volume": "29",
"year": "2023"
},
{
"DOI": "10.3389/fimmu.2021.740260",
"author": "J Mustroph",
"doi-asserted-by": "publisher",
"journal-title": "Front Immunol",
"key": "387_CR76",
"unstructured": "Mustroph J, Hupf J, Baier MJ, Evert K, Brochhausen C, Broeker K, et al. Cardiac fibrosis is a risk factor for severe COVID-19. Front Immunol. 2021;12:740260. https://doi.org/10.3389/fimmu.2021.740260.",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1016/j.antiviral.2023.105558",
"author": "Y Xiao",
"doi-asserted-by": "publisher",
"journal-title": "Antivir Res",
"key": "387_CR77",
"unstructured": "Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, et al. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antivir Res. 2023;212:105558. https://doi.org/10.1016/j.antiviral.2023.105558.",
"volume": "212",
"year": "2023"
},
{
"DOI": "10.3390/ijerph20053832",
"author": "J-W Kim",
"doi-asserted-by": "publisher",
"first-page": "3832",
"issue": "5",
"journal-title": "IJERPH",
"key": "387_CR78",
"unstructured": "Kim J-W, Yoon S, Lee J, Lee S. Serious clinical outcomes of COVID-19 related to acetaminophen or NSAIDs from a nationwide population-based cohort study. IJERPH. 2023;20(5):3832. https://doi.org/10.3390/ijerph20053832.",
"volume": "20",
"year": "2023"
},
{
"DOI": "10.1080/07391102.2021.1905551",
"author": "QM Sajid Jamal",
"doi-asserted-by": "publisher",
"first-page": "7960",
"issue": "17",
"journal-title": "J Biomol Struct Dyn",
"key": "387_CR79",
"unstructured": "Sajid Jamal QM, Alharbi AH, Ahmad V. Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies. J Biomol Struct Dyn. 2022;40(17):7960–74. https://doi.org/10.1080/07391102.2021.1905551.",
"volume": "40",
"year": "2022"
},
{
"DOI": "10.1186/s13075-021-02464-4",
"author": "F Schälter",
"doi-asserted-by": "publisher",
"first-page": "166",
"issue": "1",
"journal-title": "Arthritis Res Ther",
"key": "387_CR80",
"unstructured": "Schälter F, Dürholz K, Bucci L, Burmester G, Caporali R, Figuereido C, et al. Does methotrexate influence COVID-19 infection? Case series and mechanistic data. Arthritis Res Ther. 2021;23(1):166. https://doi.org/10.1186/s13075-021-02464-4.",
"volume": "23",
"year": "2021"
},
{
"DOI": "10.1016/j.jri.2021.103271",
"author": "MS Bezerra Espinola",
"doi-asserted-by": "publisher",
"journal-title": "J Reprod Immunol",
"key": "387_CR81",
"unstructured": "Bezerra Espinola MS, Bertelli M, Bizzarri M, Unfer V, Laganà AS, Visconti B, et al. Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. J Reprod Immunol. 2021;144:103271. https://doi.org/10.1016/j.jri.2021.103271.",
"volume": "144",
"year": "2021"
},
{
"DOI": "10.26355/eurrev_202003_20715",
"doi-asserted-by": "publisher",
"key": "387_CR82",
"unstructured": "Bizzarri M, Laganà AS, Aragona D, Unfer V. Inositol and Pulmonary Function. Could Myo-Inositol Treatment Downregulate Inflammation and Cytokine Release Syndrome in SARS-CoV-2? Eur Rev Med Pharmacol Sci. 2020;24(6):3426–32. https://doi.org/10.26355/eurrev_202003_20715."
},
{
"DOI": "10.3389/fimmu.2020.01061",
"author": "Q Zhou",
"doi-asserted-by": "publisher",
"journal-title": "Front Immunol",
"key": "387_CR83",
"unstructured": "Zhou Q, Chen V, Shannon CP, Wei X-S, Xiang X, Wang X, et al. Interferon-Α2b treatment for COVID-19. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01061.",
"year": "2020"
},
{
"DOI": "10.1038/s41392-021-00853-4",
"author": "S Zu",
"doi-asserted-by": "publisher",
"first-page": "435",
"issue": "1",
"journal-title": "Sig Transduct Target Ther",
"key": "387_CR84",
"unstructured": "Zu S, Luo D, Li L, Ye Q, Li R-T, Wang Y, et al. Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Sig Transduct Target Ther. 2021;6(1):435. https://doi.org/10.1038/s41392-021-00853-4.",
"volume": "6",
"year": "2021"
},
{
"DOI": "10.1016/j.lfs.2020.117583",
"author": "R Zhang",
"doi-asserted-by": "publisher",
"journal-title": "Life Sci",
"key": "387_CR85",
"unstructured": "Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. https://doi.org/10.1016/j.lfs.2020.117583.",
"volume": "250",
"year": "2020"
},
{
"DOI": "10.1007/s10787-022-01096-7",
"author": "A Ameri",
"doi-asserted-by": "publisher",
"first-page": "265",
"issue": "1",
"journal-title": "Inflammopharmacol",
"key": "387_CR86",
"unstructured": "Ameri A, Frouz Asadi M, Ziaei A, Vatankhah M, Safa O, Kamali M, et al. Efficacy and safety of oral melatonin in patients with severe COVID-19: a randomized controlled trial. Inflammopharmacol. 2023;31(1):265–74. https://doi.org/10.1007/s10787-022-01096-7.",
"volume": "31",
"year": "2023"
},
{
"DOI": "10.3390/healthcare10122387",
"author": "MS Boshra",
"doi-asserted-by": "publisher",
"first-page": "2387",
"issue": "12",
"journal-title": "Healthcare",
"key": "387_CR87",
"unstructured": "Boshra MS, Abou Warda AE, Sayed MA, Elkomy MH, Alotaibi NH, Mohsen M, et al. Effect of pirfenidone on risk of pulmonary fibrosis in COVID-19 patients experiencing cytokine storm. Healthcare. 2022;10(12):2387. https://doi.org/10.3390/healthcare10122387.",
"volume": "10",
"year": "2022"
},
{
"DOI": "10.1016/j.mehy.2020.110005",
"author": "S Seifirad",
"doi-asserted-by": "publisher",
"journal-title": "Med Hypotheses",
"key": "387_CR88",
"unstructured": "Seifirad S. Pirfenidone: a novel hypothetical treatment for COVID-19. Med Hypotheses. 2020;144:110005. https://doi.org/10.1016/j.mehy.2020.110005.",
"volume": "144",
"year": "2020"
},
{
"DOI": "10.1097/CM9.0000000000001614",
"author": "F Zhang",
"doi-asserted-by": "publisher",
"first-page": "368",
"issue": "3",
"journal-title": "Chin Med J",
"key": "387_CR89",
"unstructured": "Zhang F, Wei Y, He L, Zhang H, Hu Q, Yue H, et al. A trial of pirfenidone in hospitalized adult patients with severe coronavirus disease 2019. Chin Med J. 2022;135(3):368–70. https://doi.org/10.1097/CM9.0000000000001614.",
"volume": "135",
"year": "2022"
},
{
"DOI": "10.1053/j.gastro.2019.11.296",
"author": "N Chalasani",
"doi-asserted-by": "publisher",
"first-page": "1334",
"issue": "5",
"journal-title": "Gastroenterology",
"key": "387_CR90",
"unstructured": "Chalasani N, Abdelmalek MF, Garcia-Tsao G, Vuppalanchi R, Alkhouri N, Rinella M, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology. 2020;158(5):1334-1345.e5. https://doi.org/10.1053/j.gastro.2019.11.296.",
"volume": "158",
"year": "2020"
},
{
"DOI": "10.1152/ajplung.00457.2020",
"author": "A Centa",
"doi-asserted-by": "publisher",
"first-page": "L405",
"issue": "3",
"journal-title": "American Journal of Physiology-Lung Cellular and Molecular Physiology",
"key": "387_CR91",
"unstructured": "Centa A, Fonseca AS, Da Silva Ferreira SG, Azevedo MLV, De Paula CBV, Nagashima S, et al. Deregulated miRNA expression is associated with endothelial dysfunction in post-mortem lung biopsies of COVID-19 patients. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2021;320(3):L405–12. https://doi.org/10.1152/ajplung.00457.2020.",
"volume": "320",
"year": "2021"
},
{
"DOI": "10.1016/j.molcel.2007.07.015",
"author": "EV Makeyev",
"doi-asserted-by": "publisher",
"first-page": "435",
"issue": "3",
"journal-title": "Mol Cell",
"key": "387_CR92",
"unstructured": "Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microrna miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27(3):435–48. https://doi.org/10.1016/j.molcel.2007.07.015.",
"volume": "27",
"year": "2007"
},
{
"DOI": "10.1177/1073858417721150",
"author": "AD Gaudet",
"doi-asserted-by": "publisher",
"first-page": "221",
"issue": "3",
"journal-title": "Neuroscientist",
"key": "387_CR93",
"unstructured": "Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. Micrornas: roles in regulating neuroinflammation. Neuroscientist. 2018;24(3):221–45. https://doi.org/10.1177/1073858417721150.",
"volume": "24",
"year": "2018"
},
{
"DOI": "10.1016/j.nrleng.2023.05.002",
"author": "R Keikha",
"doi-asserted-by": "publisher",
"first-page": "e41",
"issue": "6",
"journal-title": "Neurología (English Edition)",
"key": "387_CR94",
"unstructured": "Keikha R, Hashemi-Shahri SM, Jebali A. The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness. Neurología (English Edition). 2023;38(6):e41–51. https://doi.org/10.1016/j.nrleng.2023.05.002.",
"volume": "38",
"year": "2023"
},
{
"DOI": "10.4049/jimmunol.1000491",
"author": "P Wang",
"doi-asserted-by": "publisher",
"first-page": "6226",
"issue": "10",
"journal-title": "J Immunol",
"key": "387_CR95",
"unstructured": "Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microrna-155 feedback promotes type i IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–33. https://doi.org/10.4049/jimmunol.1000491.",
"volume": "185",
"year": "2010"
},
{
"DOI": "10.1111/j.1365-2567.2011.03514.x",
"doi-asserted-by": "publisher",
"key": "387_CR96",
"unstructured": "Cardoso AL, Guedes JR, Pereira De Almeida L, Pedroso De Lima MC. miR‐155 Modulates Microglia‐mediated Immune Response by Down‐regulating SOCS‐1 and Promoting Cytokine and Nitric Oxide Production. Immunol. 2012;135(1):73–88. https://doi.org/10.1111/j.1365-2567.2011.03514.x."
},
{
"DOI": "10.1186/1742-2094-11-97",
"author": "S Pareek",
"doi-asserted-by": "publisher",
"first-page": "97",
"issue": "1",
"journal-title": "J Neuroinflammation",
"key": "387_CR97",
"unstructured": "Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S. Mir-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflammation. 2014;11(1):97. https://doi.org/10.1186/1742-2094-11-97.",
"volume": "11",
"year": "2014"
},
{
"DOI": "10.1161/CIRCHEARTFAILURE.116.003804",
"author": "C Besler",
"doi-asserted-by": "publisher",
"issue": "3",
"journal-title": "Circ: Heart Failure",
"key": "387_CR98",
"unstructured": "Besler C, Lang D, Urban D, Rommel K-P, Von Roeder M, Fengler K, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ: Heart Failure. 2017;10(3):e003804. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003804.",
"volume": "10",
"year": "2017"
},
{
"DOI": "10.7759/cureus.28805",
"author": "E Karsli",
"doi-asserted-by": "publisher",
"journal-title": "Cureus",
"key": "387_CR99",
"unstructured": "Karsli E, Anabarli Metin D, Canacik O, Sabirli R, Kaymaz B, Kurt O, et al. Galectin-3 as a potential prognostic biomarker for COVID-19 disease: a case-control study. Cureus. 2022. https://doi.org/10.7759/cureus.28805.",
"year": "2022"
},
{
"DOI": "10.3390/ijms242115833",
"author": "I Nikitopoulou",
"doi-asserted-by": "publisher",
"first-page": "15833",
"issue": "21",
"journal-title": "IJMS",
"key": "387_CR100",
"unstructured": "Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, et al. Increased levels of galectin-3 in critical COVID-19. IJMS. 2023;24(21):15833. https://doi.org/10.3390/ijms242115833.",
"volume": "24",
"year": "2023"
},
{
"DOI": "10.1016/j.cyto.2022.155970",
"author": "S Özcan",
"doi-asserted-by": "publisher",
"journal-title": "Cytokine",
"key": "387_CR101",
"unstructured": "Özcan S, Dönmez E, Yavuz ST, Ziyrek M, İnce O, Küçük HS, et al. Prognostic significance of serum galectin-3 in hospitalized patients with COVID-19. Cytokine. 2022;158:155970. https://doi.org/10.1016/j.cyto.2022.155970.",
"volume": "158",
"year": "2022"
},
{
"DOI": "10.1038/nrc1527",
"author": "F-T Liu",
"doi-asserted-by": "publisher",
"first-page": "29",
"issue": "1",
"journal-title": "Nat Rev Cancer",
"key": "387_CR102",
"unstructured": "Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5(1):29–41. https://doi.org/10.1038/nrc1527.",
"volume": "5",
"year": "2005"
},
{
"DOI": "10.1084/jem.20182041",
"author": "MR Girotti",
"doi-asserted-by": "publisher",
"issue": "2",
"journal-title": "J Exp Med",
"key": "387_CR103",
"unstructured": "Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J Exp Med. 2020;217(2):e20182041. https://doi.org/10.1084/jem.20182041.",
"volume": "217",
"year": "2020"
},
{
"DOI": "10.1016/j.cell.2011.02.013",
"author": "D Hanahan",
"doi-asserted-by": "publisher",
"first-page": "646",
"issue": "5",
"journal-title": "Cell",
"key": "387_CR104",
"unstructured": "Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.",
"volume": "144",
"year": "2011"
},
{
"DOI": "10.1074/jbc.M312697200",
"author": "G Elad-Sfadia",
"doi-asserted-by": "publisher",
"first-page": "34922",
"issue": "33",
"journal-title": "J Biol Chem",
"key": "387_CR105",
"unstructured": "Elad-Sfadia G, Haklai R, Balan E, Kloog Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem. 2004;279(33):34922–30. https://doi.org/10.1074/jbc.M312697200.",
"volume": "279",
"year": "2004"
},
{
"DOI": "10.1016/0014-5793(95)00310-6",
"author": "J Raimond",
"doi-asserted-by": "publisher",
"first-page": "165",
"issue": "1–2",
"journal-title": "FEBS Lett",
"key": "387_CR106",
"unstructured": "Raimond J, Rouleux F, Monsigny M, Legrand A. The second intron of the human Galectin-3 gene has a strong promoter activity down-regulated by P53. FEBS Lett. 1995;363(1–2):165–9. https://doi.org/10.1016/0014-5793(95)00310-6.",
"volume": "363",
"year": "1995"
},
{
"DOI": "10.1371/journal.pone.0020665",
"author": "L Lavra",
"doi-asserted-by": "publisher",
"issue": "6",
"journal-title": "PLoS ONE",
"key": "387_CR107",
"unstructured": "Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L, et al. The loss of the P53 activator HIPK2 is responsible for Galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS ONE. 2011;6(6):e20665. https://doi.org/10.1371/journal.pone.0020665.",
"volume": "6",
"year": "2011"
},
{
"DOI": "10.2353/ajpath.2009.080816",
"author": "Y Wang",
"doi-asserted-by": "publisher",
"first-page": "1515",
"issue": "4",
"journal-title": "Am J Pathol",
"key": "387_CR108",
"unstructured": "Wang Y, Nangia-Makker P, Tait L, Balan V, Hogan V, Pienta KJ, et al. Regulation of prostate cancer progression by Galectin-3. Am J Pathol. 2009;174(4):1515–23. https://doi.org/10.2353/ajpath.2009.080816.",
"volume": "174",
"year": "2009"
},
{
"DOI": "10.1016/j.immuni.2008.01.011",
"author": "N Demotte",
"doi-asserted-by": "publisher",
"first-page": "414",
"issue": "3",
"journal-title": "Immunity",
"key": "387_CR109",
"unstructured": "Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF, et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity. 2008;28(3):414–24. https://doi.org/10.1016/j.immuni.2008.01.011.",
"volume": "28",
"year": "2008"
},
{
"DOI": "10.1074/jbc.M114.603464",
"author": "W Wang",
"doi-asserted-by": "publisher",
"first-page": "33311",
"issue": "48",
"journal-title": "J Biol Chem",
"key": "387_CR110",
"unstructured": "Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, et al. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem. 2014;289(48):33311–9. https://doi.org/10.1074/jbc.M114.603464.",
"volume": "289",
"year": "2014"
},
{
"DOI": "10.18632/oncotarget.10986",
"author": "S-H La",
"doi-asserted-by": "publisher",
"first-page": "57117",
"issue": "35",
"journal-title": "Oncotarget",
"key": "387_CR111",
"unstructured": "La S-H, Kim S-J, Kang H-G, Lee H-W, Chun K-H. Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a Galectin-3 dependent mechanism. Oncotarget. 2016;7(35):57117–30. https://doi.org/10.18632/oncotarget.10986.",
"volume": "7",
"year": "2016"
},
{
"DOI": "10.1158/1078-0432.CCR-12-2940",
"author": "C Chen",
"doi-asserted-by": "publisher",
"first-page": "1693",
"issue": "7",
"journal-title": "Clin Cancer Res",
"key": "387_CR112",
"unstructured": "Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu L-G. Increased circulation of Galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res. 2013;19(7):1693–704. https://doi.org/10.1158/1078-0432.CCR-12-2940.",
"volume": "19",
"year": "2013"
},
{
"DOI": "10.1158/1078-0432.CCR-11-1462",
"author": "H Barrow",
"doi-asserted-by": "publisher",
"first-page": "7035",
"issue": "22",
"journal-title": "Clin Cancer Res",
"key": "387_CR113",
"unstructured": "Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17(22):7035–46. https://doi.org/10.1158/1078-0432.CCR-11-1462.",
"volume": "17",
"year": "2011"
},
{
"key": "387_CR114",
"unstructured": "Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of Galectin-3 in the Sera of Normal Controls and Cancer Patients1. Clin Cancer Res. 2000;6(4):1389–93."
},
{
"DOI": "10.1097/CMR.0b013e32832ec001",
"author": "P Vereecken",
"doi-asserted-by": "publisher",
"first-page": "316",
"issue": "5",
"journal-title": "Melanoma Res",
"key": "387_CR115",
"unstructured": "Vereecken P, Awada A, Suciu S, Castro G, Morandini R, Litynska A, et al. Evaluation of the prognostic significance of serum galectin-3 in American Joint Committee on Cancer stage III and stage IV melanoma patients. Melanoma Res. 2009;19(5):316–20. https://doi.org/10.1097/CMR.0b013e32832ec001.",
"volume": "19",
"year": "2009"
},
{
"DOI": "10.1007/s12307-008-0003-6",
"author": "P Nangia-Makker",
"doi-asserted-by": "publisher",
"first-page": "43",
"issue": "1",
"journal-title": "Cancer Microenviron",
"key": "387_CR116",
"unstructured": "Nangia-Makker P, Balan V, Raz A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron. 2008;1(1):43–51. https://doi.org/10.1007/s12307-008-0003-6.",
"volume": "1",
"year": "2008"
},
{
"author": "VV Glinsky",
"first-page": "2584",
"issue": "10",
"journal-title": "Cancer Res",
"key": "387_CR117",
"unstructured": "Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP. Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res. 2000;60(10):2584–8.",
"volume": "60",
"year": "2000"
},
{
"DOI": "10.1074/jbc.M606862200",
"author": "L-G Yu",
"doi-asserted-by": "publisher",
"first-page": "773",
"issue": "1",
"journal-title": "J Biol Chem",
"key": "387_CR118",
"unstructured": "Yu L-G, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, et al. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem. 2007;282(1):773–81. https://doi.org/10.1074/jbc.M606862200.",
"volume": "282",
"year": "2007"
},
{
"DOI": "10.1158/2159-8290.CD-13-0287",
"author": "N Murugaesu",
"doi-asserted-by": "publisher",
"first-page": "304",
"issue": "3",
"journal-title": "Cancer Discov",
"key": "387_CR119",
"unstructured": "Murugaesu N, Iravani M, Van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 2014;4(3):304–17. https://doi.org/10.1158/2159-8290.CD-13-0287.",
"volume": "4",
"year": "2014"
},
{
"DOI": "10.1084/jem.20090121",
"author": "AI Markowska",
"doi-asserted-by": "publisher",
"first-page": "1981",
"issue": "9",
"journal-title": "J Exp Med",
"key": "387_CR120",
"unstructured": "Markowska AI, Liu F-T, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med. 2010;207(9):1981–93. https://doi.org/10.1084/jem.20090121.",
"volume": "207",
"year": "2010"
},
{
"DOI": "10.18632/oncotarget.17718",
"author": "SN Dos Santos",
"doi-asserted-by": "publisher",
"first-page": "49484",
"issue": "30",
"journal-title": "Oncotarget",
"key": "387_CR121",
"unstructured": "Dos Santos SN, Sheldon H, Pereira JX, Paluch C, Bridges EM, El-Cheikh MC, et al. Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget. 2017;8(30):49484–501. https://doi.org/10.18632/oncotarget.17718.",
"volume": "8",
"year": "2017"
},
{
"DOI": "10.1126/scisignal.2002255",
"doi-asserted-by": "publisher",
"key": "387_CR122",
"unstructured": "Woods NT, Mesquita RD, Sweet M, Carvalho MA, Li X, Liu Y, et al. Charting the Landscape of Tandem BRCT Domain–Mediated Protein Interactions. Sci Signal. 2012:5(242). https://doi.org/10.1126/scisignal.2002255."
},
{
"DOI": "10.4161/cbt.28873",
"author": "RS Carvalho",
"doi-asserted-by": "publisher",
"first-page": "840",
"issue": "7",
"journal-title": "Cancer Biol Ther",
"key": "387_CR123",
"unstructured": "Carvalho RS, Fernandes VC, Nepomuceno TC, Rodrigues DC, Woods NT, Suarez-Kurtz G, et al. Characterization of LGALS3 (galectin-3) as a player in DNA damage response. Cancer Biol Ther. 2014;15(7):840–50. https://doi.org/10.4161/cbt.28873.",
"volume": "15",
"year": "2014"
},
{
"DOI": "10.1038/cdd.2013.50",
"author": "RG Lichtenstein",
"doi-asserted-by": "publisher",
"first-page": "976",
"issue": "8",
"journal-title": "Cell Death Differ",
"key": "387_CR124",
"unstructured": "Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 2013;20(8):976–86. https://doi.org/10.1038/cdd.2013.50.",
"volume": "20",
"year": "2013"
},
{
"DOI": "10.1158/0008-5472.CAN-04-0336",
"author": "T Fukumori",
"doi-asserted-by": "publisher",
"first-page": "3376",
"issue": "10",
"journal-title": "Can Res",
"key": "387_CR125",
"unstructured": "Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, et al. Endogenous Galectin-3 Determines the Routing of CD95 Apoptotic Signaling Pathways. Can Res. 2004;64(10):3376–9. https://doi.org/10.1158/0008-5472.CAN-04-0336.",
"volume": "64",
"year": "2004"
},
{
"DOI": "10.1158/0008-5472.CAN-05-1197",
"author": "N Oka",
"doi-asserted-by": "publisher",
"first-page": "7546",
"issue": "17",
"journal-title": "Cancer Res",
"key": "387_CR126",
"unstructured": "Oka N, Nakahara S, Takenaka Y, Fukumori T, Hogan V, Kanayama H, et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 2005;65(17):7546–53. https://doi.org/10.1158/0008-5472.CAN-05-1197.",
"volume": "65",
"year": "2005"
},
{
"DOI": "10.1016/S0014-4827(03)00211-8",
"author": "Y Lee",
"doi-asserted-by": "publisher",
"first-page": "21",
"issue": "1",
"journal-title": "Exp Cell Res",
"key": "387_CR127",
"unstructured": "Lee Y. Reconstitution of Galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Exp Cell Res. 2003;288(1):21–34. https://doi.org/10.1016/S0014-4827(03)00211-8.",
"volume": "288",
"year": "2003"
},
{
"DOI": "10.1038/cdd.2011.123",
"author": "N Mazurek",
"doi-asserted-by": "publisher",
"first-page": "523",
"issue": "3",
"journal-title": "Cell Death Differ",
"key": "387_CR128",
"unstructured": "Mazurek N, Byrd JC, Sun Y, Hafley M, Ramirez K, Burks J, et al. Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells. Cell Death Differ. 2012;19(3):523–33. https://doi.org/10.1038/cdd.2011.123.",
"volume": "19",
"year": "2012"
},
{
"DOI": "10.1158/0008-5472.CAN-08-4153",
"author": "S Song",
"doi-asserted-by": "publisher",
"first-page": "1343",
"issue": "4",
"journal-title": "Cancer Res",
"key": "387_CR129",
"unstructured": "Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, et al. Galectin-3 mediates nuclear β-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3β activity. Cancer Res. 2009;69(4):1343–9. https://doi.org/10.1158/0008-5472.CAN-08-4153.",
"volume": "69",
"year": "2009"
},
{
"DOI": "10.1016/j.ijbiomac.2019.09.118",
"author": "Y-S Li",
"doi-asserted-by": "publisher",
"first-page": "463",
"journal-title": "Int J Biol Macromol",
"key": "387_CR130",
"unstructured": "Li Y-S, Li X-T, Yu L-G, Wang L, Shi Z-Y, Guo X-L. Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol. 2020;142:463–73. https://doi.org/10.1016/j.ijbiomac.2019.09.118.",
"volume": "142",
"year": "2020"
},
{
"DOI": "10.3390/ijms222111475",
"author": "T Shen",
"doi-asserted-by": "publisher",
"first-page": "11475",
"issue": "21",
"journal-title": "IJMS",
"key": "387_CR131",
"unstructured": "Shen T, Wang T. Metabolic reprogramming in COVID-19. IJMS. 2021;22(21):11475. https://doi.org/10.3390/ijms222111475.",
"volume": "22",
"year": "2021"
},
{
"DOI": "10.1016/j.heliyon.2022.e10473",
"author": "F Li",
"doi-asserted-by": "publisher",
"issue": "9",
"journal-title": "Heliyon",
"key": "387_CR132",
"unstructured": "Li F, Fu L, Liu X, Liu X, Liang Y, Lv Y, et al. Serum metabolomic abnormalities in survivors of non-severe COVID-19. Heliyon. 2022;8(9):e10473. https://doi.org/10.1016/j.heliyon.2022.e10473.",
"volume": "8",
"year": "2022"
},
{
"DOI": "10.1002/jmv.27929",
"author": "M Rudiansyah",
"doi-asserted-by": "publisher",
"first-page": "4611",
"issue": "10",
"journal-title": "J Med Virol",
"key": "387_CR133",
"unstructured": "Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, et al. Coronavirus disease 2019 (COVID-19) update: from metabolic reprogramming to immunometabolism. J Med Virol. 2022;94(10):4611–27. https://doi.org/10.1002/jmv.27929.",
"volume": "94",
"year": "2022"
},
{
"DOI": "10.1038/s41419-021-03540-y",
"author": "F-X Danlos",
"doi-asserted-by": "publisher",
"first-page": "258",
"issue": "3",
"journal-title": "Cell Death Dis",
"key": "387_CR134",
"unstructured": "Danlos F-X, Grajeda-Iglesias C, Durand S, Sauvat A, Roumier M, Cantin D, et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death Dis. 2021;12(3):258. https://doi.org/10.1038/s41419-021-03540-y.",
"volume": "12",
"year": "2021"
},
{
"DOI": "10.1093/ehjopen/oead073",
"author": "V Jaiswal",
"doi-asserted-by": "publisher",
"issue": "5",
"journal-title": "Eur Heart J Open",
"key": "387_CR135",
"unstructured": "Jaiswal V, Ang SP, Agrawal V, Hameed M, Saleeb MRA, Jaiswal A, et al. Association between heart failure and the incidence of cancer: a systematic review and meta-analysis. Eur Heart J Open. 2023;3(5):oead073. https://doi.org/10.1093/ehjopen/oead073.",
"volume": "3",
"year": "2023"
},
{
"DOI": "10.1161/CIRCIMAGING.120.011713",
"author": "LT Weckbach",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Circ: Cardiovascular Imaging",
"key": "387_CR136",
"unstructured": "Weckbach LT, Curta A, Bieber S, Kraechan A, Brado J, Hellmuth JC, et al. Myocardial inflammation and dysfunction in COVID-19–associated myocardial injury. Circ: Cardiovascular Imaging. 2021;14(1):e012220. https://doi.org/10.1161/CIRCIMAGING.120.011713.",
"volume": "14",
"year": "2021"
},
{
"DOI": "10.1016/j.ccep.2021.10.004",
"author": "A Del Prete",
"doi-asserted-by": "publisher",
"first-page": "29",
"issue": "1",
"journal-title": "Cardiac Electrophysiol Clin",
"key": "387_CR137",
"unstructured": "Del Prete A, Conway F, Della Rocca DG, Biondi-Zoccai G, De Felice F, Musto C, et al. COVID-19, Acute myocardial injury, and infarction. Cardiac Electrophysiol Clin. 2022;14(1):29–39. https://doi.org/10.1016/j.ccep.2021.10.004.",
"volume": "14",
"year": "2022"
},
{
"DOI": "10.1016/j.lfs.2020.118482",
"author": "SD Unudurthi",
"doi-asserted-by": "publisher",
"journal-title": "Life Sci",
"key": "387_CR138",
"unstructured": "Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. Cardiac inflammation in COVID-19: lessons from heart failure. Life Sci. 2020;260:118482. https://doi.org/10.1016/j.lfs.2020.118482.",
"volume": "260",
"year": "2020"
},
{
"DOI": "10.1038/s41379-021-00790-1",
"author": "M Bearse",
"doi-asserted-by": "publisher",
"first-page": "1345",
"issue": "7",
"journal-title": "Mod Pathol",
"key": "387_CR139",
"unstructured": "Bearse M, Hung YP, Krauson AJ, Bonanno L, Boyraz B, Harris CK, et al. Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19. Mod Pathol. 2021;34(7):1345–57. https://doi.org/10.1038/s41379-021-00790-1.",
"volume": "34",
"year": "2021"
},
{
"DOI": "10.3389/fcvm.2020.598384",
"author": "S Ausoni",
"doi-asserted-by": "publisher",
"journal-title": "Front Cardiovasc Med",
"key": "387_CR140",
"unstructured": "Ausoni S, Azzarello G. Development of cancer in patients with heart failure: how systemic inflammation can lay the groundwork. Front Cardiovasc Med. 2020;7:598384. https://doi.org/10.3389/fcvm.2020.598384.",
"volume": "7",
"year": "2020"
},
{
"DOI": "10.1016/j.jaccao.2021.11.007",
"author": "E Bertero",
"doi-asserted-by": "publisher",
"first-page": "98",
"issue": "1",
"journal-title": "JACC: CardioOncology",
"key": "387_CR141",
"unstructured": "Bertero E, Robusto F, Rulli E, D’Ettorre A, Bisceglia L, Staszewsky L, et al. Cancer incidence and mortality according to pre-existing heart failure in a community-based cohort. JACC: CardioOncology. 2022;4(1):98–109. https://doi.org/10.1016/j.jaccao.2021.11.007.",
"volume": "4",
"year": "2022"
},
{
"DOI": "10.1161/CIRCULATIONAHA.118.033603",
"author": "E Bertero",
"doi-asserted-by": "publisher",
"first-page": "735",
"issue": "7",
"journal-title": "Circulation",
"key": "387_CR142",
"unstructured": "Bertero E, Canepa M, Maack C, Ameri P. Linking heart failure to cancer: background evidence and research perspectives. Circulation. 2018;138(7):735–42. https://doi.org/10.1161/CIRCULATIONAHA.118.033603.",
"volume": "138",
"year": "2018"
},
{
"DOI": "10.1186/s40959-023-00158-1",
"author": "M Camilli",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Cardio-Oncol",
"key": "387_CR143",
"unstructured": "Camilli M, Chiabrando JG, Lombardi M, Del Buono MG, Montone RA, Lombardo A, et al. Cancer incidence and mortality in patients diagnosed with heart failure: results from an updated systematic review and meta-analysis. Cardio-Oncol. 2023;9(1):8. https://doi.org/10.1186/s40959-023-00158-1.",
"volume": "9",
"year": "2023"
},
{
"DOI": "10.1016/j.jacc.2013.04.088",
"author": "T Hasin",
"doi-asserted-by": "publisher",
"first-page": "881",
"issue": "10",
"journal-title": "J Am Coll Cardiol",
"key": "387_CR144",
"unstructured": "Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ, et al. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62(10):881–6. https://doi.org/10.1016/j.jacc.2013.04.088.",
"volume": "62",
"year": "2013"
},
{
"DOI": "10.1001/jamaoncol.2021.6987",
"doi-asserted-by": "publisher",
"key": "387_CR145",
"unstructured": "Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420. https://doi.org/10.1001/jamaoncol.2021.6987."
},
{
"DOI": "10.1161/CIRCULATIONAHA.117.030816",
"author": "WC Meijers",
"doi-asserted-by": "publisher",
"first-page": "678",
"issue": "7",
"journal-title": "Circulation",
"key": "387_CR146",
"unstructured": "Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, De Jong S, et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138(7):678–91. https://doi.org/10.1161/CIRCULATIONAHA.117.030816.",
"volume": "138",
"year": "2018"
},
{
"DOI": "10.1002/ejhf.472",
"author": "A Banke",
"doi-asserted-by": "publisher",
"first-page": "260",
"issue": "3",
"journal-title": "Eur J Heart Fail",
"key": "387_CR147",
"unstructured": "Banke A, Schou M, Videbæk L, Møller JE, Torp-Pedersen C, Gustafsson F, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18(3):260–6. https://doi.org/10.1002/ejhf.472.",
"volume": "18",
"year": "2016"
},
{
"DOI": "10.3892/mmr.2024.13163",
"author": "W Li",
"doi-asserted-by": "publisher",
"issue": "3",
"journal-title": "Mol Med Rep",
"key": "387_CR148",
"unstructured": "Li W, Zhuang Y, Shao S-J, Trivedi P, Zheng B, Huang G-L, et al. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID-19 (review). Mol Med Rep. 2024;29(3):39. https://doi.org/10.3892/mmr.2024.13163.",
"volume": "29",
"year": "2024"
},
{
"DOI": "10.1097/MPH.0000000000002064",
"author": "C Leclercq",
"doi-asserted-by": "publisher",
"first-page": "e1177",
"issue": "8",
"journal-title": "J Pediatr Hematol Oncol",
"key": "387_CR149",
"unstructured": "Leclercq C, Toutain F, Baleydier F, L’Huillier AG, Wagner N, Lironi C, et al. Pediatric acute B-cell lymphoblastic leukemia developing following recent SARS-CoV-2 infection. J Pediatr Hematol Oncol. 2021;43(8):e1177. https://doi.org/10.1097/MPH.0000000000002064.",
"volume": "43",
"year": "2021"
},
{
"DOI": "10.1097/MPH.0000000000002037",
"author": "Y Persaud",
"doi-asserted-by": "publisher",
"first-page": "e1241",
"issue": "8",
"journal-title": "J Pediatr Hematol Oncol",
"key": "387_CR150",
"unstructured": "Persaud Y, Shamoun M, Chitlur M, Des Rosier KJ, Taub JW. Childhood B-Cell Acute Lymphoblastic Leukemia Following SARS CoV-2 Infection: A Potential Second “Hit” in Leukemogenesis. J Pediatr Hematol Oncol. 2021;43(8):e1241. https://doi.org/10.1097/MPH.0000000000002037.",
"volume": "43",
"year": "2021"
},
{
"DOI": "10.1177/2632010X241278180",
"author": "A Mitra",
"doi-asserted-by": "publisher",
"journal-title": "Clin Med Insights Pathol",
"key": "387_CR151",
"unstructured": "Mitra A, Ladenheim A, Datta-Mitra A, Honeychurch KL, Dwyre DM, Graff JP. Diagnosing B-cell acute lymphoblastic leukemia in 2 pediatric patients with recent SARS-CoV-2 infection. Clin Med Insights Pathol. 2024;17:2632010X241278180. https://doi.org/10.1177/2632010X241278180.",
"volume": "17",
"year": "2024"
},
{
"DOI": "10.3389/fmed.2024.1428973",
"author": "X Ma",
"doi-asserted-by": "publisher",
"journal-title": "Front Med",
"key": "387_CR152",
"unstructured": "Ma X, Huang T, Li X, Zhou X, Pan H, Du A, et al. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med. 2024;11:1428973. https://doi.org/10.3389/fmed.2024.1428973.",
"volume": "11",
"year": "2024"
},
{
"DOI": "10.1182/blood.2020007008",
"author": "EA Middleton",
"doi-asserted-by": "publisher",
"first-page": "1169",
"issue": "10",
"journal-title": "Blood",
"key": "387_CR153",
"unstructured": "Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. https://doi.org/10.1182/blood.2020007008.",
"volume": "136",
"year": "2020"
},
{
"DOI": "10.1126/science.aao4227",
"author": "J Albrengues",
"doi-asserted-by": "publisher",
"issue": "6409",
"journal-title": "Science",
"key": "387_CR154",
"unstructured": "Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.",
"volume": "361",
"year": "2018"
},
{
"DOI": "10.1186/s13058-020-01360-0",
"author": "F Francescangeli",
"doi-asserted-by": "publisher",
"issue": "1",
"journal-title": "Breast Cancer Res",
"key": "387_CR155",
"unstructured": "Francescangeli F, De Angelis ML, Zeuner A. COVID-19: a potential driver of immune-mediated breast cancer recurrence? Breast Cancer Res. 2020;22(1):117. https://doi.org/10.1186/s13058-020-01360-0.",
"volume": "22",
"year": "2020"
}
],
"reference-count": 155,
"references-count": 155,
"relation": {},
"resource": {
"primary": {
"URL": "https://cardiooncologyjournal.biomedcentral.com/articles/10.1186/s40959-025-00387-6"
}
},
"score": 1,
"short-title": [],
"source": "Crossref",
"subject": [],
"subtitle": [],
"title": "Pathways in the brain, heart and lung influenced by SARS-CoV-2 NSP6 and SARS-CoV-2 regulated miRNAs: an in silico study hinting cancer incidence",
"type": "journal-article",
"update-policy": "https://doi.org/10.1007/springer_crossmark_policy",
"volume": "11"
}