Pathways in the brain, heart and lung influenced by SARS-CoV-2 NSP6 and SARS-CoV-2 regulated miRNAs: an in silico study hinting cancer incidence

Chatterjee et al., Cardio-Oncology, doi:10.1186/s40959-025-00387-6, Oct 2025
In silico study identifying potential therapeutic targets for COVID-19 by analyzing tissue-specific pathways influenced by SARS-CoV-2 non-structural protein 6 (NSP6) in brain, heart, and lung tissues.
Chatterjee et al., 22 Oct 2025, peer-reviewed, 4 authors.
In silico studies are an important part of preclinical research, however results may be very different in vivo.
DOI record: { "DOI": "10.1186/s40959-025-00387-6", "ISSN": [ "2057-3804" ], "URL": "http://dx.doi.org/10.1186/s40959-025-00387-6", "alternative-id": [ "387" ], "article-number": "94", "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "12 February 2025" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "27 August 2025" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 3, "value": "22 October 2025" }, { "group": { "label": "Declarations", "name": "EthicsHeading" }, "name": "Ethics", "order": 1 }, { "group": { "label": "Ethics approval and consent to participate", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "Ethical approval was not necessary for this work as re-analyses performed in this work were with publicly available data. Information regarding accessing data are cited in the manuscript." }, { "group": { "label": "Competing interest", "name": "EthicsHeading" }, "name": "Ethics", "order": 3, "value": "The authors declare no competing interests." } ], "author": [ { "affiliation": [], "family": "Chatterjee", "given": "Shrabonti", "sequence": "first" }, { "affiliation": [], "family": "Mahata", "given": "Joydeep", "sequence": "additional" }, { "affiliation": [], "family": "Kateriya", "given": "Suneel", "sequence": "additional" }, { "affiliation": [], "family": "Anirudhan", "given": "Gireesh", "sequence": "additional" } ], "container-title": "Cardio-Oncology", "container-title-short": "Cardio-Oncology", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2025, 10, 22 ] ], "date-time": "2025-10-22T08:44:10Z", "timestamp": 1761122650000 }, "deposited": { "date-parts": [ [ 2025, 10, 22 ] ], "date-time": "2025-10-22T08:44:16Z", "timestamp": 1761122656000 }, "indexed": { "date-parts": [ [ 2025, 10, 22 ] ], "date-time": "2025-10-22T23:25:59Z", "timestamp": 1761175559940, "version": "build-2065373602" }, "is-referenced-by-count": 0, "issue": "1", "issued": { "date-parts": [ [ 2025, 10, 22 ] ] }, "journal-issue": { "issue": "1", "published-online": { "date-parts": [ [ 2025, 12 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by-nc-nd/4.0", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 10, 22 ] ], "date-time": "2025-10-22T00:00:00Z", "timestamp": 1761091200000 } }, { "URL": "https://creativecommons.org/licenses/by-nc-nd/4.0", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2025, 10, 22 ] ], "date-time": "2025-10-22T00:00:00Z", "timestamp": 1761091200000 } } ], "link": [ { "URL": "https://link.springer.com/content/pdf/10.1186/s40959-025-00387-6.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/article/10.1186/s40959-025-00387-6/fulltext.html", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/content/pdf/10.1186/s40959-025-00387-6.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1186", "published": { "date-parts": [ [ 2025, 10, 22 ] ] }, "published-online": { "date-parts": [ [ 2025, 10, 22 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.3390/v13061149", "author": "M Dróżdż", "doi-asserted-by": "publisher", "first-page": "1149", "issue": "6", "journal-title": "Viruses", "key": "387_CR1", "unstructured": "Dróżdż M, Krzyżek P, Dudek B, Makuch S, Janczura A, Paluch E. Current state of knowledge about role of pets in zoonotic transmission of SARS-CoV-2. Viruses. 2021;13(6):1149. https://doi.org/10.3390/v13061149.", "volume": "13", "year": "2021" }, { "DOI": "10.3390/v13101993", "author": "DA Meekins", "doi-asserted-by": "publisher", "first-page": "1993", "issue": "10", "journal-title": "Viruses", "key": "387_CR2", "unstructured": "Meekins DA, Gaudreault NN, Richt JA. Natural and experimental SARS-CoV-2 infection in domestic and wild animals. Viruses. 2021;13(10):1993. https://doi.org/10.3390/v13101993.", "volume": "13", "year": "2021" }, { "DOI": "10.3390/v13030494", "author": "T Prince", "doi-asserted-by": "publisher", "first-page": "494", "issue": "3", "journal-title": "Viruses", "key": "387_CR3", "unstructured": "Prince T, Smith SL, Radford AD, Solomon T, Hughes GL, Patterson EI. SARS-CoV-2 infections in animals: reservoirs for reverse zoonosis and models for study. Viruses. 2021;13(3):494. https://doi.org/10.3390/v13030494.", "volume": "13", "year": "2021" }, { "DOI": "10.1080/01652176.2020.1867776", "author": "K Sharun", "doi-asserted-by": "publisher", "first-page": "50", "issue": "1", "journal-title": "Vet Q", "key": "387_CR4", "unstructured": "Sharun K, Tiwari R, Natesan S, Dhama K. SARS-CoV-2 infection in farmed minks, associated zoonotic concerns, and importance of the one health approach during the ongoing COVID-19 pandemic. Vet Q. 2021;41(1):50–60. https://doi.org/10.1080/01652176.2020.1867776.", "volume": "41", "year": "2021" }, { "DOI": "10.1371/journal.ppat.1009952", "author": "CD Eckstrand", "doi-asserted-by": "publisher", "issue": "11", "journal-title": "PLoS Pathog", "key": "387_CR5", "unstructured": "Eckstrand CD, Baldwin TJ, Rood KA, Clayton MJ, Lott JK, Wolking RM, et al. An outbreak of SARS-CoV-2 with high mortality in mink (Neovison vison) on multiple Utah farms. PLoS Pathog. 2021;17(11):e1009952. https://doi.org/10.1371/journal.ppat.1009952.", "volume": "17", "year": "2021" }, { "DOI": "10.1002/ajp.23654", "author": "EA Diaz", "doi-asserted-by": "publisher", "issue": "8", "journal-title": "Am J Primatol", "key": "387_CR6", "unstructured": "Diaz EA, Sáenz C, Cabrera F, Rodríguez J, Carvajal M, Barragán V. COVID-19 in a common woolly monkey (Lagothrix lagothricha): first evidence of fatal outcome in a nonhuman primate after natural SARS-CoV-2 infection. Am J Primatol. 2024;86(8):e23654. https://doi.org/10.1002/ajp.23654.", "volume": "86", "year": "2024" }, { "DOI": "10.1128/spectrum.02741-23", "author": "M Carvajal", "doi-asserted-by": "publisher", "first-page": "e02741", "issue": "4", "journal-title": "Microbiol Spectr", "key": "387_CR7", "unstructured": "Carvajal M, Saenz C, Fuentes N, Guevara R, Muñoz E, Prado-Vivar B, et al. SARS-CoV-2 Infection in Brown-Headed Spider Monkeys ( Ateles Fusciceps ) at a Wildlife Rescue Center on the Coast of Ecuador—South America. Microbiol Spectr. 2024;12(4):e02741-e2823. https://doi.org/10.1128/spectrum.02741-23.", "volume": "12", "year": "2024" }, { "DOI": "10.3201/eid3006.231247", "doi-asserted-by": "publisher", "key": "387_CR8", "unstructured": "Cano-Terriza D, Beato-Benítez A, Fernández-Bastit L, Segalés J, Vergara-Alert J, Martínez-Nevado, E, et al. SARS-CoV-2 in Captive Nonhuman Primates, Spain, 2020–2023. Emerg Infect Dis. 2024:30(6). https://doi.org/10.3201/eid3006.231247." }, { "DOI": "10.2807/1560-7917.ES.2021.26.5.210009", "doi-asserted-by": "publisher", "key": "387_CR9", "unstructured": "Larsen HD, Fonager J, Lomholt FK, Dalby T, Benedetti G, Kristensen B, et al. Preliminary Report of an Outbreak of SARS-CoV-2 in Mink and Mink Farmers Associated with Community Spread, Denmark, June to November 2020. Eurosurveillance. 2021;26(5). https://doi.org/10.2807/1560-7917.ES.2021.26.5.210009." }, { "DOI": "10.1371/journal.ppat.1012039", "author": "TB Rasmussen", "doi-asserted-by": "publisher", "issue": "7", "journal-title": "PLoS Pathog", "key": "387_CR10", "unstructured": "Rasmussen TB, Qvesel AG, Pedersen AG, Olesen AS, Fonager J, Rasmussen M, et al. Emergence and spread of SARS-CoV-2 variants from farmed mink to humans and back during the epidemic in Denmark, june-november 2020. PLoS Pathog. 2024;20(7):e1012039. https://doi.org/10.1371/journal.ppat.1012039.", "volume": "20", "year": "2024" }, { "DOI": "10.1038/s41579-022-00846-2", "author": "HE Davis", "doi-asserted-by": "publisher", "first-page": "133", "issue": "3", "journal-title": "Nat Rev Microbiol", "key": "387_CR11", "unstructured": "Davis HE, McCorkell L, Vogel JM, Topol EJ. Long COVID: major findings, mechanisms and recommendations. Nat Rev Microbiol. 2023;21(3):133–46. https://doi.org/10.1038/s41579-022-00846-2.", "volume": "21", "year": "2023" }, { "DOI": "10.1038/s41467-021-26513-3", "author": "Y Xie", "doi-asserted-by": "publisher", "first-page": "6571", "issue": "1", "journal-title": "Nat Commun", "key": "387_CR12", "unstructured": "Xie Y, Bowe B, Al-Aly Z. Burdens of post-acute sequelae of COVID-19 by severity of acute infection, demographics and health status. Nat Commun. 2021;12(1):6571. https://doi.org/10.1038/s41467-021-26513-3.", "volume": "12", "year": "2021" }, { "DOI": "10.1038/s41586-021-03553-9", "author": "Z Al-Aly", "doi-asserted-by": "publisher", "first-page": "259", "issue": "7862", "journal-title": "Nature", "key": "387_CR13", "unstructured": "Al-Aly Z, Xie Y, Bowe B. High-dimensional characterization of post-acute sequelae of COVID-19. Nature. 2021;594(7862):259–64. https://doi.org/10.1038/s41586-021-03553-9.", "volume": "594", "year": "2021" }, { "DOI": "10.1038/s41591-022-01689-3", "author": "Y Xie", "doi-asserted-by": "publisher", "first-page": "583", "issue": "3", "journal-title": "Nat Med", "key": "387_CR14", "unstructured": "Xie Y, Xu E, Bowe B, Al-Aly Z. Long-term cardiovascular outcomes of COVID-19. Nat Med. 2022;28(3):583–90. https://doi.org/10.1038/s41591-022-01689-3.", "volume": "28", "year": "2022" }, { "DOI": "10.1038/s41591-022-02051-3", "author": "B Bowe", "doi-asserted-by": "publisher", "first-page": "2398", "issue": "11", "journal-title": "Nat Med", "key": "387_CR15", "unstructured": "Bowe B, Xie Y, Al-Aly Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat Med. 2022;28(11):2398–405. https://doi.org/10.1038/s41591-022-02051-3.", "volume": "28", "year": "2022" }, { "DOI": "10.1038/s41467-022-31897-x", "author": "AIV Sørensen", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Nat Commun", "key": "387_CR16", "unstructured": "Sørensen AIV, Spiliopoulos L, Bager P, Nielsen NM, Hansen JV, Koch A, et al. A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark. Nat Commun. 2022;13(1):4213. https://doi.org/10.1038/s41467-022-31897-x.", "volume": "13", "year": "2022" }, { "DOI": "10.1038/s41598-023-35591-w", "author": "T Meister", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Sci Rep", "key": "387_CR17", "unstructured": "Meister T, Kolde A, Fischer K, Pisarev H, Kolde R, Kalda R, et al. A retrospective cohort study of incidence and risk factors for severe SARS-CoV-2 breakthrough infection among fully vaccinated people. Sci Rep. 2023;13(1):8531. https://doi.org/10.1038/s41598-023-35591-w.", "volume": "13", "year": "2023" }, { "DOI": "10.1001/jamanetworkopen.2021.7498", "author": "TM Tu", "doi-asserted-by": "publisher", "issue": "4", "journal-title": "JAMA Netw Open", "key": "387_CR18", "unstructured": "Tu TM, Seet CYH, Koh JS, Tham CH, Chiew HJ, De Leon JA, et al. Acute ischemic stroke during the convalescent phase of asymptomatic COVID-2019 infection in men. JAMA Netw Open. 2021;4(4):e217498. https://doi.org/10.1001/jamanetworkopen.2021.7498.", "volume": "4", "year": "2021" }, { "DOI": "10.1186/s12883-021-02075-1", "author": "ME Ramos-Araque", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "BMC Neurol", "key": "387_CR19", "unstructured": "Ramos-Araque ME, Siegler JE, Ribo M, Requena M, López C, De Lera M, et al. Stroke etiologies in patients with COVID-19: the SVIN COVID-19 multinational registry. BMC Neurol. 2021;21(1):43. https://doi.org/10.1186/s12883-021-02075-1.", "volume": "21", "year": "2021" }, { "DOI": "10.1016/j.radcr.2020.07.009", "author": "SS Al Mazrouei", "doi-asserted-by": "publisher", "first-page": "1646", "issue": "9", "journal-title": "Radiol Case Rep", "key": "387_CR20", "unstructured": "Al Mazrouei SS, Saeed GA, Al Helali AA, Ahmed M. COVID-19-associated encephalopathy: neurological manifestation of COVID-19. Radiol Case Rep. 2020;15(9):1646–9. https://doi.org/10.1016/j.radcr.2020.07.009.", "volume": "15", "year": "2020" }, { "DOI": "10.1148/radiol.2020202222", "doi-asserted-by": "publisher", "key": "387_CR21", "unstructured": "Kremer S, Lersy F, De Sèze J, Ferré, J-C, Maamar A, Carsin-Nicol B, et al. Cotton, F. Brain MRI Findings in Severe COVID-19: A Retrospective Observational Study. Radiol. 2020;297(2): E242–51. https://doi.org/10.1148/radiol.2020202222." }, { "DOI": "10.1038/s41591-022-02001-z", "author": "E Xu", "doi-asserted-by": "publisher", "first-page": "2406", "issue": "11", "journal-title": "Nat Med", "key": "387_CR22", "unstructured": "Xu E, Xie Y, Al-Aly Z. Long-term neurologic outcomes of COVID-19. Nat Med. 2022;28(11):2406–15. https://doi.org/10.1038/s41591-022-02001-z.", "volume": "28", "year": "2022" }, { "DOI": "10.1038/s41586-020-2286-9", "author": "DE Gordon", "doi-asserted-by": "publisher", "first-page": "459", "issue": "7816", "journal-title": "Nature", "key": "387_CR23", "unstructured": "Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, White KM, et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 2020;583(7816):459–68. https://doi.org/10.1038/s41586-020-2286-9.", "volume": "583", "year": "2020" }, { "DOI": "10.1126/science.abe9403", "doi-asserted-by": "publisher", "key": "387_CR24", "unstructured": "Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, et al. Comparative Host-Coronavirus Protein Interaction Networks Reveal Pan-Viral Disease Mechanisms. Sci. 2020;370(6521):eabe9403. https://doi.org/10.1126/science.abe9403." }, { "DOI": "10.1016/S0140-6736(20)30251-8", "author": "R Lu", "doi-asserted-by": "publisher", "first-page": "565", "issue": "10224", "journal-title": "Lancet", "key": "387_CR25", "unstructured": "Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet. 2020;395(10224):565–74. https://doi.org/10.1016/S0140-6736(20)30251-8.", "volume": "395", "year": "2020" }, { "DOI": "10.1038/s41586-020-2008-3", "author": "F Wu", "doi-asserted-by": "publisher", "first-page": "265", "issue": "7798", "journal-title": "Nature", "key": "387_CR26", "unstructured": "Wu F, Zhao S, Yu B, Chen Y-M, Wang W, Song Z-G, et al. A new coronavirus associated with human respiratory disease in China. Nature. 2020;579(7798):265–9. https://doi.org/10.1038/s41586-020-2008-3.", "volume": "579", "year": "2020" }, { "DOI": "10.1007/s11427-021-1964-4", "author": "C Bai", "doi-asserted-by": "publisher", "first-page": "280", "issue": "2", "journal-title": "Sci China Life Sci", "key": "387_CR27", "unstructured": "Bai C, Zhong Q, Gao GF. Overview of SARS-CoV-2 genome-encoded proteins. Sci China Life Sci. 2022;65(2):280–94. https://doi.org/10.1007/s11427-021-1964-4.", "volume": "65", "year": "2022" }, { "DOI": "10.1038/s41586-022-04835-6", "author": "S Ricciardi", "doi-asserted-by": "publisher", "first-page": "761", "issue": "7915", "journal-title": "Nature", "key": "387_CR28", "unstructured": "Ricciardi S, Guarino AM, Giaquinto L, Polishchuk EV, Santoro M, Di Tullio G, et al. The role of NSP6 in the biogenesis of the SARS-CoV-2 replication organelle. Nature. 2022;606(7915):761–8. https://doi.org/10.1038/s41586-022-04835-6.", "volume": "606", "year": "2022" }, { "DOI": "10.1016/j.virol.2022.06.008", "author": "A Abdelkader", "doi-asserted-by": "publisher", "first-page": "96", "journal-title": "Virology", "key": "387_CR29", "unstructured": "Abdelkader A, Elzemrany AA, El-Nadi M, Elsabbagh SA, Shehata MA, Eldehna WM, et al. In-silico targeting of SARS-CoV-2 NSP6 for drug and natural products repurposing. Virology. 2022;573:96–110. https://doi.org/10.1016/j.virol.2022.06.008.", "volume": "573", "year": "2022" }, { "DOI": "10.1089/cmb.2020.0627", "author": "S Thomas", "doi-asserted-by": "publisher", "first-page": "909", "issue": "9", "journal-title": "J Comput Biol", "key": "387_CR30", "unstructured": "Thomas S. Mapping the nonstructural transmembrane proteins of Severe Acute Respiratory Syndrome Coronavirus 2. J Comput Biol. 2021;28(9):909–21. https://doi.org/10.1089/cmb.2020.0627.", "volume": "28", "year": "2021" }, { "DOI": "10.1016/j.jinf.2020.03.058", "author": "D Benvenuto", "doi-asserted-by": "publisher", "first-page": "e24", "issue": "1", "journal-title": "J Infect", "key": "387_CR31", "unstructured": "Benvenuto D, Angeletti S, Giovanetti M, Bianchi M, Pascarella S, Cauda R, et al. Evolutionary analysis of SARS-CoV-2: how mutation of non-structural protein 6 (NSP6) could affect viral autophagy. J Infect. 2020;81(1):e24–7. https://doi.org/10.1016/j.jinf.2020.03.058.", "volume": "81", "year": "2020" }, { "DOI": "10.1007/s10930-020-09901-4", "author": "FK Yoshimoto", "doi-asserted-by": "publisher", "first-page": "198", "issue": "3", "journal-title": "Protein J", "key": "387_CR32", "unstructured": "Yoshimoto FK. The proteins of severe acute respiratory syndrome coronavirus-2 (SARS CoV-2 or n-COV19), the cause of COVID-19. Protein J. 2020;39(3):198–216. https://doi.org/10.1007/s10930-020-09901-4.", "volume": "39", "year": "2020" }, { "DOI": "10.1099/jgv.0.001584", "doi-asserted-by": "publisher", "key": "387_CR33", "unstructured": "Peacock TP, Penrice-Randal R, Hiscox JA, Barclay WS. SARS-CoV-2 One Year on: Evidence for Ongoing Viral Adaptation. J Gen Virol. 2021;102(4). https://doi.org/10.1099/jgv.0.001584." }, { "DOI": "10.1038/s41586-023-05697-2", "author": "D-Y Chen", "doi-asserted-by": "publisher", "first-page": "143", "issue": "7950", "journal-title": "Nature", "key": "387_CR34", "unstructured": "Chen D-Y, Chin CV, Kenney D, Tavares AH, Khan N, Conway HL, et al. Spike and Nsp6 are key determinants of SARS-CoV-2 Omicron BA.1 attenuation. Nature. 2023;615(7950):143–50. https://doi.org/10.1038/s41586-023-05697-2.", "volume": "615", "year": "2023" }, { "DOI": "10.1080/22221751.2023.2209208", "author": "CJ Bills", "doi-asserted-by": "publisher", "first-page": "2209208", "issue": "1", "journal-title": "Emerg Microbes Infect", "key": "387_CR35", "unstructured": "Bills CJ, Xia H, Chen JY-C, Yeung J, Kalveram BK, Walker D, et al. Mutations in SARS-CoV-2 variant Nsp6 enhance type-I interferon antagonism. Emerg Microbes Infect. 2023;12(1):2209208. https://doi.org/10.1080/22221751.2023.2209208.", "volume": "12", "year": "2023" }, { "DOI": "10.1080/15548627.2021.2021496", "author": "X Sun", "doi-asserted-by": "publisher", "first-page": "2246", "issue": "9", "journal-title": "Autophagy", "key": "387_CR36", "unstructured": "Sun X, Yu J, Wong SH, Chan MTV, Zhang L, Wu WKK. SARS-CoV-2 targets the lysosome to mediate airway inflammatory cell death. Autophagy. 2022;18(9):2246–8. https://doi.org/10.1080/15548627.2021.2021496.", "volume": "18", "year": "2022" }, { "DOI": "10.1016/j.cell.2020.10.039", "doi-asserted-by": "publisher", "key": "387_CR37", "unstructured": "Ghosh S, Dellibovi-Ragheb TA, Kerviel A, Pak E, Qiu Q, Fisher M, et al. β-Coronaviruses Use Lysosomes for Egress Instead of the Biosynthetic Secretory Pathway. Cell. 2020;183(6):1520-35.e14. https://doi.org/10.1016/j.cell.2020.10.039." }, { "DOI": "10.1186/s13287-023-03485-3", "author": "J Liu", "doi-asserted-by": "publisher", "first-page": "249", "issue": "1", "journal-title": "Stem Cell Res Ther", "key": "387_CR38", "unstructured": "Liu J, Wu S, Zhang Y, Wang C, Liu S, Wan J, et al. SARS-CoV-2 viral genes Nsp6, Nsp8, and M compromise cellular ATP levels to impair survival and function of human pluripotent stem cell-derived cardiomyocytes. Stem Cell Res Ther. 2023;14(1):249. https://doi.org/10.1186/s13287-023-03485-3.", "volume": "14", "year": "2023" }, { "DOI": "10.1038/s42003-022-03986-6", "author": "J Zhu", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Commun Biol", "key": "387_CR39", "unstructured": "Zhu J, Wang G, Huang X, Lee H, Lee J-G, Yang P, et al. SARS-CoV-2 Nsp6 damages Drosophila heart and mouse cardiomyocytes through MGA/MAX complex-mediated increased glycolysis. Commun Biol. 2022;5(1):1039. https://doi.org/10.1038/s42003-022-03986-6.", "volume": "5", "year": "2022" }, { "DOI": "10.3390/cells13020123", "author": "E Gavilán", "doi-asserted-by": "publisher", "first-page": "123", "issue": "2", "journal-title": "Cells", "key": "387_CR40", "unstructured": "Gavilán E, Medina-Guzman R, Bahatyrevich-Kharitonik B, Ruano D. Protein quality control systems and ER stress as key players in SARS-CoV-2-induced neurodegeneration. Cells. 2024;13(2):123. https://doi.org/10.3390/cells13020123.", "volume": "13", "year": "2024" }, { "DOI": "10.1093/nar/gkv1115", "author": "M Kotlyar", "doi-asserted-by": "publisher", "first-page": "D536", "issue": "D1", "journal-title": "Nucleic Acids Res", "key": "387_CR41", "unstructured": "Kotlyar M, Pastrello C, Sheahan N, Jurisica I. Integrated interactions database: tissue-specific view of the human and model organism interactomes. Nucleic Acids Res. 2016;44(D1):D536-541. https://doi.org/10.1093/nar/gkv1115.", "volume": "44", "year": "2016" }, { "DOI": "10.1016/j.stem.2020.09.016", "doi-asserted-by": "publisher", "key": "387_CR42", "unstructured": "Jacob F, Pather SR, Huang W-K, Zhang F, Wong SZH, Zhou H, et al. Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium. Cell Stem Cell. 2020;27(6):937–50.e9. https://doi.org/10.1016/j.stem.2020.09.016." }, { "DOI": "10.1038/s41586-021-03570-8", "author": "TM Delorey", "doi-asserted-by": "publisher", "first-page": "107", "issue": "7865", "journal-title": "Nature", "key": "387_CR43", "unstructured": "Delorey TM, Ziegler CGK, Heimberg G, Normand R, Yang Y, Segerstolpe Å, et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature. 2021;595(7865):107–13. https://doi.org/10.1038/s41586-021-03570-8.", "volume": "595", "year": "2021" }, { "DOI": "10.3390/genes11070760", "author": "R Vishnubalaji", "doi-asserted-by": "publisher", "first-page": "760", "issue": "7", "journal-title": "Genes", "key": "387_CR44", "unstructured": "Vishnubalaji R, Shaath H, Alajez NM. Protein coding and long noncoding RNA (lncrna) transcriptional landscape in SARS-CoV-2 infected bronchial epithelial cells highlight a role for interferon and inflammatory response. Genes. 2020;11(7):760. https://doi.org/10.3390/genes11070760.", "volume": "11", "year": "2020" }, { "DOI": "10.1101/2020.03.02.972935", "doi-asserted-by": "publisher", "key": "387_CR45", "unstructured": "Harcourt J, Tamin A, Lu X, Kamili S, Sakthivel S, Kumar Murray J, et al. Isolation and Characterization of SARS-CoV-2 from the First US COVID-19 Patient. bioRxiv. 2020, 2020.03.02.972935. https://doi.org/10.1101/2020.03.02.972935." }, { "DOI": "10.1056/NEJMoa2001191", "author": "ML Holshue", "doi-asserted-by": "publisher", "first-page": "929", "issue": "10", "journal-title": "N Engl J Med", "key": "387_CR46", "unstructured": "Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, et al. First case of 2019 novel coronavirus in the United States. N Engl J Med. 2020;382(10):929–36. https://doi.org/10.1056/NEJMoa2001191.", "volume": "382", "year": "2020" }, { "DOI": "10.1016/j.cell.2020.04.026", "author": "D Blanco-Melo", "doi-asserted-by": "publisher", "first-page": "1036", "issue": "5", "journal-title": "Cell", "key": "387_CR47", "unstructured": "Blanco-Melo D, Nilsson-Payant BE, Liu W-C, Uhl S, Hoagland D, Møller R, et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell. 2020;181(5):1036-1045.e9. https://doi.org/10.1016/j.cell.2020.04.026.", "volume": "181", "year": "2020" }, { "DOI": "10.1186/1471-2105-15-293", "author": "P Bardou", "doi-asserted-by": "publisher", "first-page": "293", "issue": "1", "journal-title": "BMC Bioinformatics", "key": "387_CR48", "unstructured": "Bardou P, Mariette J, Escudié F, Djemiel C, Klopp C. Jvenn: an interactive venn diagram viewer. BMC Bioinformatics. 2014;15(1):293. https://doi.org/10.1186/1471-2105-15-293.", "volume": "15", "year": "2014" }, { "DOI": "10.1093/nar/gkac1000", "author": "D Szklarczyk", "doi-asserted-by": "publisher", "first-page": "D638", "issue": "D1", "journal-title": "Nucleic Acids Res", "key": "387_CR49", "unstructured": "Szklarczyk D, Kirsch R, Koutrouli M, Nastou K, Mehryary F, Hachilif R, et al. The STRING database in 2023: protein-protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Res. 2023;51(D1):D638–46. https://doi.org/10.1093/nar/gkac1000.", "volume": "51", "year": "2023" }, { "DOI": "10.1101/gr.1239303", "author": "P Shannon", "doi-asserted-by": "publisher", "first-page": "2498", "issue": "11", "journal-title": "Genome Res", "key": "387_CR50", "unstructured": "Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. https://doi.org/10.1101/gr.1239303.", "volume": "13", "year": "2003" }, { "DOI": "10.1186/1752-0509-8-S4-S11", "author": "C-H Chin", "doi-asserted-by": "publisher", "first-page": "S11", "issue": "S4", "journal-title": "BMC Syst Biol", "key": "387_CR51", "unstructured": "Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y. cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol. 2014;8(S4):S11. https://doi.org/10.1186/1752-0509-8-S4-S11.", "volume": "8", "year": "2014" }, { "DOI": "10.1093/bioinformatics/btp101", "author": "G Bindea", "doi-asserted-by": "publisher", "first-page": "1091", "issue": "8", "journal-title": "Bioinformatics", "key": "387_CR52", "unstructured": "Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–3. https://doi.org/10.1093/bioinformatics/btp101.", "volume": "25", "year": "2009" }, { "DOI": "10.1093/nar/gkaa1084", "author": "SL Freshour", "doi-asserted-by": "publisher", "first-page": "D1144", "issue": "D1", "journal-title": "Nucleic Acids Res", "key": "387_CR53", "unstructured": "Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al. Integration of the drug-gene interaction database (DGIdb 4.0) with open crowdsource efforts. Nucleic Acids Res. 2021;49(D1):D1144–51. https://doi.org/10.1093/nar/gkaa1084.", "volume": "49", "year": "2021" }, { "DOI": "10.1093/nar/gkad1040", "doi-asserted-by": "publisher", "key": "387_CR54", "unstructured": "Cannon M, Stevenson J, Stahl K, Basu R, Coffman A, Kiwala S, et al. Rebuilding the Drug–Gene Interaction Database for Precision Medicine and Drug Discovery Platforms. Nucleic Acids Res. 2023:gkad1040. https://doi.org/10.1093/nar/gkad1040." }, { "DOI": "10.1089/omi.2011.0118", "author": "G Yu", "doi-asserted-by": "publisher", "first-page": "284", "issue": "5", "journal-title": "OMICS", "key": "387_CR55", "unstructured": "Yu G, Wang L-G, Han Y, He Q-Y. Clusterprofiler: an R package for comparing biological themes among gene clusters. OMICS. 2012;16(5):284–7. https://doi.org/10.1089/omi.2011.0118.", "volume": "16", "year": "2012" }, { "DOI": "10.1002/wics.147", "author": "H Wickham", "doi-asserted-by": "publisher", "first-page": "180", "issue": "2", "journal-title": "WIREs Computational Stats", "key": "387_CR56", "unstructured": "Wickham H. Ggplot2. WIREs Computational Stats. 2011;3(2):180–5. https://doi.org/10.1002/wics.147.", "volume": "3", "year": "2011" }, { "DOI": "10.1093/nar/gkaa467", "author": "L Chang", "doi-asserted-by": "publisher", "first-page": "W244", "issue": "W1", "journal-title": "Nucleic Acids Res", "key": "387_CR57", "unstructured": "Chang L, Zhou G, Soufan O, Xia J. MiRnet 2.0: network-based visual analytics for miRNA functional analysis and systems biology. Nucleic Acids Res. 2020;48(W1):W244–51. https://doi.org/10.1093/nar/gkaa467.", "volume": "48", "year": "2020" }, { "DOI": "10.3389/fimmu.2022.968991", "author": "A Giannella", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "387_CR58", "unstructured": "Giannella A, Riccetti S, Sinigaglia A, Piubelli C, Razzaboni E, Di Battista P, et al. Circulating microrna signatures associated with disease severity and outcome in COVID-19 patients. Front Immunol. 2022. https://doi.org/10.3389/fimmu.2022.968991.", "year": "2022" }, { "DOI": "10.1371/journal.ppat.1009759", "author": "RJ Farr", "doi-asserted-by": "publisher", "issue": "7", "journal-title": "PLoS Pathog", "key": "387_CR59", "unstructured": "Farr RJ, Rootes CL, Rowntree LC, Nguyen THO, Hensen L, Kedzierski L, et al. Altered microrna expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021;17(7):e1009759. https://doi.org/10.1371/journal.ppat.1009759.", "volume": "17", "year": "2021" }, { "DOI": "10.7150/thno.78164", "author": "Y Liang", "doi-asserted-by": "publisher", "first-page": "125", "issue": "1", "journal-title": "Theranostics", "key": "387_CR60", "unstructured": "Liang Y, Fang D, Gao X, Deng X, Chen N, Wu J, et al. Circulating micrornas as emerging regulators of COVID-19. Theranostics. 2023;13(1):125–47. https://doi.org/10.7150/thno.78164.", "volume": "13", "year": "2023" }, { "DOI": "10.4161/auto.7.11.16642", "author": "EM Cottam", "doi-asserted-by": "publisher", "first-page": "1335", "issue": "11", "journal-title": "Autophagy", "key": "387_CR61", "unstructured": "Cottam EM, Maier HJ, Manifava M, Vaux LC, Chandra-Schoenfelder P, Gerner W, et al. Coronavirus Nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate. Autophagy. 2011;7(11):1335–47. https://doi.org/10.4161/auto.7.11.16642.", "volume": "7", "year": "2011" }, { "DOI": "10.1038/s41418-021-00916-7", "author": "X Sun", "doi-asserted-by": "publisher", "first-page": "1240", "issue": "6", "journal-title": "Cell Death Differ", "key": "387_CR62", "unstructured": "Sun X, Liu Y, Huang Z, Xu W, Hu W, Yi L, et al. SARS-CoV-2 non-structural protein 6 triggers NLRP3-dependent pyroptosis by targeting ATP6AP1. Cell Death Differ. 2022;29(6):1240–54. https://doi.org/10.1038/s41418-021-00916-7.", "volume": "29", "year": "2022" }, { "DOI": "10.1073/pnas.2106950118", "author": "JF Hevler", "doi-asserted-by": "publisher", "issue": "39", "journal-title": "Proc Natl Acad Sci U S A", "key": "387_CR63", "unstructured": "Hevler JF, Zenezeni Chiozzi R, Cabrera-Orefice A, Brandt U, Arnold S, Heck AJR. Molecular characterization of a complex of apoptosis-inducing factor 1 with cytochrome c oxidase of the mitochondrial respiratory chain. Proc Natl Acad Sci U S A. 2021;118(39):e2106950118. https://doi.org/10.1073/pnas.2106950118.", "volume": "118", "year": "2021" }, { "DOI": "10.1016/j.ebiom.2022.104211", "author": "G Lucchese", "doi-asserted-by": "publisher", "journal-title": "EBioMedicine", "key": "387_CR64", "unstructured": "Lucchese G, Vogelgesang A, Boesl F, Raafat D, Holtfreter S, Bröker BM, et al. Anti-neuronal antibodies against brainstem antigens are associated with COVID-19. EBioMedicine. 2022;83:104211. https://doi.org/10.1016/j.ebiom.2022.104211.", "volume": "83", "year": "2022" }, { "DOI": "10.1038/s41420-022-01158-3", "author": "Y Hou", "doi-asserted-by": "publisher", "first-page": "1", "issue": "1", "journal-title": "Cell Death Discov", "key": "387_CR65", "unstructured": "Hou Y, Wang T, Ding Y, Yu T, Cui Y, Nie H. Expression profiles of respiratory V-ATPase and calprotectin in SARS-CoV-2 infection. Cell Death Discov. 2022;8(1):1–7. https://doi.org/10.1038/s41420-022-01158-3.", "volume": "8", "year": "2022" }, { "DOI": "10.1016/j.tice.2022.101906", "author": "X Li", "doi-asserted-by": "publisher", "journal-title": "Tissue Cell", "key": "387_CR66", "unstructured": "Li X, Xiao S, Li F, Fang K, Wen J, Gong H. Max interacting protein 1 induces IL-17-producing T helper/regulatory T imbalance in osteoarthritis by upregulating tectonic family member 2. Tissue Cell. 2022;78:101906. https://doi.org/10.1016/j.tice.2022.101906.", "volume": "78", "year": "2022" }, { "DOI": "10.1016/j.cell.2008.12.002", "author": "T Kawase", "doi-asserted-by": "publisher", "first-page": "535", "issue": "3", "journal-title": "Cell", "key": "387_CR67", "unstructured": "Kawase T, Ohki R, Shibata T, Tsutsumi S, Kamimura N, Inazawa J, et al. PH domain-only protein PHLDA3 is a P53-regulated repressor of Akt. Cell. 2009;136(3):535–50. https://doi.org/10.1016/j.cell.2008.12.002.", "volume": "136", "year": "2009" }, { "DOI": "10.1128/mbio.00971-22", "doi-asserted-by": "publisher", "key": "387_CR68", "unstructured": "Nishitsuji H, Iwahori S, Ohmori M, Shimotohno K, Murata T. Ubiquitination of SARS-CoV-2 NSP6 and ORF7a Facilitates NF-κB Activation. mBio. 2022;13(4):e00971–22. https://doi.org/10.1128/mbio.00971-22." }, { "DOI": "10.1016/j.ejphar.2019.172811", "author": "S He", "doi-asserted-by": "publisher", "journal-title": "Eur J Pharmacol", "key": "387_CR69", "unstructured": "He S, Chen M, Lin X, Lv Z, Liang R, Huang L. Triptolide inhibits PDGF-induced proliferation of ASMCs through G0/G1 cell cycle arrest and suppression of the AKT/NF-κB/cyclinD1 signaling pathway. Eur J Pharmacol. 2020;867:172811. https://doi.org/10.1016/j.ejphar.2019.172811.", "volume": "867", "year": "2020" }, { "DOI": "10.1080/21655979.2022.2043099", "author": "X Wang", "doi-asserted-by": "publisher", "first-page": "6866", "issue": "3", "journal-title": "Bioengineered", "key": "387_CR70", "unstructured": "Wang X, Liu X, Yang Y, Yang D. Cyclin D1 mediated by the nuclear translocation of nuclear factor kappa B exerts an oncogenic role in lung cancer. Bioengineered. 2022;13(3):6866–79. https://doi.org/10.1080/21655979.2022.2043099.", "volume": "13", "year": "2022" }, { "DOI": "10.1186/s12890-024-02921-1", "author": "H Luo", "doi-asserted-by": "publisher", "first-page": "112", "issue": "1", "journal-title": "BMC Pulm Med", "key": "387_CR71", "unstructured": "Luo H, Yan J, Gong R, Zhang D, Zhou X, Wang X. Identification of biomarkers and pathways for the SARS-CoV-2 infections in obstructive sleep apnea patients based on machine learning and proteomic analysis. BMC Pulm Med. 2024;24(1):112. https://doi.org/10.1186/s12890-024-02921-1.", "volume": "24", "year": "2024" }, { "DOI": "10.1016/j.humimm.2024.110801", "author": "M Tahoun", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Hum Immunol", "key": "387_CR72", "unstructured": "Tahoun M, Sadaka AS. Deregulated expression of autophagy genes; PIK3C3 and RAB7A in COVID-19 patients. Hum Immunol. 2024;85(3):110801. https://doi.org/10.1016/j.humimm.2024.110801.", "volume": "85", "year": "2024" }, { "DOI": "10.1016/j.cell.2020.10.030", "author": "Z Daniloski", "doi-asserted-by": "publisher", "first-page": "92", "issue": "1", "journal-title": "Cell", "key": "387_CR73", "unstructured": "Daniloski Z, Jordan TX, Wessels H-H, Hoagland DA, Kasela S, Legut M, et al. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell. 2021;184(1):92-105.e16. https://doi.org/10.1016/j.cell.2020.10.030.", "volume": "184", "year": "2021" }, { "DOI": "10.7150/ijbs.78864", "author": "L Beltrán-Camacho", "doi-asserted-by": "publisher", "first-page": "1664", "issue": "6", "journal-title": "Int J Biol Sci", "key": "387_CR74", "unstructured": "Beltrán-Camacho L, Bhosale SD, Sánchez-Morillo D, Sánchez-Gomar I, Rojas-Torres M, Eslava-Alcón S, et al. Cardiovascular-related proteomic changes in ECFCs exposed to the serum of COVID-19 patients. Int J Biol Sci. 2023;19(6):1664–80. https://doi.org/10.7150/ijbs.78864.", "volume": "19", "year": "2023" }, { "DOI": "10.1038/s41591-023-02521-2", "author": "B Bowe", "doi-asserted-by": "publisher", "first-page": "2347", "issue": "9", "journal-title": "Nat Med", "key": "387_CR75", "unstructured": "Bowe B, Xie Y, Al-Aly Z. Postacute sequelae of COVID-19 at 2 years. Nat Med. 2023;29(9):2347–57. https://doi.org/10.1038/s41591-023-02521-2.", "volume": "29", "year": "2023" }, { "DOI": "10.3389/fimmu.2021.740260", "author": "J Mustroph", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "387_CR76", "unstructured": "Mustroph J, Hupf J, Baier MJ, Evert K, Brochhausen C, Broeker K, et al. Cardiac fibrosis is a risk factor for severe COVID-19. Front Immunol. 2021;12:740260. https://doi.org/10.3389/fimmu.2021.740260.", "volume": "12", "year": "2021" }, { "DOI": "10.1016/j.antiviral.2023.105558", "author": "Y Xiao", "doi-asserted-by": "publisher", "journal-title": "Antivir Res", "key": "387_CR77", "unstructured": "Xiao Y, Yan Y, Chang L, Ji H, Sun H, Song S, et al. CDK4/6 inhibitor palbociclib promotes SARS-CoV-2 cell entry by down-regulating SKP2 dependent ACE2 degradation. Antivir Res. 2023;212:105558. https://doi.org/10.1016/j.antiviral.2023.105558.", "volume": "212", "year": "2023" }, { "DOI": "10.3390/ijerph20053832", "author": "J-W Kim", "doi-asserted-by": "publisher", "first-page": "3832", "issue": "5", "journal-title": "IJERPH", "key": "387_CR78", "unstructured": "Kim J-W, Yoon S, Lee J, Lee S. Serious clinical outcomes of COVID-19 related to acetaminophen or NSAIDs from a nationwide population-based cohort study. IJERPH. 2023;20(5):3832. https://doi.org/10.3390/ijerph20053832.", "volume": "20", "year": "2023" }, { "DOI": "10.1080/07391102.2021.1905551", "author": "QM Sajid Jamal", "doi-asserted-by": "publisher", "first-page": "7960", "issue": "17", "journal-title": "J Biomol Struct Dyn", "key": "387_CR79", "unstructured": "Sajid Jamal QM, Alharbi AH, Ahmad V. Identification of doxorubicin as a potential therapeutic against SARS-CoV-2 (COVID-19) protease: a molecular docking and dynamics simulation studies. J Biomol Struct Dyn. 2022;40(17):7960–74. https://doi.org/10.1080/07391102.2021.1905551.", "volume": "40", "year": "2022" }, { "DOI": "10.1186/s13075-021-02464-4", "author": "F Schälter", "doi-asserted-by": "publisher", "first-page": "166", "issue": "1", "journal-title": "Arthritis Res Ther", "key": "387_CR80", "unstructured": "Schälter F, Dürholz K, Bucci L, Burmester G, Caporali R, Figuereido C, et al. Does methotrexate influence COVID-19 infection? Case series and mechanistic data. Arthritis Res Ther. 2021;23(1):166. https://doi.org/10.1186/s13075-021-02464-4.", "volume": "23", "year": "2021" }, { "DOI": "10.1016/j.jri.2021.103271", "author": "MS Bezerra Espinola", "doi-asserted-by": "publisher", "journal-title": "J Reprod Immunol", "key": "387_CR81", "unstructured": "Bezerra Espinola MS, Bertelli M, Bizzarri M, Unfer V, Laganà AS, Visconti B, et al. Inositol and vitamin D may naturally protect human reproduction and women undergoing assisted reproduction from Covid-19 risk. J Reprod Immunol. 2021;144:103271. https://doi.org/10.1016/j.jri.2021.103271.", "volume": "144", "year": "2021" }, { "DOI": "10.26355/eurrev_202003_20715", "doi-asserted-by": "publisher", "key": "387_CR82", "unstructured": "Bizzarri M, Laganà AS, Aragona D, Unfer V. Inositol and Pulmonary Function. Could Myo-Inositol Treatment Downregulate Inflammation and Cytokine Release Syndrome in SARS-CoV-2? Eur Rev Med Pharmacol Sci. 2020;24(6):3426–32. https://doi.org/10.26355/eurrev_202003_20715." }, { "DOI": "10.3389/fimmu.2020.01061", "author": "Q Zhou", "doi-asserted-by": "publisher", "journal-title": "Front Immunol", "key": "387_CR83", "unstructured": "Zhou Q, Chen V, Shannon CP, Wei X-S, Xiang X, Wang X, et al. Interferon-Α2b treatment for COVID-19. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.01061.", "year": "2020" }, { "DOI": "10.1038/s41392-021-00853-4", "author": "S Zu", "doi-asserted-by": "publisher", "first-page": "435", "issue": "1", "journal-title": "Sig Transduct Target Ther", "key": "387_CR84", "unstructured": "Zu S, Luo D, Li L, Ye Q, Li R-T, Wang Y, et al. Tamoxifen and clomiphene inhibit SARS-CoV-2 infection by suppressing viral entry. Sig Transduct Target Ther. 2021;6(1):435. https://doi.org/10.1038/s41392-021-00853-4.", "volume": "6", "year": "2021" }, { "DOI": "10.1016/j.lfs.2020.117583", "author": "R Zhang", "doi-asserted-by": "publisher", "journal-title": "Life Sci", "key": "387_CR85", "unstructured": "Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583. https://doi.org/10.1016/j.lfs.2020.117583.", "volume": "250", "year": "2020" }, { "DOI": "10.1007/s10787-022-01096-7", "author": "A Ameri", "doi-asserted-by": "publisher", "first-page": "265", "issue": "1", "journal-title": "Inflammopharmacol", "key": "387_CR86", "unstructured": "Ameri A, Frouz Asadi M, Ziaei A, Vatankhah M, Safa O, Kamali M, et al. Efficacy and safety of oral melatonin in patients with severe COVID-19: a randomized controlled trial. Inflammopharmacol. 2023;31(1):265–74. https://doi.org/10.1007/s10787-022-01096-7.", "volume": "31", "year": "2023" }, { "DOI": "10.3390/healthcare10122387", "author": "MS Boshra", "doi-asserted-by": "publisher", "first-page": "2387", "issue": "12", "journal-title": "Healthcare", "key": "387_CR87", "unstructured": "Boshra MS, Abou Warda AE, Sayed MA, Elkomy MH, Alotaibi NH, Mohsen M, et al. Effect of pirfenidone on risk of pulmonary fibrosis in COVID-19 patients experiencing cytokine storm. Healthcare. 2022;10(12):2387. https://doi.org/10.3390/healthcare10122387.", "volume": "10", "year": "2022" }, { "DOI": "10.1016/j.mehy.2020.110005", "author": "S Seifirad", "doi-asserted-by": "publisher", "journal-title": "Med Hypotheses", "key": "387_CR88", "unstructured": "Seifirad S. Pirfenidone: a novel hypothetical treatment for COVID-19. Med Hypotheses. 2020;144:110005. https://doi.org/10.1016/j.mehy.2020.110005.", "volume": "144", "year": "2020" }, { "DOI": "10.1097/CM9.0000000000001614", "author": "F Zhang", "doi-asserted-by": "publisher", "first-page": "368", "issue": "3", "journal-title": "Chin Med J", "key": "387_CR89", "unstructured": "Zhang F, Wei Y, He L, Zhang H, Hu Q, Yue H, et al. A trial of pirfenidone in hospitalized adult patients with severe coronavirus disease 2019. Chin Med J. 2022;135(3):368–70. https://doi.org/10.1097/CM9.0000000000001614.", "volume": "135", "year": "2022" }, { "DOI": "10.1053/j.gastro.2019.11.296", "author": "N Chalasani", "doi-asserted-by": "publisher", "first-page": "1334", "issue": "5", "journal-title": "Gastroenterology", "key": "387_CR90", "unstructured": "Chalasani N, Abdelmalek MF, Garcia-Tsao G, Vuppalanchi R, Alkhouri N, Rinella M, et al. Effects of belapectin, an inhibitor of galectin-3, in patients with nonalcoholic steatohepatitis with cirrhosis and portal hypertension. Gastroenterology. 2020;158(5):1334-1345.e5. https://doi.org/10.1053/j.gastro.2019.11.296.", "volume": "158", "year": "2020" }, { "DOI": "10.1152/ajplung.00457.2020", "author": "A Centa", "doi-asserted-by": "publisher", "first-page": "L405", "issue": "3", "journal-title": "American Journal of Physiology-Lung Cellular and Molecular Physiology", "key": "387_CR91", "unstructured": "Centa A, Fonseca AS, Da Silva Ferreira SG, Azevedo MLV, De Paula CBV, Nagashima S, et al. Deregulated miRNA expression is associated with endothelial dysfunction in post-mortem lung biopsies of COVID-19 patients. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2021;320(3):L405–12. https://doi.org/10.1152/ajplung.00457.2020.", "volume": "320", "year": "2021" }, { "DOI": "10.1016/j.molcel.2007.07.015", "author": "EV Makeyev", "doi-asserted-by": "publisher", "first-page": "435", "issue": "3", "journal-title": "Mol Cell", "key": "387_CR92", "unstructured": "Makeyev EV, Zhang J, Carrasco MA, Maniatis T. The microrna miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell. 2007;27(3):435–48. https://doi.org/10.1016/j.molcel.2007.07.015.", "volume": "27", "year": "2007" }, { "DOI": "10.1177/1073858417721150", "author": "AD Gaudet", "doi-asserted-by": "publisher", "first-page": "221", "issue": "3", "journal-title": "Neuroscientist", "key": "387_CR93", "unstructured": "Gaudet AD, Fonken LK, Watkins LR, Nelson RJ, Popovich PG. Micrornas: roles in regulating neuroinflammation. Neuroscientist. 2018;24(3):221–45. https://doi.org/10.1177/1073858417721150.", "volume": "24", "year": "2018" }, { "DOI": "10.1016/j.nrleng.2023.05.002", "author": "R Keikha", "doi-asserted-by": "publisher", "first-page": "e41", "issue": "6", "journal-title": "Neurología (English Edition)", "key": "387_CR94", "unstructured": "Keikha R, Hashemi-Shahri SM, Jebali A. The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness. Neurología (English Edition). 2023;38(6):e41–51. https://doi.org/10.1016/j.nrleng.2023.05.002.", "volume": "38", "year": "2023" }, { "DOI": "10.4049/jimmunol.1000491", "author": "P Wang", "doi-asserted-by": "publisher", "first-page": "6226", "issue": "10", "journal-title": "J Immunol", "key": "387_CR95", "unstructured": "Wang P, Hou J, Lin L, Wang C, Liu X, Li D, et al. Inducible microrna-155 feedback promotes type i IFN signaling in antiviral innate immunity by targeting suppressor of cytokine signaling 1. J Immunol. 2010;185(10):6226–33. https://doi.org/10.4049/jimmunol.1000491.", "volume": "185", "year": "2010" }, { "DOI": "10.1111/j.1365-2567.2011.03514.x", "doi-asserted-by": "publisher", "key": "387_CR96", "unstructured": "Cardoso AL, Guedes JR, Pereira De Almeida L, Pedroso De Lima MC. miR‐155 Modulates Microglia‐mediated Immune Response by Down‐regulating SOCS‐1 and Promoting Cytokine and Nitric Oxide Production. Immunol. 2012;135(1):73–88. https://doi.org/10.1111/j.1365-2567.2011.03514.x." }, { "DOI": "10.1186/1742-2094-11-97", "author": "S Pareek", "doi-asserted-by": "publisher", "first-page": "97", "issue": "1", "journal-title": "J Neuroinflammation", "key": "387_CR97", "unstructured": "Pareek S, Roy S, Kumari B, Jain P, Banerjee A, Vrati S. Mir-155 induction in microglial cells suppresses Japanese encephalitis virus replication and negatively modulates innate immune responses. J Neuroinflammation. 2014;11(1):97. https://doi.org/10.1186/1742-2094-11-97.", "volume": "11", "year": "2014" }, { "DOI": "10.1161/CIRCHEARTFAILURE.116.003804", "author": "C Besler", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Circ: Heart Failure", "key": "387_CR98", "unstructured": "Besler C, Lang D, Urban D, Rommel K-P, Von Roeder M, Fengler K, et al. Plasma and cardiac galectin-3 in patients with heart failure reflects both inflammation and fibrosis: implications for its use as a biomarker. Circ: Heart Failure. 2017;10(3):e003804. https://doi.org/10.1161/CIRCHEARTFAILURE.116.003804.", "volume": "10", "year": "2017" }, { "DOI": "10.7759/cureus.28805", "author": "E Karsli", "doi-asserted-by": "publisher", "journal-title": "Cureus", "key": "387_CR99", "unstructured": "Karsli E, Anabarli Metin D, Canacik O, Sabirli R, Kaymaz B, Kurt O, et al. Galectin-3 as a potential prognostic biomarker for COVID-19 disease: a case-control study. Cureus. 2022. https://doi.org/10.7759/cureus.28805.", "year": "2022" }, { "DOI": "10.3390/ijms242115833", "author": "I Nikitopoulou", "doi-asserted-by": "publisher", "first-page": "15833", "issue": "21", "journal-title": "IJMS", "key": "387_CR100", "unstructured": "Nikitopoulou I, Vassiliou AG, Athanasiou N, Jahaj E, Akinosoglou K, Dimopoulou I, et al. Increased levels of galectin-3 in critical COVID-19. IJMS. 2023;24(21):15833. https://doi.org/10.3390/ijms242115833.", "volume": "24", "year": "2023" }, { "DOI": "10.1016/j.cyto.2022.155970", "author": "S Özcan", "doi-asserted-by": "publisher", "journal-title": "Cytokine", "key": "387_CR101", "unstructured": "Özcan S, Dönmez E, Yavuz ST, Ziyrek M, İnce O, Küçük HS, et al. Prognostic significance of serum galectin-3 in hospitalized patients with COVID-19. Cytokine. 2022;158:155970. https://doi.org/10.1016/j.cyto.2022.155970.", "volume": "158", "year": "2022" }, { "DOI": "10.1038/nrc1527", "author": "F-T Liu", "doi-asserted-by": "publisher", "first-page": "29", "issue": "1", "journal-title": "Nat Rev Cancer", "key": "387_CR102", "unstructured": "Liu F-T, Rabinovich GA. Galectins as modulators of tumour progression. Nat Rev Cancer. 2005;5(1):29–41. https://doi.org/10.1038/nrc1527.", "volume": "5", "year": "2005" }, { "DOI": "10.1084/jem.20182041", "author": "MR Girotti", "doi-asserted-by": "publisher", "issue": "2", "journal-title": "J Exp Med", "key": "387_CR103", "unstructured": "Girotti MR, Salatino M, Dalotto-Moreno T, Rabinovich GA. Sweetening the hallmarks of cancer: galectins as multifunctional mediators of tumor progression. J Exp Med. 2020;217(2):e20182041. https://doi.org/10.1084/jem.20182041.", "volume": "217", "year": "2020" }, { "DOI": "10.1016/j.cell.2011.02.013", "author": "D Hanahan", "doi-asserted-by": "publisher", "first-page": "646", "issue": "5", "journal-title": "Cell", "key": "387_CR104", "unstructured": "Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.", "volume": "144", "year": "2011" }, { "DOI": "10.1074/jbc.M312697200", "author": "G Elad-Sfadia", "doi-asserted-by": "publisher", "first-page": "34922", "issue": "33", "journal-title": "J Biol Chem", "key": "387_CR105", "unstructured": "Elad-Sfadia G, Haklai R, Balan E, Kloog Y. Galectin-3 augments K-Ras activation and triggers a Ras signal that attenuates ERK but not phosphoinositide 3-kinase activity. J Biol Chem. 2004;279(33):34922–30. https://doi.org/10.1074/jbc.M312697200.", "volume": "279", "year": "2004" }, { "DOI": "10.1016/0014-5793(95)00310-6", "author": "J Raimond", "doi-asserted-by": "publisher", "first-page": "165", "issue": "1–2", "journal-title": "FEBS Lett", "key": "387_CR106", "unstructured": "Raimond J, Rouleux F, Monsigny M, Legrand A. The second intron of the human Galectin-3 gene has a strong promoter activity down-regulated by P53. FEBS Lett. 1995;363(1–2):165–9. https://doi.org/10.1016/0014-5793(95)00310-6.", "volume": "363", "year": "1995" }, { "DOI": "10.1371/journal.pone.0020665", "author": "L Lavra", "doi-asserted-by": "publisher", "issue": "6", "journal-title": "PLoS ONE", "key": "387_CR107", "unstructured": "Lavra L, Rinaldo C, Ulivieri A, Luciani E, Fidanza P, Giacomelli L, et al. The loss of the P53 activator HIPK2 is responsible for Galectin-3 overexpression in well differentiated thyroid carcinomas. PLoS ONE. 2011;6(6):e20665. https://doi.org/10.1371/journal.pone.0020665.", "volume": "6", "year": "2011" }, { "DOI": "10.2353/ajpath.2009.080816", "author": "Y Wang", "doi-asserted-by": "publisher", "first-page": "1515", "issue": "4", "journal-title": "Am J Pathol", "key": "387_CR108", "unstructured": "Wang Y, Nangia-Makker P, Tait L, Balan V, Hogan V, Pienta KJ, et al. Regulation of prostate cancer progression by Galectin-3. Am J Pathol. 2009;174(4):1515–23. https://doi.org/10.2353/ajpath.2009.080816.", "volume": "174", "year": "2009" }, { "DOI": "10.1016/j.immuni.2008.01.011", "author": "N Demotte", "doi-asserted-by": "publisher", "first-page": "414", "issue": "3", "journal-title": "Immunity", "key": "387_CR109", "unstructured": "Demotte N, Stroobant V, Courtoy PJ, Van Der Smissen P, Colau D, Luescher IF, et al. Restoring the association of the T cell receptor with CD8 reverses anergy in human tumor-infiltrating lymphocytes. Immunity. 2008;28(3):414–24. https://doi.org/10.1016/j.immuni.2008.01.011.", "volume": "28", "year": "2008" }, { "DOI": "10.1074/jbc.M114.603464", "author": "W Wang", "doi-asserted-by": "publisher", "first-page": "33311", "issue": "48", "journal-title": "J Biol Chem", "key": "387_CR110", "unstructured": "Wang W, Guo H, Geng J, Zheng X, Wei H, Sun R, et al. Tumor-released galectin-3, a soluble inhibitory ligand of human NKp30, plays an important role in tumor escape from NK cell attack. J Biol Chem. 2014;289(48):33311–9. https://doi.org/10.1074/jbc.M114.603464.", "volume": "289", "year": "2014" }, { "DOI": "10.18632/oncotarget.10986", "author": "S-H La", "doi-asserted-by": "publisher", "first-page": "57117", "issue": "35", "journal-title": "Oncotarget", "key": "387_CR111", "unstructured": "La S-H, Kim S-J, Kang H-G, Lee H-W, Chun K-H. Ablation of human telomerase reverse transcriptase (hTERT) induces cellular senescence in gastric cancer through a Galectin-3 dependent mechanism. Oncotarget. 2016;7(35):57117–30. https://doi.org/10.18632/oncotarget.10986.", "volume": "7", "year": "2016" }, { "DOI": "10.1158/1078-0432.CCR-12-2940", "author": "C Chen", "doi-asserted-by": "publisher", "first-page": "1693", "issue": "7", "journal-title": "Clin Cancer Res", "key": "387_CR112", "unstructured": "Chen C, Duckworth CA, Zhao Q, Pritchard DM, Rhodes JM, Yu L-G. Increased circulation of Galectin-3 in cancer induces secretion of metastasis-promoting cytokines from blood vascular endothelium. Clin Cancer Res. 2013;19(7):1693–704. https://doi.org/10.1158/1078-0432.CCR-12-2940.", "volume": "19", "year": "2013" }, { "DOI": "10.1158/1078-0432.CCR-11-1462", "author": "H Barrow", "doi-asserted-by": "publisher", "first-page": "7035", "issue": "22", "journal-title": "Clin Cancer Res", "key": "387_CR113", "unstructured": "Barrow H, Guo X, Wandall HH, Pedersen JW, Fu B, Zhao Q, et al. Serum galectin-2, -4, and -8 are greatly increased in colon and breast cancer patients and promote cancer cell adhesion to blood vascular endothelium. Clin Cancer Res. 2011;17(22):7035–46. https://doi.org/10.1158/1078-0432.CCR-11-1462.", "volume": "17", "year": "2011" }, { "key": "387_CR114", "unstructured": "Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S. Concentrations of Galectin-3 in the Sera of Normal Controls and Cancer Patients1. Clin Cancer Res. 2000;6(4):1389–93." }, { "DOI": "10.1097/CMR.0b013e32832ec001", "author": "P Vereecken", "doi-asserted-by": "publisher", "first-page": "316", "issue": "5", "journal-title": "Melanoma Res", "key": "387_CR115", "unstructured": "Vereecken P, Awada A, Suciu S, Castro G, Morandini R, Litynska A, et al. Evaluation of the prognostic significance of serum galectin-3 in American Joint Committee on Cancer stage III and stage IV melanoma patients. Melanoma Res. 2009;19(5):316–20. https://doi.org/10.1097/CMR.0b013e32832ec001.", "volume": "19", "year": "2009" }, { "DOI": "10.1007/s12307-008-0003-6", "author": "P Nangia-Makker", "doi-asserted-by": "publisher", "first-page": "43", "issue": "1", "journal-title": "Cancer Microenviron", "key": "387_CR116", "unstructured": "Nangia-Makker P, Balan V, Raz A. Regulation of tumor progression by extracellular galectin-3. Cancer Microenviron. 2008;1(1):43–51. https://doi.org/10.1007/s12307-008-0003-6.", "volume": "1", "year": "2008" }, { "author": "VV Glinsky", "first-page": "2584", "issue": "10", "journal-title": "Cancer Res", "key": "387_CR117", "unstructured": "Glinsky VV, Huflejt ME, Glinsky GV, Deutscher SL, Quinn TP. Effects of Thomsen-Friedenreich antigen-specific peptide P-30 on beta-galactoside-mediated homotypic aggregation and adhesion to the endothelium of MDA-MB-435 human breast carcinoma cells. Cancer Res. 2000;60(10):2584–8.", "volume": "60", "year": "2000" }, { "DOI": "10.1074/jbc.M606862200", "author": "L-G Yu", "doi-asserted-by": "publisher", "first-page": "773", "issue": "1", "journal-title": "J Biol Chem", "key": "387_CR118", "unstructured": "Yu L-G, Andrews N, Zhao Q, McKean D, Williams JF, Connor LJ, et al. Galectin-3 interaction with Thomsen-Friedenreich disaccharide on cancer-associated MUC1 causes increased cancer cell endothelial adhesion. J Biol Chem. 2007;282(1):773–81. https://doi.org/10.1074/jbc.M606862200.", "volume": "282", "year": "2007" }, { "DOI": "10.1158/2159-8290.CD-13-0287", "author": "N Murugaesu", "doi-asserted-by": "publisher", "first-page": "304", "issue": "3", "journal-title": "Cancer Discov", "key": "387_CR119", "unstructured": "Murugaesu N, Iravani M, Van Weverwijk A, Ivetic A, Johnson DA, Antonopoulos A, et al. An in vivo functional screen identifies ST6GalNAc2 sialyltransferase as a breast cancer metastasis suppressor. Cancer Discov. 2014;4(3):304–17. https://doi.org/10.1158/2159-8290.CD-13-0287.", "volume": "4", "year": "2014" }, { "DOI": "10.1084/jem.20090121", "author": "AI Markowska", "doi-asserted-by": "publisher", "first-page": "1981", "issue": "9", "journal-title": "J Exp Med", "key": "387_CR120", "unstructured": "Markowska AI, Liu F-T, Panjwani N. Galectin-3 is an important mediator of VEGF- and bFGF-mediated angiogenic response. J Exp Med. 2010;207(9):1981–93. https://doi.org/10.1084/jem.20090121.", "volume": "207", "year": "2010" }, { "DOI": "10.18632/oncotarget.17718", "author": "SN Dos Santos", "doi-asserted-by": "publisher", "first-page": "49484", "issue": "30", "journal-title": "Oncotarget", "key": "387_CR121", "unstructured": "Dos Santos SN, Sheldon H, Pereira JX, Paluch C, Bridges EM, El-Cheikh MC, et al. Galectin-3 acts as an angiogenic switch to induce tumor angiogenesis via Jagged-1/Notch activation. Oncotarget. 2017;8(30):49484–501. https://doi.org/10.18632/oncotarget.17718.", "volume": "8", "year": "2017" }, { "DOI": "10.1126/scisignal.2002255", "doi-asserted-by": "publisher", "key": "387_CR122", "unstructured": "Woods NT, Mesquita RD, Sweet M, Carvalho MA, Li X, Liu Y, et al. Charting the Landscape of Tandem BRCT Domain–Mediated Protein Interactions. Sci Signal. 2012:5(242). https://doi.org/10.1126/scisignal.2002255." }, { "DOI": "10.4161/cbt.28873", "author": "RS Carvalho", "doi-asserted-by": "publisher", "first-page": "840", "issue": "7", "journal-title": "Cancer Biol Ther", "key": "387_CR123", "unstructured": "Carvalho RS, Fernandes VC, Nepomuceno TC, Rodrigues DC, Woods NT, Suarez-Kurtz G, et al. Characterization of LGALS3 (galectin-3) as a player in DNA damage response. Cancer Biol Ther. 2014;15(7):840–50. https://doi.org/10.4161/cbt.28873.", "volume": "15", "year": "2014" }, { "DOI": "10.1038/cdd.2013.50", "author": "RG Lichtenstein", "doi-asserted-by": "publisher", "first-page": "976", "issue": "8", "journal-title": "Cell Death Differ", "key": "387_CR124", "unstructured": "Lichtenstein RG, Rabinovich GA. Glycobiology of cell death: when glycans and lectins govern cell fate. Cell Death Differ. 2013;20(8):976–86. https://doi.org/10.1038/cdd.2013.50.", "volume": "20", "year": "2013" }, { "DOI": "10.1158/0008-5472.CAN-04-0336", "author": "T Fukumori", "doi-asserted-by": "publisher", "first-page": "3376", "issue": "10", "journal-title": "Can Res", "key": "387_CR125", "unstructured": "Fukumori T, Takenaka Y, Oka N, Yoshii T, Hogan V, Inohara H, et al. Endogenous Galectin-3 Determines the Routing of CD95 Apoptotic Signaling Pathways. Can Res. 2004;64(10):3376–9. https://doi.org/10.1158/0008-5472.CAN-04-0336.", "volume": "64", "year": "2004" }, { "DOI": "10.1158/0008-5472.CAN-05-1197", "author": "N Oka", "doi-asserted-by": "publisher", "first-page": "7546", "issue": "17", "journal-title": "Cancer Res", "key": "387_CR126", "unstructured": "Oka N, Nakahara S, Takenaka Y, Fukumori T, Hogan V, Kanayama H, et al. Galectin-3 inhibits tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by activating Akt in human bladder carcinoma cells. Cancer Res. 2005;65(17):7546–53. https://doi.org/10.1158/0008-5472.CAN-05-1197.", "volume": "65", "year": "2005" }, { "DOI": "10.1016/S0014-4827(03)00211-8", "author": "Y Lee", "doi-asserted-by": "publisher", "first-page": "21", "issue": "1", "journal-title": "Exp Cell Res", "key": "387_CR127", "unstructured": "Lee Y. Reconstitution of Galectin-3 alters glutathione content and potentiates TRAIL-induced cytotoxicity by dephosphorylation of Akt. Exp Cell Res. 2003;288(1):21–34. https://doi.org/10.1016/S0014-4827(03)00211-8.", "volume": "288", "year": "2003" }, { "DOI": "10.1038/cdd.2011.123", "author": "N Mazurek", "doi-asserted-by": "publisher", "first-page": "523", "issue": "3", "journal-title": "Cell Death Differ", "key": "387_CR128", "unstructured": "Mazurek N, Byrd JC, Sun Y, Hafley M, Ramirez K, Burks J, et al. Cell-surface galectin-3 confers resistance to TRAIL by impeding trafficking of death receptors in metastatic colon adenocarcinoma cells. Cell Death Differ. 2012;19(3):523–33. https://doi.org/10.1038/cdd.2011.123.", "volume": "19", "year": "2012" }, { "DOI": "10.1158/0008-5472.CAN-08-4153", "author": "S Song", "doi-asserted-by": "publisher", "first-page": "1343", "issue": "4", "journal-title": "Cancer Res", "key": "387_CR129", "unstructured": "Song S, Mazurek N, Liu C, Sun Y, Ding QQ, Liu K, et al. Galectin-3 mediates nuclear β-catenin accumulation and Wnt signaling in human colon cancer cells by regulation of glycogen synthase kinase-3β activity. Cancer Res. 2009;69(4):1343–9. https://doi.org/10.1158/0008-5472.CAN-08-4153.", "volume": "69", "year": "2009" }, { "DOI": "10.1016/j.ijbiomac.2019.09.118", "author": "Y-S Li", "doi-asserted-by": "publisher", "first-page": "463", "journal-title": "Int J Biol Macromol", "key": "387_CR130", "unstructured": "Li Y-S, Li X-T, Yu L-G, Wang L, Shi Z-Y, Guo X-L. Roles of galectin-3 in metabolic disorders and tumor cell metabolism. Int J Biol Macromol. 2020;142:463–73. https://doi.org/10.1016/j.ijbiomac.2019.09.118.", "volume": "142", "year": "2020" }, { "DOI": "10.3390/ijms222111475", "author": "T Shen", "doi-asserted-by": "publisher", "first-page": "11475", "issue": "21", "journal-title": "IJMS", "key": "387_CR131", "unstructured": "Shen T, Wang T. Metabolic reprogramming in COVID-19. IJMS. 2021;22(21):11475. https://doi.org/10.3390/ijms222111475.", "volume": "22", "year": "2021" }, { "DOI": "10.1016/j.heliyon.2022.e10473", "author": "F Li", "doi-asserted-by": "publisher", "issue": "9", "journal-title": "Heliyon", "key": "387_CR132", "unstructured": "Li F, Fu L, Liu X, Liu X, Liang Y, Lv Y, et al. Serum metabolomic abnormalities in survivors of non-severe COVID-19. Heliyon. 2022;8(9):e10473. https://doi.org/10.1016/j.heliyon.2022.e10473.", "volume": "8", "year": "2022" }, { "DOI": "10.1002/jmv.27929", "author": "M Rudiansyah", "doi-asserted-by": "publisher", "first-page": "4611", "issue": "10", "journal-title": "J Med Virol", "key": "387_CR133", "unstructured": "Rudiansyah M, Jasim SA, Mohammad Pour ZG, Athar SS, Jeda AS, Doewes RI, et al. Coronavirus disease 2019 (COVID-19) update: from metabolic reprogramming to immunometabolism. J Med Virol. 2022;94(10):4611–27. https://doi.org/10.1002/jmv.27929.", "volume": "94", "year": "2022" }, { "DOI": "10.1038/s41419-021-03540-y", "author": "F-X Danlos", "doi-asserted-by": "publisher", "first-page": "258", "issue": "3", "journal-title": "Cell Death Dis", "key": "387_CR134", "unstructured": "Danlos F-X, Grajeda-Iglesias C, Durand S, Sauvat A, Roumier M, Cantin D, et al. Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers. Cell Death Dis. 2021;12(3):258. https://doi.org/10.1038/s41419-021-03540-y.", "volume": "12", "year": "2021" }, { "DOI": "10.1093/ehjopen/oead073", "author": "V Jaiswal", "doi-asserted-by": "publisher", "issue": "5", "journal-title": "Eur Heart J Open", "key": "387_CR135", "unstructured": "Jaiswal V, Ang SP, Agrawal V, Hameed M, Saleeb MRA, Jaiswal A, et al. Association between heart failure and the incidence of cancer: a systematic review and meta-analysis. Eur Heart J Open. 2023;3(5):oead073. https://doi.org/10.1093/ehjopen/oead073.", "volume": "3", "year": "2023" }, { "DOI": "10.1161/CIRCIMAGING.120.011713", "author": "LT Weckbach", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Circ: Cardiovascular Imaging", "key": "387_CR136", "unstructured": "Weckbach LT, Curta A, Bieber S, Kraechan A, Brado J, Hellmuth JC, et al. Myocardial inflammation and dysfunction in COVID-19–associated myocardial injury. Circ: Cardiovascular Imaging. 2021;14(1):e012220. https://doi.org/10.1161/CIRCIMAGING.120.011713.", "volume": "14", "year": "2021" }, { "DOI": "10.1016/j.ccep.2021.10.004", "author": "A Del Prete", "doi-asserted-by": "publisher", "first-page": "29", "issue": "1", "journal-title": "Cardiac Electrophysiol Clin", "key": "387_CR137", "unstructured": "Del Prete A, Conway F, Della Rocca DG, Biondi-Zoccai G, De Felice F, Musto C, et al. COVID-19, Acute myocardial injury, and infarction. Cardiac Electrophysiol Clin. 2022;14(1):29–39. https://doi.org/10.1016/j.ccep.2021.10.004.", "volume": "14", "year": "2022" }, { "DOI": "10.1016/j.lfs.2020.118482", "author": "SD Unudurthi", "doi-asserted-by": "publisher", "journal-title": "Life Sci", "key": "387_CR138", "unstructured": "Unudurthi SD, Luthra P, Bose RJC, McCarthy JR, Kontaridis MI. Cardiac inflammation in COVID-19: lessons from heart failure. Life Sci. 2020;260:118482. https://doi.org/10.1016/j.lfs.2020.118482.", "volume": "260", "year": "2020" }, { "DOI": "10.1038/s41379-021-00790-1", "author": "M Bearse", "doi-asserted-by": "publisher", "first-page": "1345", "issue": "7", "journal-title": "Mod Pathol", "key": "387_CR139", "unstructured": "Bearse M, Hung YP, Krauson AJ, Bonanno L, Boyraz B, Harris CK, et al. Factors associated with myocardial SARS-CoV-2 infection, myocarditis, and cardiac inflammation in patients with COVID-19. Mod Pathol. 2021;34(7):1345–57. https://doi.org/10.1038/s41379-021-00790-1.", "volume": "34", "year": "2021" }, { "DOI": "10.3389/fcvm.2020.598384", "author": "S Ausoni", "doi-asserted-by": "publisher", "journal-title": "Front Cardiovasc Med", "key": "387_CR140", "unstructured": "Ausoni S, Azzarello G. Development of cancer in patients with heart failure: how systemic inflammation can lay the groundwork. Front Cardiovasc Med. 2020;7:598384. https://doi.org/10.3389/fcvm.2020.598384.", "volume": "7", "year": "2020" }, { "DOI": "10.1016/j.jaccao.2021.11.007", "author": "E Bertero", "doi-asserted-by": "publisher", "first-page": "98", "issue": "1", "journal-title": "JACC: CardioOncology", "key": "387_CR141", "unstructured": "Bertero E, Robusto F, Rulli E, D’Ettorre A, Bisceglia L, Staszewsky L, et al. Cancer incidence and mortality according to pre-existing heart failure in a community-based cohort. JACC: CardioOncology. 2022;4(1):98–109. https://doi.org/10.1016/j.jaccao.2021.11.007.", "volume": "4", "year": "2022" }, { "DOI": "10.1161/CIRCULATIONAHA.118.033603", "author": "E Bertero", "doi-asserted-by": "publisher", "first-page": "735", "issue": "7", "journal-title": "Circulation", "key": "387_CR142", "unstructured": "Bertero E, Canepa M, Maack C, Ameri P. Linking heart failure to cancer: background evidence and research perspectives. Circulation. 2018;138(7):735–42. https://doi.org/10.1161/CIRCULATIONAHA.118.033603.", "volume": "138", "year": "2018" }, { "DOI": "10.1186/s40959-023-00158-1", "author": "M Camilli", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Cardio-Oncol", "key": "387_CR143", "unstructured": "Camilli M, Chiabrando JG, Lombardi M, Del Buono MG, Montone RA, Lombardo A, et al. Cancer incidence and mortality in patients diagnosed with heart failure: results from an updated systematic review and meta-analysis. Cardio-Oncol. 2023;9(1):8. https://doi.org/10.1186/s40959-023-00158-1.", "volume": "9", "year": "2023" }, { "DOI": "10.1016/j.jacc.2013.04.088", "author": "T Hasin", "doi-asserted-by": "publisher", "first-page": "881", "issue": "10", "journal-title": "J Am Coll Cardiol", "key": "387_CR144", "unstructured": "Hasin T, Gerber Y, McNallan SM, Weston SA, Kushwaha SS, Nelson TJ, et al. Patients with heart failure have an increased risk of incident cancer. J Am Coll Cardiol. 2013;62(10):881–6. https://doi.org/10.1016/j.jacc.2013.04.088.", "volume": "62", "year": "2013" }, { "DOI": "10.1001/jamaoncol.2021.6987", "doi-asserted-by": "publisher", "key": "387_CR145", "unstructured": "Kocarnik JM, Compton K, Dean FE, Fu W, Gaw BL, Harvey JD, et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life Years for 29 Cancer Groups From 2010 to 2019: A Systematic Analysis for the Global Burden of Disease Study 2019. JAMA Oncol. 2022;8(3):420. https://doi.org/10.1001/jamaoncol.2021.6987." }, { "DOI": "10.1161/CIRCULATIONAHA.117.030816", "author": "WC Meijers", "doi-asserted-by": "publisher", "first-page": "678", "issue": "7", "journal-title": "Circulation", "key": "387_CR146", "unstructured": "Meijers WC, Maglione M, Bakker SJL, Oberhuber R, Kieneker LM, De Jong S, et al. Heart failure stimulates tumor growth by circulating factors. Circulation. 2018;138(7):678–91. https://doi.org/10.1161/CIRCULATIONAHA.117.030816.", "volume": "138", "year": "2018" }, { "DOI": "10.1002/ejhf.472", "author": "A Banke", "doi-asserted-by": "publisher", "first-page": "260", "issue": "3", "journal-title": "Eur J Heart Fail", "key": "387_CR147", "unstructured": "Banke A, Schou M, Videbæk L, Møller JE, Torp-Pedersen C, Gustafsson F, et al. Incidence of cancer in patients with chronic heart failure: a long-term follow-up study. Eur J Heart Fail. 2016;18(3):260–6. https://doi.org/10.1002/ejhf.472.", "volume": "18", "year": "2016" }, { "DOI": "10.3892/mmr.2024.13163", "author": "W Li", "doi-asserted-by": "publisher", "issue": "3", "journal-title": "Mol Med Rep", "key": "387_CR148", "unstructured": "Li W, Zhuang Y, Shao S-J, Trivedi P, Zheng B, Huang G-L, et al. Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID-19 (review). Mol Med Rep. 2024;29(3):39. https://doi.org/10.3892/mmr.2024.13163.", "volume": "29", "year": "2024" }, { "DOI": "10.1097/MPH.0000000000002064", "author": "C Leclercq", "doi-asserted-by": "publisher", "first-page": "e1177", "issue": "8", "journal-title": "J Pediatr Hematol Oncol", "key": "387_CR149", "unstructured": "Leclercq C, Toutain F, Baleydier F, L’Huillier AG, Wagner N, Lironi C, et al. Pediatric acute B-cell lymphoblastic leukemia developing following recent SARS-CoV-2 infection. J Pediatr Hematol Oncol. 2021;43(8):e1177. https://doi.org/10.1097/MPH.0000000000002064.", "volume": "43", "year": "2021" }, { "DOI": "10.1097/MPH.0000000000002037", "author": "Y Persaud", "doi-asserted-by": "publisher", "first-page": "e1241", "issue": "8", "journal-title": "J Pediatr Hematol Oncol", "key": "387_CR150", "unstructured": "Persaud Y, Shamoun M, Chitlur M, Des Rosier KJ, Taub JW. Childhood B-Cell Acute Lymphoblastic Leukemia Following SARS CoV-2 Infection: A Potential Second “Hit” in Leukemogenesis. J Pediatr Hematol Oncol. 2021;43(8):e1241. https://doi.org/10.1097/MPH.0000000000002037.", "volume": "43", "year": "2021" }, { "DOI": "10.1177/2632010X241278180", "author": "A Mitra", "doi-asserted-by": "publisher", "journal-title": "Clin Med Insights Pathol", "key": "387_CR151", "unstructured": "Mitra A, Ladenheim A, Datta-Mitra A, Honeychurch KL, Dwyre DM, Graff JP. Diagnosing B-cell acute lymphoblastic leukemia in 2 pediatric patients with recent SARS-CoV-2 infection. Clin Med Insights Pathol. 2024;17:2632010X241278180. https://doi.org/10.1177/2632010X241278180.", "volume": "17", "year": "2024" }, { "DOI": "10.3389/fmed.2024.1428973", "author": "X Ma", "doi-asserted-by": "publisher", "journal-title": "Front Med", "key": "387_CR152", "unstructured": "Ma X, Huang T, Li X, Zhou X, Pan H, Du A, et al. Exploration of the link between COVID-19 and gastric cancer from the perspective of bioinformatics and systems biology. Front Med. 2024;11:1428973. https://doi.org/10.3389/fmed.2024.1428973.", "volume": "11", "year": "2024" }, { "DOI": "10.1182/blood.2020007008", "author": "EA Middleton", "doi-asserted-by": "publisher", "first-page": "1169", "issue": "10", "journal-title": "Blood", "key": "387_CR153", "unstructured": "Middleton EA, He X-Y, Denorme F, Campbell RA, Ng D, Salvatore SP, et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood. 2020;136(10):1169–79. https://doi.org/10.1182/blood.2020007008.", "volume": "136", "year": "2020" }, { "DOI": "10.1126/science.aao4227", "author": "J Albrengues", "doi-asserted-by": "publisher", "issue": "6409", "journal-title": "Science", "key": "387_CR154", "unstructured": "Albrengues J, Shields MA, Ng D, Park CG, Ambrico A, Poindexter ME, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice. Science. 2018;361(6409):eaao4227. https://doi.org/10.1126/science.aao4227.", "volume": "361", "year": "2018" }, { "DOI": "10.1186/s13058-020-01360-0", "author": "F Francescangeli", "doi-asserted-by": "publisher", "issue": "1", "journal-title": "Breast Cancer Res", "key": "387_CR155", "unstructured": "Francescangeli F, De Angelis ML, Zeuner A. COVID-19: a potential driver of immune-mediated breast cancer recurrence? Breast Cancer Res. 2020;22(1):117. https://doi.org/10.1186/s13058-020-01360-0.", "volume": "22", "year": "2020" } ], "reference-count": 155, "references-count": 155, "relation": {}, "resource": { "primary": { "URL": "https://cardiooncologyjournal.biomedcentral.com/articles/10.1186/s40959-025-00387-6" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Pathways in the brain, heart and lung influenced by SARS-CoV-2 NSP6 and SARS-CoV-2 regulated miRNAs: an in silico study hinting cancer incidence", "type": "journal-article", "update-policy": "https://doi.org/10.1007/springer_crossmark_policy", "volume": "11" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit