Alkalinization
Analgesics..
Antiandrogens..
Bromhexine
Budesonide
Cannabidiol
Colchicine
Conv. Plasma
Curcumin
Ensovibep
Famotidine
Favipiravir
Fluvoxamine
Hydroxychlor..
Iota-carragee..
Ivermectin
Lactoferrin
Lifestyle..
Melatonin
Metformin
Molnupiravir
Monoclonals..
Nigella Sativa
Nitazoxanide
Nitric Oxide
Paxlovid
Peg.. Lambda
Povidone-Iod..
Quercetin
Remdesivir
Vitamins..
Zinc

Other
Feedback
Home
Home   COVID-19 treatment studies for Bamlanivimab/etesevimab  COVID-19 treatment studies for Bamlaniv../e..  C19 studies: Bamlaniv../e..  Bamlaniv../e..   Select treatmentSelect treatmentTreatmentsTreatments
Alkalinization Meta Lactoferrin Meta
Melatonin Meta
Bromhexine Meta Metformin Meta
Budesonide Meta Molnupiravir Meta
Cannabidiol Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta Nitric Oxide Meta
Ensovibep Meta Paxlovid Meta
Famotidine Meta Peg.. Lambda Meta
Favipiravir Meta Povidone-Iod.. Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta Remdesivir Meta
Iota-carragee.. Meta
Ivermectin Meta Zinc Meta

Other Treatments Global Adoption
All Studies   Meta Analysis   Recent:  
Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron)
Sheward et al., bioRxiv, doi:10.1101/2021.12.19.473354 (Preprint) (In Vitro)
Sheward et al., Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron), bioRxiv, doi:10.1101/2021.12.19.473354 (Preprint) (In Vitro)
Dec 2021   Source   PDF  
  Twitter
  Facebook
Share
  All Studies   Meta
In Vitro study showing that omicron is substantially resistant to neutralization by monoclonal antibodies REGN10933, REGN10987, Ly-CoV016 and Ly-CoV555. S309 (the parent of Sotrovimab) had only 2-fold loss in potency.
4 In Vitro studies support the efficacy of bamlanivimab/etesevimab [Liu, Sheward, VanBlargan, Zhou].
Sheward et al., 20 Dec 2021, preprint, 11 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
All Studies   Meta Analysis   Submit Updates or Corrections
This PaperBamlaniv../e..All
Abstract: bioRxiv preprint doi: https://doi.org/10.1101/2021.12.19.473354; this version posted December 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Variable loss of antibody potency against SARS-CoV-2 B.1.1.529 (Omicron) Daniel J. Sheward1,2, Changil Kim1, Roy A. Ehling 3, Alec Pankow1, Xaquin Castro Dopico1, Darren Martin2, Sai Reddy3, Joakim Dillner4, Gunilla B. Karlsson Hedestam1, Jan Albert 1,5, Ben Murrell1 1 Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa 3 Department of Biosystems Science and Engineering, ETH Zürich 4 Department of Laboratory Medicine, Karolinska Institute, Stockholm, Sweden. 5 Dept of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden 2 Abstract The recently-emerged SARS-CoV-2 B.1.1.529 variant (Omicron) is spreading rapidly in many countries, with a spike that is highly diverged from the pandemic founder, raising fears that it may evade neutralizing antibody responses. We cloned the Omicron spike from a diagnostic sample which allowed us to rapidly establish an Omicron pseudotyped virus neutralization assay, sharing initial neutralization results only 13 days after the variant was first reported to the WHO, 8 days after receiving the sample. Here we show that Omicron is substantially resistant to neutralization by several monoclonal antibodies that form part of clinical cocktails. Further, we find neutralizing antibody responses in pooled reference sera sampled shortly after infection or vaccination are substantially less potent against Omicron, with neutralizing antibody titers reduced by up to 45 fold compared to those for the pandemic founder. Similarly, in a cohort of convalescent sera prior to vaccination, neutralization of Omicron was low to undetectable. However, in recent samples from two cohorts from Stockholm, Sweden, antibody responses capable of cross-neutralizing Omicron were prevalent. Sera from infected-then-vaccinated healthcare workers exhibited robust cross-neutralization of Omicron, with an average potency reduction of only 5-fold relative to the pandemic founder variant, and some donors showing no loss at all. A similar pattern was observed in randomly sampled recent blood donors, with an average 7-fold loss of potency. Both cohorts showed substantial between-donor heterogeneity in their ability to neutralize Omicron. Together, these data highlight the extensive but incomplete evasion of neutralizing antibody responses by the Omicron variant, and suggest that increasing the magnitude of neutralizing antibody responses by boosting with unmodified vaccines may suffice to raise titers to levels that are protective.
Loading..
Please send us corrections, updates, or comments. Vaccines and treatments are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment, vaccine, or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit