Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchSelect treatment..Select..
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

 

Screening Commercial Tea for Rapid Inactivation of Infectious SARS-CoV-2 in Saliva

Morris et al., Food and Environmental Virology, doi:10.1007/s12560-023-09581-0
Jan 2024  
  Post
  Facebook
Share
  Source   PDF  
In Vitro study showing that certain teas can rapidly inactivate SARS-CoV-2 in saliva. At 10 mg/mL infusion, black tea showed the highest reduction (99.9%) of infectious SARS-CoV-2 within 10 seconds. Green, mint medley, eucalyptus mint, and raspberry zinger teas showed 96-99% inactivation at the same concentration. At 40 mg/mL infusions, all five teas inactivated 99.9% of the virus within 10 seconds. Tea polyphenol content, but not pH, significantly correlated with virus reduction. The teas also exhibited preventive effects against SARS-CoV-2 infection of Vero-E6 cells when added before (68-90% reduction), during (99-99.9% reduction), or after (94-98% reduction) virus infection, with the strongest inhibition observed when teas were added at the time of infection. Authors suggest that drinking or gargling tea could be a rapid at-home intervention to reduce infectious SARS-CoV-2 load in the oral cavity and potentially mitigate infection of the oral mucosa.
Morris et al., 31 Jan 2024, peer-reviewed, 2 authors.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMiscellaneousAll
DOI record: { "DOI": "10.1007/s12560-023-09581-0", "ISSN": [ "1867-0334", "1867-0342" ], "URL": "http://dx.doi.org/10.1007/s12560-023-09581-0", "alternative-id": [ "9581" ], "assertion": [ { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Received", "name": "received", "order": 1, "value": "11 September 2023" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "Accepted", "name": "accepted", "order": 2, "value": "30 December 2023" }, { "group": { "label": "Article History", "name": "ArticleHistory" }, "label": "First Online", "name": "first_online", "order": 3, "value": "31 January 2024" }, { "group": { "label": "Declarations", "name": "EthicsHeading" }, "name": "Ethics", "order": 1 }, { "group": { "label": "Competing interests", "name": "EthicsHeading" }, "name": "Ethics", "order": 2, "value": "The authors declare no competing interests." } ], "author": [ { "affiliation": [], "family": "Morris", "given": "Julianna N.", "sequence": "first" }, { "ORCID": "http://orcid.org/0000-0002-1024-0468", "affiliation": [], "authenticated-orcid": false, "family": "Esseili", "given": "Malak A.", "sequence": "additional" } ], "container-title": "Food and Environmental Virology", "container-title-short": "Food Environ Virol", "content-domain": { "crossmark-restriction": false, "domain": [ "link.springer.com" ] }, "created": { "date-parts": [ [ 2024, 1, 31 ] ], "date-time": "2024-01-31T10:02:52Z", "timestamp": 1706695372000 }, "deposited": { "date-parts": [ [ 2024, 1, 31 ] ], "date-time": "2024-01-31T10:33:35Z", "timestamp": 1706697215000 }, "funder": [ { "DOI": "10.13039/100007699", "award": [ "Startup Fund" ], "doi-asserted-by": "publisher", "name": "University of Georgia" } ], "indexed": { "date-parts": [ [ 2024, 2, 1 ] ], "date-time": "2024-02-01T00:38:30Z", "timestamp": 1706747910004 }, "is-referenced-by-count": 0, "issued": { "date-parts": [ [ 2024, 1, 31 ] ] }, "language": "en", "license": [ { "URL": "https://www.springernature.com/gp/researchers/text-and-data-mining", "content-version": "tdm", "delay-in-days": 0, "start": { "date-parts": [ [ 2024, 1, 31 ] ], "date-time": "2024-01-31T00:00:00Z", "timestamp": 1706659200000 } }, { "URL": "https://www.springernature.com/gp/researchers/text-and-data-mining", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2024, 1, 31 ] ], "date-time": "2024-01-31T00:00:00Z", "timestamp": 1706659200000 } } ], "link": [ { "URL": "https://link.springer.com/content/pdf/10.1007/s12560-023-09581-0.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/article/10.1007/s12560-023-09581-0/fulltext.html", "content-type": "text/html", "content-version": "vor", "intended-application": "text-mining" }, { "URL": "https://link.springer.com/content/pdf/10.1007/s12560-023-09581-0.pdf", "content-type": "application/pdf", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "297", "original-title": [], "prefix": "10.1007", "published": { "date-parts": [ [ 2024, 1, 31 ] ] }, "published-online": { "date-parts": [ [ 2024, 1, 31 ] ] }, "publisher": "Springer Science and Business Media LLC", "reference": [ { "DOI": "10.3390/nu15030771", "doi-asserted-by": "crossref", "key": "9581_CR1", "unstructured": "Arora, I., White, S., & Mathews, R. (2023). Global dietary and herbal supplement use during COVID-19: A scoping review. Nutrients, 15, 771." }, { "key": "9581_CR2", "unstructured": "CDC. (2022). Symptoms of COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html" }, { "DOI": "10.1021/acs.jnatprod.3c00104", "author": "O Chou", "doi-asserted-by": "publisher", "first-page": "1428", "journal-title": "Journal of Natural Products", "key": "9581_CR3", "unstructured": "Chou, O., Juang, Y. P., Chao, T. L., Tsai, S. F., Chiu, P. F., Chiou, C. T., Tsai, K. C., Chang, S. Y., Liang, P. H., & Wong, C. H. (2023). Isolation of anti-SARS-CoV-2 natural products extracted from Mentha canadensis and the semi-synthesis of antiviral derivatives. Journal of Natural Products, 86, 1428–1436.", "volume": "86", "year": "2023" }, { "DOI": "10.3389/fpls.2022.934651", "author": "JC D'Auria", "doi-asserted-by": "publisher", "journal-title": "Frontiers in Plant Science", "key": "9581_CR4", "unstructured": "D’Auria, J. C., Cohen, S. P., Leung, J., Glockzin, K., Glockzin, K. M., Gervay-Hague, J., Zhang, D., & Meinhardt, L. W. (2022). United States tea: A synopsis of ongoing tea research and solutions to United States tea production issues. Frontiers in Plant Science, 13, 934651.", "volume": "13", "year": "2022" }, { "DOI": "10.1016/j.buildenv.2022.108888", "author": "S Ding", "doi-asserted-by": "publisher", "journal-title": "Building and Environment", "key": "9581_CR5", "unstructured": "Ding, S., Lee, J. S., Mohamed, M. A., & Ng, B. F. (2022). Infection risk of SARS-CoV-2 in a dining setting: Deposited droplets and aerosols. Building and Environment, 213, 108888.", "volume": "213", "year": "2022" }, { "DOI": "10.1002/ptr.7431", "author": "M Eggers", "doi-asserted-by": "publisher", "first-page": "2109", "journal-title": "Phytotherapy Research", "key": "9581_CR6", "unstructured": "Eggers, M., Jungke, P., Wolkinger, V., Bauer, R., Kessler, U., & Frank, B. (2022). Antiviral activity of plant juices and green tea against SARS-CoV-2 and influenza virus. Phytotherapy Research, 36, 2109–2115.", "volume": "36", "year": "2022" }, { "DOI": "10.1021/bk-2004-0871.ch016", "doi-asserted-by": "crossref", "key": "9581_CR7", "unstructured": "Ekanayake, A., & Li, J. (2004). Processing green tea extracts to make a beverage ingredient. In F. Shahidi & D. K. Weerasinghe (Ed.), Nutraceutical beveages. American Chemical Society." }, { "DOI": "10.1007/s12275-021-1467-z", "author": "E Espano", "doi-asserted-by": "publisher", "first-page": "959", "journal-title": "Journal of Microbiology", "key": "9581_CR8", "unstructured": "Espano, E., Kim, J., Lee, K., & Kim, J. K. (2021). Phytochemicals for the treatment of COVID-19. Journal of Microbiology, 59, 959–977.", "volume": "59", "year": "2021" }, { "DOI": "10.4315/0362-028X.JFP-14-518", "author": "MA Esseili", "doi-asserted-by": "publisher", "first-page": "1472", "journal-title": "Journal of Food Protection", "key": "9581_CR9", "unstructured": "Esseili, M. A., Chin, A., Saif, L., Miller, S. A., Qu, F., Lewis Ivey, M. L., & Wang, Q. (2015). Postharvest survival of porcine sapovirus, a human norovirus surrogate, on phytopathogen-infected leafy greens. Journal of Food Protection, 78, 1472–1480.", "volume": "78", "year": "2015" }, { "DOI": "10.1016/j.fm.2022.104084", "author": "MA Esseili", "doi-asserted-by": "publisher", "journal-title": "Food Microbiology", "key": "9581_CR10", "unstructured": "Esseili, M. A., Mann, A., Narwankar, R., Kassem, I. I., Diez-Gonzalez, F., & Hogan, R. J. (2022). SARS-CoV-2 remains infectious for at least a month on artificially-contaminated frozen berries. Food Microbiology, 107, 104084.", "volume": "107", "year": "2022" }, { "DOI": "10.1016/j.heliyon.2023.e12968", "author": "J Ge", "doi-asserted-by": "publisher", "journal-title": "Heliyon", "key": "9581_CR11", "unstructured": "Ge, J., Song, T., Li, M., Chen, W., Li, J., Gong, S., Zhao, Y., Ma, L., Yu, H., Li, X., & Fu, K. (2023). The medicinal value of tea drinking in the management of COVID-19. Heliyon, 9, e12968.", "volume": "9", "year": "2023" }, { "DOI": "10.1371/journal.pone.0253489", "author": "A Goc", "doi-asserted-by": "publisher", "journal-title": "PLoS ONE", "key": "9581_CR12", "unstructured": "Goc, A., Sumera, W., Rath, M., & Niedzwiecki, A. (2021). Phenolic compounds disrupt spike-mediated receptor-binding and entry of SARS-CoV-2 pseudo-virions. PLoS ONE, 16, e0253489.", "volume": "16", "year": "2021" }, { "DOI": "10.1016/S0014-5793(02)03640-2", "author": "D Harmer", "doi-asserted-by": "publisher", "first-page": "107", "journal-title": "FEBS Letters", "key": "9581_CR13", "unstructured": "Harmer, D., Gilbert, M., Borman, R., & Clark, K. L. (2002). Quantitative mRNA expression profiling of ACE 2, a novel homologue of angiotensin converting enzyme. FEBS Letters, 532, 107–110.", "volume": "532", "year": "2002" }, { "DOI": "10.1093/infdis/jix224", "author": "R Hirose", "doi-asserted-by": "publisher", "first-page": "105", "journal-title": "Journal of Infectious Diseases", "key": "9581_CR14", "unstructured": "Hirose, R., Nakaya, T., Naito, Y., Daidoji, T., Watanabe, Y., Yasuda, H., Konishi, H., & Itoh, Y. (2017). Mechanism of human influenza virus RNA persistence and virion survival in feces: Mucus protects virions from acid and digestive juices. Journal of Infectious Diseases, 216, 105–109.", "volume": "216", "year": "2017" }, { "key": "9581_CR15", "unstructured": "Hudson, J. B. (1990). The choice and use of plant materials. In Antiviral compounds from plants. CRC Press." }, { "DOI": "10.1111/lam.13591", "author": "K Ishimoto", "doi-asserted-by": "publisher", "first-page": "2", "journal-title": "Letters in Applied Microbiology", "key": "9581_CR16", "unstructured": "Ishimoto, K., Hatanaka, N., Otani, S., Maeda, S., Xu, B., Yasugi, M., Moore, J. E., Suzuki, M., Nakagawa, S., & Yamasaki, S. (2022). Tea crude extracts effectively inactivate severe acute respiratory syndrome coronavirus 2. Letters in Applied Microbiology, 74, 2–7.", "volume": "74", "year": "2022" }, { "DOI": "10.3389/froh.2022.1001790", "author": "P Iyer", "doi-asserted-by": "publisher", "first-page": "1001790", "journal-title": "Frontiers in Oral Health", "key": "9581_CR17", "unstructured": "Iyer, P., Chino, T., & Ojcius, D. M. (2022). Infection of the oral cavity with SARS-CoV-2 variants: Scope of salivary diagnostics. Frontiers in Oral Health, 3, 1001790.", "volume": "3", "year": "2022" }, { "DOI": "10.1073/pnas.2021579118", "doi-asserted-by": "crossref", "key": "9581_CR18", "unstructured": "Jan, J. T., Cheng, T. R., Juang, Y. P., Ma, H. H., Wu, Y. T., Yang, W. B., Cheng, C. W., Chen, X., Chou, T. H., Shie, J. J., Cheng, W. C., Chein, R. J., Mao, S. S., Liang, P. H., Ma, C., Hung, S. C., & Wong, C. H. (2021). Identification of existing pharmaceuticals and herbal medicines as inhibitors of SARS-CoV-2 infection. Proceedings of the National Academy of Sciences of the United States of America, 118." }, { "DOI": "10.1016/j.phymed.2022.153970", "author": "E Kicker", "doi-asserted-by": "publisher", "journal-title": "Phytomedicine", "key": "9581_CR19", "unstructured": "Kicker, E., Tittel, G., Schaller, T., Pferschy-Wenzig, E. M., Zatloukal, K., & Bauer, R. (2022). SARS-CoV-2 neutralizing activity of polyphenols in a special green tea extract preparation. Phytomedicine, 98, 153970.", "volume": "98", "year": "2022" }, { "DOI": "10.1186/s12915-022-01468-z", "author": "VTK Le-Trilling", "doi-asserted-by": "publisher", "first-page": "264", "journal-title": "BMC Biology", "key": "9581_CR20", "unstructured": "Le-Trilling, V. T. K., Mennerich, D., Schuler, C., Sakson, R., Lill, J. K., Kasarla, S. S., Kopczynski, D., Loroch, S., Flores-Martinez, Y., Katschinski, B., Wohlgemuth, K., Gunzer, M., Meyer, F., Phapale, P., Dittmer, U., Sickmann, A., & Trilling, M. (2022). Identification of herbal teas and their compounds eliciting antiviral activity against SARS-CoV-2 in vitro. BMC Biology, 20, 264.", "volume": "20", "year": "2022" }, { "DOI": "10.1186/s13578-021-00680-8", "author": "J Liu", "doi-asserted-by": "publisher", "first-page": "168", "journal-title": "Cell & Bioscience", "key": "9581_CR21", "unstructured": "Liu, J., Bodnar, B. H., Meng, F., Khan, A. I., Wang, Xu., Saribas, S., Wang, T., Lohani, S. C., Wang, P., Wei, Z., Luo, J., Zhou, L., Jianguo, Wu., Luo, G., Li, Q., Wenhui, Hu., & Ho, W. (2021). Epigallocatechin gallate from green tea effectively blocks infection of SARS-CoV-2 and new variants by inhibiting spike binding to ACE2 receptor. Cell & Bioscience, 11, 168.", "volume": "11", "year": "2021" }, { "DOI": "10.1002/JPER.21-0277", "author": "JT Marchesan", "doi-asserted-by": "publisher", "first-page": "1357", "journal-title": "Journal of Periodontology", "key": "9581_CR22", "unstructured": "Marchesan, J. T., Warner, B. M., & Byrd, K. M. (2021). The “oral” history of COVID-19: Primary infection, salivary transmission, and post-acute implications. Journal of Periodontology, 92, 1357–1367.", "volume": "92", "year": "2021" }, { "DOI": "10.3390/ph14121210", "doi-asserted-by": "crossref", "key": "9581_CR23", "unstructured": "Mieres-Castro, D., Ahmar, S., Shabbir, R., & Mora-Poblete, F. (2021). Antiviral activities of eucalyptus essential oils: Their effectiveness as therapeutic targets against human viruses. Pharmaceuticals (Basel), 14, 1210." }, { "DOI": "10.1016/j.jep.2023.116291", "author": "MS Nair", "doi-asserted-by": "publisher", "journal-title": "Journal of Ethnopharmacology", "key": "9581_CR24", "unstructured": "Nair, M. S., Huang, Y., Wang, M., & Weathers, P. J. (2023). SARS-CoV-2 omicron variants are susceptible in vitro to Artemisia annua hot water extracts. Journal of Ethnopharmacology, 308, 116291.", "volume": "308", "year": "2023" }, { "DOI": "10.1007/s00705-022-05483-x", "author": "MM Ngwe Tun", "doi-asserted-by": "publisher", "first-page": "1547", "journal-title": "Archives of Virology", "key": "9581_CR25", "unstructured": "Ngwe Tun, M. M., Luvai, E., Nwe, K. M., Toume, K., Mizukami, S., Hirayama, K., Komatsu, K., & Morita, K. (2022). Anti-SARS-CoV-2 activity of various PET-bottled Japanese green teas and tea compounds in vitro. Archives of Virology, 167, 1547–1557.", "volume": "167", "year": "2022" }, { "DOI": "10.7883/yoken.JJID.2020.902", "author": "H Nishimura", "doi-asserted-by": "publisher", "first-page": "421", "journal-title": "Japanese Journal of Infectious Diseases", "key": "9581_CR26", "unstructured": "Nishimura, H., Okamoto, M., Dapat, I., Katsumi, M., & Oshitani, H. (2021). Inactivation of SARS-CoV-2 by catechins from green tea. Japanese Journal of Infectious Diseases, 74, 421–423.", "volume": "74", "year": "2021" }, { "DOI": "10.3390/pathogens10060721", "doi-asserted-by": "crossref", "key": "9581_CR27", "unstructured": "Ohgitani, E., Shin-Ya, M., Ichitani, M., Kobayashi, M., Takihara, T., Kawamoto, M., Kinugasa, H., & Mazda, O. (2021a). Rapid inactivation in vitro of SARS-CoV-2 in saliva by black tea and green tea. Pathogens, 10, 721." }, { "DOI": "10.3390/molecules26123572", "doi-asserted-by": "crossref", "key": "9581_CR28", "unstructured": "Ohgitani, E., Shin-Ya, M., Ichitani, M., Kobayashi, M., Takihara, T., Kawamoto, M., Kinugasa, H., & Mazda, O. (2021b). Significant inactivation of SARS-CoV-2 in vitro by a green tea catechin, a catechin-derivative, and black tea galloylated theaflavins. Molecules, 26, 3572." }, { "DOI": "10.1371/journal.pone.0271112", "author": "T Ohishi", "doi-asserted-by": "publisher", "journal-title": "PLoS ONE", "key": "9581_CR29", "unstructured": "Ohishi, T., Hishiki, T., Baig, M. S., Rajpoot, S., Saqib, U., Takasaki, T., & Hara, Y. (2022). Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS ONE, 17, e0271112.", "volume": "17", "year": "2022" }, { "key": "9581_CR30", "unstructured": "Payment, P., & Trudel, M. (1993). Isolation and identification of viruses. In P. Payment & M. Trudel (Eds.), Methods and techniques in virology. Mercel Deckker." }, { "DOI": "10.1016/j.fm.2023.104297", "author": "A Saulnier", "doi-asserted-by": "publisher", "journal-title": "Food Microbiology", "key": "9581_CR31", "unstructured": "Saulnier, A., Wendling, J. M., Hermant, B., & Lepelletier, D. (2023). SARS-CoV-2 transmission modes: Why and how contamination occurs around shared meals and drinks? Food Microbiology, 114, 104297.", "volume": "114", "year": "2023" }, { "DOI": "10.3390/jcm10030446", "doi-asserted-by": "crossref", "key": "9581_CR32", "unstructured": "Thakur, V., Ratho, R. K., Kumar, P., Bhatia, S. K., Bora, I., Mohi, G. K., Saxena, S. K., Devi, M., Yadav, D., & Mehariya, S. (2021). Multi-organ involvement in COVID-19: Beyond pulmonary manifestations. Journal of Clinical Medicine, 10, 446." }, { "DOI": "10.3389/fnut.2021.606782", "author": "FU Umeoguaju", "doi-asserted-by": "publisher", "journal-title": "Frontiers in Nutrition", "key": "9581_CR33", "unstructured": "Umeoguaju, F. U., Ephraim-Emmanuel, B. C., Patrick-Iwuanyanwu, K. C., Zelikoff, J. T., & Orisakwe, O. E. (2021). Plant-derived food grade substances (PDFGS) active against respiratory viruses: A systematic review of non-clinical studies. Frontiers in Nutrition, 8, 606782.", "volume": "8", "year": "2021" }, { "DOI": "10.1371/journal.pone.0241539", "author": "Y Wang", "doi-asserted-by": "publisher", "journal-title": "PLoS ONE", "key": "9581_CR34", "unstructured": "Wang, Y., Xu, G., & Huang, Y. W. (2020). Modeling the load of SARS-CoV-2 virus in human expelled particles during coughing and speaking. PLoS ONE, 15, e0241539.", "volume": "15", "year": "2020" }, { "key": "9581_CR35", "unstructured": "WHO. (2023). COVID-19 weekly epidemiological update. Accessed 8 August 2023. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---3-august-2023" }, { "DOI": "10.1038/s41368-020-0074-x", "author": "H Xu", "doi-asserted-by": "publisher", "first-page": "8", "journal-title": "International Journal of Oral Science", "key": "9581_CR36", "unstructured": "Xu, H., Zhong, L., Deng, J., Peng, J., Dan, H., Zeng, X., Li, T., & Chen, Q. (2020). High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa. International Journal of Oral Science, 12, 8.", "volume": "12", "year": "2020" }, { "DOI": "10.1089/acm.2006.12.669", "author": "H Yamada", "doi-asserted-by": "publisher", "first-page": "669", "journal-title": "Journal of Alternative and Complementary Medicine", "key": "9581_CR37", "unstructured": "Yamada, H., Takuma, N., Daimon, T., & Hara, Y. (2006). Gargling with tea catechin extracts for the prevention of influenza infection in elderly nursing home residents: A prospective clinical study. Journal of Alternative and Complementary Medicine, 12, 669–672.", "volume": "12", "year": "2006" }, { "DOI": "10.1016/j.ijid.2020.04.027", "author": "H Zhang", "doi-asserted-by": "publisher", "first-page": "19", "journal-title": "International Journal of Infectious Diseases", "key": "9581_CR38", "unstructured": "Zhang, H., Li, H. B., Lyu, J. R., Lei, X. M., Li, W., Wu, G., Lyu, J., & Dai, Z. M. (2020). Specific ACE2 expression in small intestinal enterocytes may cause gastrointestinal symptoms and injury after 2019-nCoV infection. International Journal of Infectious Diseases, 96, 19–24.", "volume": "96", "year": "2020" }, { "DOI": "10.1038/s41586-020-2012-7", "author": "P Zhou", "doi-asserted-by": "publisher", "first-page": "270", "journal-title": "Nature", "key": "9581_CR39", "unstructured": "Zhou, P., Yang, X. L., Wang, X. G., Hu, B., Zhang, L., Zhang, W., Si, H. R., Zhu, Y., Li, B., Huang, C. L., Chen, H. D., Chen, J., Luo, Y., Guo, H., Jiang, R. D., Liu, M. Q., Chen, Y., Shen, X. R., Wang, X., … Shi, Z. L. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature, 579, 270–273.", "volume": "579", "year": "2020" } ], "reference-count": 39, "references-count": 39, "relation": {}, "resource": { "primary": { "URL": "https://link.springer.com/10.1007/s12560-023-09581-0" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [ "Virology", "Health, Toxicology and Mutagenesis", "Food Science", "Epidemiology" ], "subtitle": [], "title": "Screening Commercial Tea for Rapid Inactivation of Infectious SARS-CoV-2 in Saliva", "type": "journal-article", "update-policy": "http://dx.doi.org/10.1007/springer_crossmark_policy" }
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit