Analgesics
Antiandrogens
Antihistamines
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
TMPRSS2 inh.
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchPaxlovidPaxlovid (more..)
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta
Thermotherapy Meta
Melatonin Meta
Metformin Meta

 

Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors

Moghadasi et al., Science Advances, doi:10.1126/sciadv.ade8778, Mar 2023
https://c19early.org/moghadasi2pl.html
Analysis of naturally occurring SARS-CoV-2 main protease variants for resistance to nirmatrelvir and ensitrelvir. Authors identified multiple single amino acid mutations that confer significant resistance to these drugs. Phylogenetic analysis showed that resistant variants have occurred independently multiple times globally and show evidence of transmission between individuals. Nirmatrelvir and ensitrelvir have partially non-overlapping resistance profiles due to their different mechanisms of action, suggesting one drug may remain effective when the other fails. Authors hypothesize resistance occurs through structural changes that affect inhibitor binding sites while preserving essential protease catalytic activity.
Study covers ensitrelvir and paxlovid.
Moghadasi et al., 31 Mar 2023, USA, peer-reviewed, 15 authors. Contact: rsh@uthscsa.edu.
In Vitro studies are an important part of preclinical research, however results may be very different in vivo.
Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors
Seyed Arad Moghadasi, Emmanuel Heilmann, Ahmed Magdy Khalil, Christina Nnabuife, Fiona L Kearns, Chengjin Ye, Sofia N Moraes, Francesco Costacurta, Morgan A Esler, Hideki Aihara, Dorothee Von Laer, Luis Martinez-Sobrido, Timothy Palzkill, Rommie E Amaro, Reuben S Harris
Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [M pro ; 3C-like protease (3CL pro )] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in M pro confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.
Supplementary Materials This PDF file includes: Figs. S1 to S12 Tables S1 to S3 Competing interests: R. The other authors declare that they have no competing interests. Data and materials availability: All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Materials. The ciscleaving VSV-based M pro assay can be provided by D.v.L. pending scientific review and a completed material transfer agreement. Requests for the ciscleaving VSV-based M pro assay should be submitted to D.v.L. (dorothee.von-laer@i-med.ac. at). Requests for the transfection-based gain-of-signal M pro system should be submitted to R.S.H. (rsh@uthscsa.edu).
References
Anand, Ziebuhr, Wadhwani, Mesters, Hilgenfeld, Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs, Science
Anderson, Schiffer, Lee, Swanstrom, Viral protease inhibitors, Handb. Exp. Pharmacol
Baek, Dimaio, Anishchenko, Dauparas, Ovchinnikov et al., Accurate prediction of protein structures and interactions using a three-track neural network, Science
Barrila, Bacha, Freire, Long-range cooperative interactions modulate dimerization in SARS 3CLpro, Biochemistry
Boras, Jones, Anson, Arenson, Aschenbrenner et al., Preclinical characterization of an intravenous coronavirus 3CL protease inhibitor for the potential treatment of COVID19, Nat. Commun
Bull, Adikari, Ferguson, Hammond, Stevanovski et al., Analytical validity of nanopore sequencing for rapid SARS-CoV-2 genome analysis, Nat. Commun
Chamakuri, Lu, Ucisik, Bohren, Chen et al., DNA-encoded chemistry technology yields expedient access to SARS-CoV-2 M pro inhibitors, Proc. Natl. Acad. Sci. U.S.A
Chiem, Vasquez, Park, Platt, Anderson et al., Generation and characterization of recombinant SARS-CoV-2 expressing reporter genes, J. Virol
Costanzi, Kuzikov, Esposito, Albani, Demitri et al., Structural and biochemical analysis of the dual inhibition of MG-132 against SARS-CoV-2 main protease (Mpro/3CLpro) and human cathepsin-L, Int. J. Mol. Sci
Dias Noske, De Souza Silva, Ortiz De Godoy, Dolci, Sachetto et al., Structural basis of nirmatrelvir and ensitrelvir resistance profiles against SARS-CoV-2 main protease naturally occurring polymorphisms, bioRxiv, doi:10.1101/2022.08.31.506107
Flexner, HIV-protease inhibitors, N. Engl. J. Med
Gowers, Linke, Barnoud, Reddy, Melo et al., MDAnalysis: A python package for the rapid analysis of molecular dynamics simulations
Hadfield, Megill, Bell, Huddleston, Potter et al., Nextstrain: Real-time tracking of pathogen evolution, Bioinformatics
Heilmann, Costacurta, Geley, Mogadashi, Volland et al., A VSV-based assay quantifies coronavirus Mpro/3CLpro/Nsp5 main protease activity and chemical inhibition, Commun. Biol
Heilmann, Costacurta, Moghadasi, Ye, Pavan et al., SARS-CoV-2 3CL pro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376, Sci. Transl. Med
Hu, Lewandowski, Tan, Morgan, Zhang et al., Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir, bioRxiv, doi:10.1101/2022.06.28.497978
Huang, Mackerell, CHARMM36 all-atom additive protein force field: Validation based on comparison to NMR data, J. Comput. Chem
Huang, Rauscher, Nawrocki, Ran, Feig et al., CHARMM36m: An improved force field for folded and intrinsically disordered proteins, Nat. Methods
Humphrey, Dalke, Schulten, VMD: Visual molecular dynamics, J. Mol. Graph
Humphreys, Pei, Baek, Krishnakumar, Anishchenko et al., Computed structures of core eukaryotic protein complexes, Science
Iketani, Mohri, Culbertson, Hong, Duan et al., Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir, Nature
Jochmans, Liu, Donckers, Stoycheva, Boland et al., The substitutions L50F, E166A and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir, bioRxiv, doi:10.1101/2022.06.07.495116
Jorgensen, Chandrasekhar, Madura, Comparison of simple potential functions for simulating liquid water, J. Chem. Phys
King, Prabu-Jeyabalan, Nalivaika, Schiffer, Combating susceptibility to drug resistance: Lessons from HIV-1 protease, Chem. Biol
Kneller, Li, Phillips, Weiss, Zhang et al., Covalent narlaprevir-and boceprevir-derived hybrid inhibitors of SARS-CoV-2 main protease, Nat. Commun
Kuo, Chi, Hsu, Liang, Characterization of SARS main protease and inhibitor assay using a fluorogenic substrate, Biochem. Biophys. Res. Commun
Legare, Heide, Bailey-Elkin, Stetefeld, Improved SARS-CoV-2 main protease high-throughput screening assay using a 5-carboxyfluorescein substrate, J. Biol. Chem
Liu, Kati, Chen, Tripathi, Molla et al., Use of a fluorescence plate reader for measuring kinetic parameters with inner filter effect correction, Anal. Biochem
Lontok, Harrington, Howe, Kieffer, Lennerstrand et al., Hepatitis C virus drug resistance-associated substitutions: State of the art summary, Hepatology
Luttens, Gullberg, Abdurakhmanov, Vo, Akaberi et al., Ultralarge virtual screening identifies SARS-CoV-2 main protease inhibitors with broadspectrum activity against coronaviruses, J. Am. Chem. Soc
Lv, Cano, Jia, Drag, Huang et al., Targeting SARS-CoV-2 proteases for COVID-19 antiviral development, Front. Chem
Michaud-Agrawal, Denning, Woolf, Beckstein, MDAnalysis: A toolkit for the analysis of molecular dynamics simulations, J. Comput. Chem
Moghadasi, Esler, Otsuka, Becker, Moraes et al., Gain-of-signal assays for probing inhibition of SARS-CoV-2 M(pro)/3CL(pro) in living cells, MBio
Molla, Korneyeva, Gao, Vasavanonda, Schipper et al., Ordered accumulation of mutations in HIV protease confers resistance to ritonavir, Nat. Med
Morrison, Kinetics of the reversible inhibition of enzyme-catalysed reactions by tightbinding inhibitors, Biochim. Biophys. Acta
Olsson, Sondergaard, Rostkowski, Jensen, PROPKA3: Consistent treatment of internal and surface residues in empirical pK a predictions, J. Chem. Theory Comput
Ou, Lewandowski, Hu, Lipinski, Morgan et al., A yeast-based system to study SARS-CoV-2 M pro structure and to identify nirmatrelvir resistant mutations, bioRxiv, doi:10.1101/2022.08.06.503039
Owen, Allerton, Anderson, Aschenbrenner, Avery et al., An oral SARS-CoV-2 M pro inhibitor clinical candidate for the treatment of COVID-19, Science
Phillips, Braun, Wang, Gumbart, Tajkhorshid et al., Scalable molecular dynamics with NAMD, J. Comput. Chem
Phillips, Hardy, Maia, Stone, Ribeiro et al., Scalable molecular dynamics on CPU and GPU architectures with NAMD, J. Chem. Phys
Qiao, Li, Zeng, Liu, Luo et al., SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model, Science
Rathnayake, Zheng, Kim, Perera, Mackin et al., 3C-like protease inhibitors block coronavirus replication in vitro and improve survival in MERS-CoV-infected mice, Sci. Transl. Med
Rodrigues, Teixeira, Trellet, Bonvin, pdb-tools: A swiss army knife for molecular structures, F1000Res
Service, A call to arms, Science
Shu, Mccauley, GISAID: Global initiative on sharing all influenza data-From vision to reality, Euro Surveill
Telenti, Hodcroft, Robertson, The evolution and biology of SARS-CoV-2 variants, Cold Spring Harb. Perspect. Med
Turakhia, Thornlow, Hinrichs, De Maio, Gozashti et al., Ultrafast sample placement on existing tRees (UShER) enables real-time phylogenetics for the SARS-CoV-2 pandemic, Nat. Genet
Unoh, Uehara, Nakahara, Nobori, Yamatsu et al., Discovery of S-217622, a noncovalent oral SARS-CoV-2 3CL protease inhibitor clinical candidate for treating COVID-19, J. Med. Chem
Ye, Martinez-Sobrido, Use of a bacterial artificial chromosome to generate recombinant SARS-CoV-2 expressing robust levels of reporter genes, Microbiol. Spectr
Zhang, Lin, Sun, Curth, Drosten et al., Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved αketoamide inhibitors, Science
Zhang, Stone, Deshmukh, Ippolito, Ghahremanpour et al., Potent noncovalent inhibitors of the main protease of SARS-CoV-2 from molecular sculpting of the drug perampanel guided by free energy perturbation calculations, ACS Cent. Sci
Zhao, Zhu, Liu, Jin, Duan et al., Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2, Proc. Natl. Acad. Sci. U.S.A
Zhou, Gammeltoft, Ryberg, Pham, Tjornelund et al., Nirmatrelvir-resistant SARS-CoV-2 variants with high fitness in an infectious cell culture system, Sci. Adv
DOI record: { "DOI": "10.1126/sciadv.ade8778", "ISSN": [ "2375-2548" ], "URL": "http://dx.doi.org/10.1126/sciadv.ade8778", "abstract": "<jats:p>\n Vaccines and drugs have helped reduce disease severity and blunt the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, ongoing virus transmission, continuous evolution, and increasing selective pressures have the potential to yield viral variants capable of resisting these interventions. Here, we investigate the susceptibility of natural variants of the main protease [M\n <jats:sup>pro</jats:sup>\n ; 3C-like protease (3CL\n <jats:sup>pro</jats:sup>\n )] of SARS-CoV-2 to protease inhibitors. Multiple single amino acid changes in M\n <jats:sup>pro</jats:sup>\n confer resistance to nirmatrelvir (the active component of Paxlovid). An additional clinical-stage inhibitor, ensitrelvir (Xocova), shows a different resistance mutation profile. Importantly, phylogenetic analyses indicate that several of these resistant variants have pre-existed the introduction of these drugs into the human population and are capable of spreading. These results encourage the monitoring of resistance variants and the development of additional protease inhibitors and other antiviral drugs with different mechanisms of action and resistance profiles for combinatorial therapy.\n </jats:p>", "alternative-id": [ "10.1126/sciadv.ade8778" ], "article-number": "eade8778", "assertion": [ { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Received", "name": "received", "order": 0, "value": "2022-09-14" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Accepted", "name": "accepted", "order": 1, "value": "2023-02-28" }, { "group": { "label": "Publication History", "name": "publication_history" }, "label": "Published", "name": "published", "order": 2, "value": "2023-03-29" } ], "author": [ { "ORCID": "https://orcid.org/0000-0001-6598-8994", "affiliation": [ { "name": "Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA." } ], "authenticated-orcid": true, "family": "Moghadasi", "given": "Seyed Arad", "sequence": "first" }, { "ORCID": "https://orcid.org/0000-0001-8148-9490", "affiliation": [ { "name": "Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria." } ], "authenticated-orcid": true, "family": "Heilmann", "given": "Emmanuel", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-1358-6755", "affiliation": [ { "name": "Texas Biomedical Research Institute, San Antonio, TX 78227, USA." }, { "name": "Department of Zoonotic Diseases, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt." } ], "authenticated-orcid": true, "family": "Khalil", "given": "Ahmed Magdy", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-9907-0508", "affiliation": [ { "name": "Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA." } ], "authenticated-orcid": true, "family": "Nnabuife", "given": "Christina", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-5469-9035", "affiliation": [ { "name": "Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA." } ], "authenticated-orcid": true, "family": "Kearns", "given": "Fiona L.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-1934-9494", "affiliation": [ { "name": "Texas Biomedical Research Institute, San Antonio, TX 78227, USA." } ], "authenticated-orcid": true, "family": "Ye", "given": "Chengjin", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0003-0838-0047", "affiliation": [ { "name": "Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA." } ], "authenticated-orcid": true, "family": "Moraes", "given": "Sofia N.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-4556-5967", "affiliation": [ { "name": "Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria." } ], "authenticated-orcid": true, "family": "Costacurta", "given": "Francesco", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-5570-385X", "affiliation": [ { "name": "Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA." } ], "authenticated-orcid": true, "family": "Esler", "given": "Morgan A.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-7508-6230", "affiliation": [ { "name": "Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA." } ], "authenticated-orcid": true, "family": "Aihara", "given": "Hideki", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-5825-7237", "affiliation": [ { "name": "Institute of Virology, Medical University of Innsbruck, Innsbruck, Austria." } ], "authenticated-orcid": true, "family": "von Laer", "given": "Dorothee", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0001-7084-0804", "affiliation": [ { "name": "Texas Biomedical Research Institute, San Antonio, TX 78227, USA." } ], "authenticated-orcid": true, "family": "Martinez-Sobrido", "given": "Luis", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-5267-0001", "affiliation": [ { "name": "Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA." } ], "authenticated-orcid": true, "family": "Palzkill", "given": "Timothy", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-9275-9553", "affiliation": [ { "name": "Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA." } ], "authenticated-orcid": true, "family": "Amaro", "given": "Rommie E.", "sequence": "additional" }, { "ORCID": "https://orcid.org/0000-0002-9034-9112", "affiliation": [ { "name": "Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55455, USA." }, { "name": "Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA." }, { "name": "Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA." } ], "authenticated-orcid": true, "family": "Harris", "given": "Reuben S.", "sequence": "additional" } ], "container-title": "Science Advances", "container-title-short": "Sci. Adv.", "content-domain": { "crossmark-restriction": true, "domain": [ "www.science.org" ] }, "created": { "date-parts": [ [ 2023, 4, 10 ] ], "date-time": "2023-04-10T14:02:09Z", "timestamp": 1681135329000 }, "deposited": { "date-parts": [ [ 2024, 1, 9 ] ], "date-time": "2024-01-09T21:21:42Z", "timestamp": 1704835302000 }, "indexed": { "date-parts": [ [ 2025, 7, 30 ] ], "date-time": "2025-07-30T13:03:56Z", "timestamp": 1753880636065, "version": "3.41.2" }, "is-referenced-by-count": 120, "issue": "13", "issued": { "date-parts": [ [ 2023, 3, 31 ] ] }, "journal-issue": { "issue": "13", "published-print": { "date-parts": [ [ 2023, 3, 31 ] ] } }, "language": "en", "link": [ { "URL": "https://www.science.org/doi/pdf/10.1126/sciadv.ade8778", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "221", "original-title": [], "prefix": "10.1126", "published": { "date-parts": [ [ 2023, 3, 31 ] ] }, "published-print": { "date-parts": [ [ 2023, 3, 31 ] ] }, "publisher": "American Association for the Advancement of Science (AAAS)", "reference": [ { "DOI": "10.1126/science.1085658", "doi-asserted-by": "publisher", "key": "e_1_3_2_2_2" }, { "DOI": "10.1126/science.abb3405", "doi-asserted-by": "publisher", "key": "e_1_3_2_3_2" }, { "DOI": "10.1038/s41467-021-26239-2", "doi-asserted-by": "publisher", "key": "e_1_3_2_4_2" }, { "DOI": "10.1126/science.371.6534.1092", "doi-asserted-by": "publisher", "key": "e_1_3_2_5_2" }, { "DOI": "10.1056/NEJM199804303381808", "doi-asserted-by": "publisher", "key": "e_1_3_2_6_2" }, { "DOI": "10.1007/978-3-540-79086-0_4", "doi-asserted-by": "publisher", "key": "e_1_3_2_7_2" }, { "DOI": "10.1021/jacs.1c08402", "doi-asserted-by": "publisher", "key": "e_1_3_2_8_2" }, { "DOI": "10.1021/acscentsci.1c00039", "doi-asserted-by": "publisher", "key": "e_1_3_2_9_2" }, { "DOI": "10.1126/science.abf1611", "doi-asserted-by": "publisher", "key": "e_1_3_2_10_2" }, { "DOI": "10.1126/scitranslmed.abc5332", "doi-asserted-by": "publisher", "key": "e_1_3_2_11_2" }, { "DOI": "10.1101/2020.10.29.339317", "doi-asserted-by": "crossref", "key": "e_1_3_2_12_2", "unstructured": "COVID-19 Moonshot Consortium Open science discovery of oral non-covalent SARS-CoV-2 main protease inhibitor therapeutics. bioRxiv 2020.10.29.339317 [ Preprint ]. 2 March 2023. https://doi.org/10.1101/2020.10.29.339317." }, { "DOI": "10.1126/science.abl4784", "doi-asserted-by": "publisher", "key": "e_1_3_2_13_2" }, { "key": "e_1_3_2_14_2", "unstructured": "Xocova® (ensitrelvir fumaric acid) tablets 125mg approved in Japan for the treatment of SARS-CoV-2 infection under the emergency regulatory approval system; https://shionogi.com/global/en/news/2022/11/e20221122.html." }, { "DOI": "10.1021/acs.jmedchem.2c00117", "doi-asserted-by": "publisher", "key": "e_1_3_2_15_2" }, { "DOI": "10.1101/cshperspect.a041390", "doi-asserted-by": "publisher", "key": "e_1_3_2_16_2" }, { "DOI": "10.1128/mbio.00784-22", "doi-asserted-by": "publisher", "key": "e_1_3_2_17_2" }, { "key": "e_1_3_2_18_2", "unstructured": "Fact sheet for healthcare providers: Emergency use authorization for Paxlovid TM ; https://fda.gov/media/155050/download." }, { "DOI": "10.2807/1560-7917.ES.2017.22.13.30494", "doi-asserted-by": "publisher", "key": "e_1_3_2_19_2" }, { "DOI": "10.1038/s41467-022-29915-z", "doi-asserted-by": "publisher", "key": "e_1_3_2_20_2" }, { "DOI": "10.1021/bi0616302", "doi-asserted-by": "publisher", "key": "e_1_3_2_21_2" }, { "DOI": "10.1038/s42003-022-03277-0", "doi-asserted-by": "publisher", "key": "e_1_3_2_22_2" }, { "DOI": "10.1073/pnas.2111172118", "doi-asserted-by": "publisher", "key": "e_1_3_2_23_2" }, { "DOI": "10.1016/j.jbc.2022.101739", "doi-asserted-by": "publisher", "key": "e_1_3_2_24_2" }, { "DOI": "10.1016/j.bbrc.2004.04.098", "doi-asserted-by": "publisher", "key": "e_1_3_2_25_2" }, { "DOI": "10.1128/JVI.02209-20", "doi-asserted-by": "publisher", "key": "e_1_3_2_26_2" }, { "DOI": "10.1038/s41588-021-00862-7", "doi-asserted-by": "publisher", "key": "e_1_3_2_27_2" }, { "DOI": "10.3389/fchem.2021.819165", "doi-asserted-by": "publisher", "key": "e_1_3_2_28_2" }, { "DOI": "10.1101/2022.06.28.497978", "doi-asserted-by": "crossref", "key": "e_1_3_2_29_2", "unstructured": "Y. Hu E. M. Lewandowski H. Tan R. T. Morgan X. Zhang L. M. C. Jacobs S. G. Butler M. V. Mongora J. Choy Y. Chen J. Wang Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. bioRxiv 2022.06.28.497978 [ Preprint ]. 6 September 2022. https://doi.org/10.1101/2022.06.28.497978." }, { "DOI": "10.21203/rs.3.rs-1942964/v1", "doi-asserted-by": "crossref", "key": "e_1_3_2_30_2", "unstructured": "J. Ou E. M. Lewandowski Y. Hu A. A. Lipinski R. T. Morgan L. M. C. Jacobs X. Zhang M. J. Bikowitz P. Langlais H. Tan J. Wang Y. Chen J. S. Choy A yeast-based system to study SARS-CoV-2 M pro structure and to identify nirmatrelvir resistant mutations. bioRxiv 2022.08.06.503039 [ Preprint ]. 8 August 2022. https://doi.org/10.1101/2022.08.06.503039." }, { "DOI": "10.1126/sciadv.add7197", "doi-asserted-by": "publisher", "key": "e_1_3_2_31_2" }, { "DOI": "10.1038/s41586-022-05514-2", "doi-asserted-by": "publisher", "key": "e_1_3_2_32_2" }, { "DOI": "10.1101/2022.06.07.495116", "doi-asserted-by": "crossref", "key": "e_1_3_2_33_2", "unstructured": "D. Jochmans C. Liu K. Donckers A. Stoycheva S. Boland S. K. Stevens C. De Vita B. Vanmechelen P. Maes B. Trüeb N. Ebert V. Thiel S. De Jonghe L. Vangeel D. Bardiot A. Jekle L. M. Blatt L. Beigelman J. A. Symons P. Raboisson P. Chaltin A. Marchand J. Neyts J. Deval K. Vandyck The substitutions L50F E166A and L167F in SARS-CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir. bioRxiv 2022.06.07.495116 [ Preprint ]. 7 June 2022. https://doi.org/10.1101/2022.06.07.495116." }, { "DOI": "10.1126/scitranslmed.abq7360", "doi-asserted-by": "publisher", "key": "e_1_3_2_34_2" }, { "DOI": "10.1073/pnas.2117142119", "doi-asserted-by": "publisher", "key": "e_1_3_2_35_2" }, { "key": "e_1_3_2_36_2", "unstructured": "www.japic.or.jp/mail_s/pdf/23-11-1-07.pdf." }, { "DOI": "10.1101/2022.08.31.506107", "doi-asserted-by": "crossref", "key": "e_1_3_2_37_2", "unstructured": "G. Dias Noske E. de Souza Silva M. Ortiz de Godoy I. Dolci R. Sachetto Fernandes R. Victório Carvalho Guido P. Sjö G. Oliva A. Schutzer Godoy Structural basis of nirmatrelvir and ensitrelvir resistance profiles against SARS-CoV-2 main protease naturally occurring polymorphisms. bioRxiv 2022.08.31.506107 [ Preprint ]. 1 September 2022. https://doi.org/10.1101/2022.08.31.506107." }, { "DOI": "10.1038/s41467-020-20075-6", "doi-asserted-by": "publisher", "key": "e_1_3_2_38_2" }, { "DOI": "10.1002/hep.27934", "doi-asserted-by": "publisher", "key": "e_1_3_2_39_2" }, { "article-title": "Combating susceptibility to drug resistance: Lessons from HIV-1 protease", "author": "King N. M.", "first-page": "1333", "journal-title": "Chem. Biol.", "key": "e_1_3_2_40_2", "unstructured": "N. M. King, M. Prabu-Jeyabalan, E. A. Nalivaika, C. A. Schiffer, Combating susceptibility to drug resistance: Lessons from HIV-1 protease. Chem. Biol. 11, 1333–1338 (2004).", "volume": "11", "year": "2004" }, { "DOI": "10.1038/nm0796-760", "doi-asserted-by": "publisher", "key": "e_1_3_2_41_2" }, { "DOI": "10.1006/abio.1998.3014", "doi-asserted-by": "publisher", "key": "e_1_3_2_42_2" }, { "DOI": "10.1016/0005-2744(69)90420-3", "doi-asserted-by": "publisher", "key": "e_1_3_2_43_2" }, { "DOI": "10.1128/spectrum.02732-22", "doi-asserted-by": "publisher", "key": "e_1_3_2_44_2" }, { "DOI": "10.3390/ijms222111779", "doi-asserted-by": "publisher", "key": "e_1_3_2_45_2" }, { "DOI": "10.12688/f1000research.17456.1", "doi-asserted-by": "publisher", "key": "e_1_3_2_46_2" }, { "DOI": "10.1021/ct100578z", "doi-asserted-by": "publisher", "key": "e_1_3_2_47_2" }, { "DOI": "10.1016/0263-7855(96)00018-5", "doi-asserted-by": "publisher", "key": "e_1_3_2_48_2" }, { "DOI": "10.1126/science.abm4805", "doi-asserted-by": "publisher", "key": "e_1_3_2_49_2" }, { "DOI": "10.1126/science.abj8754", "doi-asserted-by": "publisher", "key": "e_1_3_2_50_2" }, { "DOI": "10.1002/jcc.23354", "doi-asserted-by": "publisher", "key": "e_1_3_2_51_2" }, { "DOI": "10.1038/nmeth.4067", "doi-asserted-by": "publisher", "key": "e_1_3_2_52_2" }, { "DOI": "10.1063/1.445869", "doi-asserted-by": "publisher", "key": "e_1_3_2_53_2" }, { "DOI": "10.1002/jcc.20289", "doi-asserted-by": "publisher", "key": "e_1_3_2_54_2" }, { "DOI": "10.1063/5.0014475", "doi-asserted-by": "publisher", "key": "e_1_3_2_55_2" }, { "DOI": "10.1002/jcc.21787", "doi-asserted-by": "publisher", "key": "e_1_3_2_56_2" }, { "DOI": "10.25080/Majora-629e541a-00e", "doi-asserted-by": "crossref", "key": "e_1_3_2_57_2", "unstructured": "R. J. Gowers M. Linke J. Barnoud T. J. E. Reddy M. N. Melo S. L. Seyler J. Domanski D. L. Dotson S. Buchoux I. M. Kenney O. Beckstein MDAnalysis: A python package for the rapid analysis of molecular dynamics simulations in Proceedings of the 15th Python in Science Conference (SciPy 2016)." }, { "DOI": "10.1093/bioinformatics/bty407", "doi-asserted-by": "publisher", "key": "e_1_3_2_58_2" } ], "reference-count": 57, "references-count": 57, "relation": { "has-preprint": [ { "asserted-by": "object", "id": "10.1101/2022.08.07.503099", "id-type": "doi" } ] }, "resource": { "primary": { "URL": "https://www.science.org/doi/10.1126/sciadv.ade8778" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors", "type": "journal-article", "update-policy": "https://doi.org/10.34133/aaas_crossmark", "volume": "9" }
Please send us corrections, updates, or comments. c19early involves the extraction of 200,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. IMA and WCH provide treatment protocols.
  or use drag and drop   
Submit