Analgesics
Antiandrogens
Antihistamines
Bromhexine
Budesonide
Colchicine
Conv. Plasma
Curcumin
Fluvoxamine
Hydroxychlor..
Ivermectin
Lifestyle
Melatonin
Metformin
Minerals
Monoclonals
Mpro inhibitors
Naso/orophar..
Nigella Sativa
Nitazoxanide
PPIs
Quercetin
RdRp inhibitors
Thermotherapy
Vitamins
More

Other
Feedback
Home
 
next
study
previous
study
c19early.org COVID-19 treatment researchMolnupiravirMolnupiravir (more..)
Metformin Meta
Bromhexine Meta
Budesonide Meta
Colchicine Meta Nigella Sativa Meta
Conv. Plasma Meta Nitazoxanide Meta
Curcumin Meta PPIs Meta
Fluvoxamine Meta Quercetin Meta
Hydroxychlor.. Meta
Ivermectin Meta Thermotherapy Meta
Melatonin Meta

All Studies   All Outcomes       

Effective, but Safe? Physiologically Based Pharmacokinetic (PBPK)-Modeling-Based Dosing Study of Molnupiravir for Risk Assessment in Pediatric Subpopulations

Mishra et al., ACS Pharmacology & Translational Science, doi:10.1021/acsptsci.4c00535
Nov 2024  
  Post
  Facebook
Share
  Source   PDF   All Studies   Meta AnalysisMeta
In Silico physiologically based pharmacokinetic (PBPK) modeling study suggesting that effective doses of molnupiravir for pediatric COVID-19 treatment pose a bone and cartilage toxicity risk.
Mishra et al., 27 Nov 2024, peer-reviewed, 2 authors.
In Silico studies are an important part of preclinical research, however results may be very different in vivo.
This PaperMolnupiravirAll
Effective, but Safe? Physiologically Based Pharmacokinetic (PBPK)-Modeling-Based Dosing Study of Molnupiravir for Risk Assessment in Pediatric Subpopulations
Sarang Mishra, Katharina Rox
ACS Pharmacology & Translational Science, doi:10.1021/acsptsci.4c00535
Despite the end of COVID-19 pandemic, only intravenous remdesivir was approved for treatment of vulnerable pediatric populations. Molnupiravir is effective against viruses beyond SARS-CoV-2 and is orally administrable without CYPinteraction liabilities but has a burden of potential bone or cartilage toxicity, observed at doses exceeding 500 mg/kg/day in rats. Especially, activity of molnupiravir against viruses, such as Ebola, with high fatality rates and no treatment option warrants the exploration of potentially effective but safe doses for pediatric populations, i.e., neonates (0-27 days), infants (1-12 months), and children in early childhood (1-12 years). The bone and cartilage toxicity risk for these populations based on the preclinical results has not been systematically investigated yet. Using physiologically based pharmacokinetic (PBPK) modeling, we developed adult PBPK models for doses ranging from 50 to 1200 mg with minimal parameter optimization because of incorporation of CES1, a carboxylesterase. Therein, CES1 served as the main driver for conversion of molnupiravir to its active metabolite β-d-N4hydroxycytidine (NHC). By incorporation of the ontogeny of CES1 for pediatric populations, we successfully developed PBPK models for different doses ranging from 10 to 75 mg/kg. For molnupiravir, efficacy is driven by the area under the curve (AUC). To achieve a similar AUC to that seen in adults, a dose of around 28 mg/kg BID was necessary in all three investigated pediatric subpopulations. This dose exceeded the safe dose observed in dogs and was slightly below the toxicity-associated human equivalent dose in rats. In summary, the pediatric PBPK models suggested that an efficacious dose posed a toxicity risk. These data confirmed the contraindication for children <18 years.
■ ASSOCIATED CONTENT * sı Supporting Information The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acsptsci.4c00535 . Mass spectrometric conditions for molnupiravir and NHC; demographic and ontogenic parameters for subpopulations of the study; EC 50 values of NHC against different SARS-CoV-2 VOC; time over EC 50 for adult and pediatric models at selected doses; dose linearity comparison for dose correlated with AUC and C max ; simulated and observed concentration-time profiles for NHC after administration of multiple doses; NHC plasma concentration-time profile for neonates at different doses; NHC plasma concentration-time profile for infants at different doses; and NHC plasma concentration-time profile at different doses for children in early childhood (PDF) ■ AUTHOR INFORMATION Author Contributions S.M. built the PBPK models, contributed ADME data, analyzed the data, and wrote the original draft of the manuscript. K.R. conceived the study, reviewed PBPK models, contributed ADME data, analyzed the data, contributed to writing of the original draft, reviewed and edited the manuscript, supervised the study, and acquired funding. Notes The authors declare no competing financial interest. ■ ACKNOWLEDGMENTS This project has received funding from the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 101005077. The JU receives support from the European Union's Horizon 2020 research and innovation..
References
Agostini, Pruijssers, Chappell, Gribble, Lu et al., Small-Molecule Antiviral β-<scp > d</Scp>-N 4 -Hydroxycytidine Inhibits a Proofreading-Intact Coronavirus with a High Genetic Barrier to Resistance, J. Virol, doi:10.1128/JVI.01348-19
Allerton, Arcari, Aschenbrenner, Avery, Bechle et al., A Second-Generation Oral SARS-CoV-2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19, J. Med. Chem, doi:10.1021/acs.jmedchem.3c02469?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Ambrose, Bhavnani, Rubino, Louie, Gumbo et al., Antimicrobial Resistance: Pharmacokinetics-Pharmacodynamics of Antimicrobial Therapy: It's Not Just for Mice Anymore, Clin. Infect. Dis, doi:10.1086/510079
Basit, Neradugomma, Wolford, Fan, Murray et al., Characterization of Differential Tissue Abundance of Major Non-CYP Enzymes in Human, Mol. Pharm, doi:10.1021/acs.molpharmaceut.0c00559?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Beladiya, Kumar, Vasava, Parmar, Patel et al., Safety and Efficacy of COVID-19 Vaccines: A Systematic Review and Meta-Analysis of Controlled and Randomized Clinical Trials, Rev. Med. Virol, doi:10.1002/rmv.2507
Biancolella, Colona, Mehrian-Shai, Watt, Luzzatto et al., COVID-19 2022 Update: Transition of the Pandemic to the Endemic Phase, Hum. Genomics, doi:10.1186/S40246-022-00392-1
Bluemling, Mao, Natchus, Painter, Mulangu et al., The prophylactic and therapeutic efficacy of the broadly active antiviral ribonucleoside N-Hydroxycytidine (EIDD-1931) in a mouse model of lethal Ebola virus infection, Antiviral Res, doi:10.1016/j.antiviral.2022.105453
Boberg, Vrana, Mehrotra, Pearce, Gaedigk et al., Age-Dependent Absolute Abundance of Hepatic Carboxylesterases (CES1 and CES2) by LC-MS/MS Proteomics: Application to PBPK Modeling of Oseltamivir in Vivo Pharmacokinetics in Infants, Drug Metab. Dispos, doi:10.1124/dmd.116.072652
Chawla, Birger, Wan, Cao, Maas et al., Factors Influencing COVID-19 Risk: Insights From Molnupiravir Exposure-Response Modeling of Clinical Outcomes, Clin. Pharmacol. Ther, doi:10.1002/cpt.2895
Chen, Huang, Ma, Kuzmic, Zhou et al., Preclinical Evaluation of the SARS-CoV-2 Mpro Inhibitor RAY1216 Shows Improved Pharmacokinetics Compared with Nirmatrelvir, Nat. Microbiol, doi:10.1038/s41564-024-01618-9
Cohlan, Bevelander, Tiamsic, Growth Inhibition of Prematures Receiving Tetracycline: A Clinical and Laboratory Investigation of Tetracycline-Induced Bone Fluorescence, Am. J. Dis. Child, doi:10.1001/archpedi.1963.02080040455005
Contreras, Iftekhar, Priesemann, From Emergency Response to Long-Term Management: The Many Faces of the Endemic State of COVID-19, Lancet Reg. Health Eur, doi:10.1016/j.lanepe.2023.100664
Corritori, Savchuk, Pauza, Risk/Benefit Profiles of Currently Approved Oral Antivirals for Treatment of COVID-19: Similarities and Differences, COVID, doi:10.3390/COVID2080078
Culas, Nath, Nath, Safely Prescribing Nirmatrelvir and Ritonavir�Avoiding Drug-Drug Interactions, JAMA Intern. Med, doi:10.1001/jamainternmed.2022.6834
Ehteshami, Tao, Zandi, Hsiao, Jiang et al., Characterization of β-<scp > d</Scp>-N 4 -Hydroxycytidine as a Novel Inhibitor of Chikungunya Virus, Antimicrob. Agents Chemother, doi:10.1128/AAC.02395-1
Hines, Simpson, Mccarver, Age-Dependent Human Hepatic Carboxylesterase 1 (CES1) and Carboxylesterase 2 (CES2) Postnatal Ontogeny, Drug Metab. Dispos, doi:10.1124/dmd.115.068957
Kabinger, Stiller, Schmitzová, Dienemann, Kokic et al., Mechanism of Molnupiravir-Induced SARS-CoV-2 Mutagenesis, Nat. Struct. Mol. Biol, doi:10.1021/acsptsci.4c00535?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as
Kabinger, Stiller, Schmitzová, Dienemann, Kokic et al., Mechanism of Molnupiravir-Induced SARS-CoV-2 Mutagenesis, Nat. Struct. Mol. Biol, doi:10.1038/s41594-021-00651-0
Lavine, Bjornstad, Antia, Immunological Characteristics Govern the Transition of COVID-19 to Endemicity, Science, doi:10.1126/science.abe6522
Leong, Vieira, Zhao, Mulugeta, Lee et al., Regulatory Experience with Physiologically Based Pharmacokinetic Modeling for Pediatric Drug Trials, Clin. Pharmacol. Ther, doi:10.1038/clpt.2012.19
Li, Hilgenfeld, Whitley, De Clercq, Therapeutic Strategies for COVID-19: Progress and Lessons Learned, Nat. Rev. Drug Discovery, doi:10.1038/s41573-023-00672-y
Lutz, Mathias, German, Pikora, Reddy et al., Physiologically-Based Pharmacokinetic Modeling of Remdesivir and Its Metabolites to Support Dose Selection for the Treatment of Pediatric Patients With COVID-19, Clin. Pharmacol. Ther, doi:10.1002/cpt.2176
Maas, Strizki, Miller, Kumar, Brown et al., Mechanism of Action, Clinical, and Translational Science, Clin. Transl. Sci, doi:10.1111/cts.13732
Maharaj, Wu, Hornik, Balevic, Hornik et al., Simulated Assessment of Pharmacokinetically Guided Dosing for Investigational Treatments of Pediatric Patients With Coronavirus Disease, JAMA Pediatr, doi:10.1001/jamapediatrics.2020.2422
Malone, Campbell, Molnupiravir, Coding for Catastrophe, Nat. Struct. Mol. Biol, doi:10.1038/s41594-021-00657-8
Nair, Jacob, A simple practice guide for dose conversion between animals and human, J. Basic Clin. Pharm, doi:10.4103/0976-0105.177703
Nesteruk, Endemic Characteristics of SARS-CoV-2 Infection, Sci. Rep, doi:10.1038/s41598-023-41841-8
Owen, Allerton, Anderson, Aschenbrenner, Avery et al., An Oral SARS-CoV-2 M pro Inhibitor Clinical Candidate for the Treatment of COVID-19, Science, doi:10.1126/science.abl4784
Painter, Holman, Bush, Almazedi, Malik et al., Human Safety, Tolerability, and Pharmacokinetics of Molnupiravir, a Novel Broad-Spectrum Oral Antiviral Agent with Activity against SARS-CoV-2, Antimicrob. Agents Chemother, doi:10.1128/AAC.02428-2e02428-20
Parums, Current Status of Oral Antiviral Drug Treatments for SARS-CoV-2 Infection in Non-Hospitalized Patients, Med. Sci. Monit, doi:10.12659/MSM.935952
Providers, EMER-GENCY USE AUTHORIZATION FOR LAGEVRIO TM (molnupiravir) CAPSULES
Ross, Borazjani, Wang, Allen Crow, Xie, Examination of the Carboxylesterase Phenotype in Human Liver, Arch. Biochem. Biophys, doi:10.1016/j.abb.2012.04.010
Shao, Shen, Wang, Sun, Wang et al., Development and Validation of Physiologically Based Pharmacokinetic Model of Levetiracetam to Predict Exposure and Dose Optimization in Pediatrics, J. Pharm. Sci, doi:10.1016/j.xphs.2023.03.025
Stuyver, Whitaker, Mcbrayer, Hernandez-Santiago, Lostia et al., Ribonucleoside Analogue That Blocks Replication of Bovine Viral Diarrhea and Hepatitis C Viruses in Culture, Antimicrob. Agents Chemother, doi:10.1128/AAC.47.1.244-254.2003
Wen, Wang, Li, Herdewijn, Snoeck et al., Synthesis and anti-SARS-CoV-2 evaluation of lipid prodrugs of β-D-N4-hydroxycytidine (NHC) and a 3′-fluoro-substituted analogue of NHC, Bioorg. Chem, doi:10.1016/j.bioorg.2023.106527
Willis, Oliveira, Abzug, Anosike, Ardura et al., Guidance for Prevention and Management of COVID-19 in Children and Adolescents: A Consensus Statement from the Pediatric Infectious Diseases Society Pediatric COVID-19 Therapies Taskforce, J. Pediatr. Infect. Dis. Soc, doi:10.1093/JPIDS/PIAD116
Yang, Pearce, Wang, Gaedigk, Wan et al., Human Carboxylesterases HCE1 and HCE2: Ontogenic Expression, Inter-Individual Variability and Differential Hydrolysis of Oseltamivir, Aspirin, Deltamethrin and Permethrin, Biochem. Pharmacol, doi:10.1016/j.bcp.2008.10.005
Yoon, Toots, Lee, Lee, Ludeke et al., Orally Efficacious Broad-Spectrum Ribonucleoside Analog Inhibitor of Influenza and Respiratory Syncytial Viruses, Antimicrob. Agents Chemother, doi:10.1128/AAC.00766-18
Zahorska, Rosato, Stober, Kuhaudomlarp, Meiers et al., Neutralizing the Impact of the Virulence Factor LecA from Pseudomonas Aeruginosa on Human Cells with New Glycomimetic Inhibitors, Angew. Chem., Int. Ed, doi:10.1002/anie.202215535
Zhu, Almeida, Baillie, Bowen, Britton et al., International Pediatric COVID-19 Severity Over the Course of the Pandemic, JAMA Pediatr, doi:10.1001/JAMAPEDIATRICS.2023.3117
Zhu, Ang, COVID-19 Infection in Children: Diagnosis and Management, Curr. Infect. Dis. Rep, doi:10.1007/s11908-022-00779-0
DOI record: { "DOI": "10.1021/acsptsci.4c00535", "ISSN": [ "2575-9108", "2575-9108" ], "URL": "http://dx.doi.org/10.1021/acsptsci.4c00535", "alternative-id": [ "10.1021/acsptsci.4c00535" ], "author": [ { "affiliation": [ { "name": "Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany" } ], "family": "Mishra", "given": "Sarang", "sequence": "first" }, { "ORCID": "https://orcid.org/0000-0002-8020-1384", "affiliation": [ { "name": "Department of Chemical Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany" }, { "name": "German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany" } ], "authenticated-orcid": true, "family": "Rox", "given": "Katharina", "sequence": "additional" } ], "container-title": "ACS Pharmacology &amp; Translational Science", "container-title-short": "ACS Pharmacol. Transl. Sci.", "content-domain": { "crossmark-restriction": false, "domain": [] }, "created": { "date-parts": [ [ 2024, 11, 27 ] ], "date-time": "2024-11-27T14:11:39Z", "timestamp": 1732716699000 }, "deposited": { "date-parts": [ [ 2024, 12, 13 ] ], "date-time": "2024-12-13T09:11:48Z", "timestamp": 1734081108000 }, "funder": [ { "DOI": "10.13039/501100010767", "award": [ "101005077" ], "doi-asserted-by": "publisher", "id": [ { "asserted-by": "publisher", "id": "10.13039/501100010767", "id-type": "DOI" } ], "name": "Innovative Medicines Initiative" } ], "indexed": { "date-parts": [ [ 2024, 12, 13 ] ], "date-time": "2024-12-13T09:40:25Z", "timestamp": 1734082825516, "version": "3.30.2" }, "is-referenced-by-count": 0, "issue": "12", "issued": { "date-parts": [ [ 2024, 11, 27 ] ] }, "journal-issue": { "issue": "12", "published-print": { "date-parts": [ [ 2024, 12, 13 ] ] } }, "language": "en", "license": [ { "URL": "https://creativecommons.org/licenses/by/4.0/", "content-version": "vor", "delay-in-days": 0, "start": { "date-parts": [ [ 2024, 11, 27 ] ], "date-time": "2024-11-27T00:00:00Z", "timestamp": 1732665600000 } } ], "link": [ { "URL": "https://pubs.acs.org/doi/pdf/10.1021/acsptsci.4c00535", "content-type": "application/pdf", "content-version": "vor", "intended-application": "unspecified" }, { "URL": "https://pubs.acs.org/doi/pdf/10.1021/acsptsci.4c00535", "content-type": "unspecified", "content-version": "vor", "intended-application": "similarity-checking" } ], "member": "316", "original-title": [], "page": "4112-4122", "prefix": "10.1021", "published": { "date-parts": [ [ 2024, 11, 27 ] ] }, "published-online": { "date-parts": [ [ 2024, 11, 27 ] ] }, "published-print": { "date-parts": [ [ 2024, 12, 13 ] ] }, "publisher": "American Chemical Society (ACS)", "reference": [ { "key": "ref1/cit1", "unstructured": "WHO Coronavirus (COVID-19) Dashboard. https://covid19.who.int/data (accessed Oct 31, 2024)." }, { "DOI": "10.1186/S40246-022-00392-1", "doi-asserted-by": "publisher", "key": "ref2/cit2" }, { "DOI": "10.1016/j.lanepe.2023.100664", "doi-asserted-by": "publisher", "key": "ref3/cit3" }, { "DOI": "10.1126/science.abe6522", "doi-asserted-by": "publisher", "key": "ref4/cit4" }, { "DOI": "10.1038/s41598-023-41841-8", "doi-asserted-by": "publisher", "key": "ref5/cit5" }, { "DOI": "10.1002/rmv.2507", "doi-asserted-by": "publisher", "key": "ref6/cit6" }, { "DOI": "10.1001/jamainternmed.2022.6834", "doi-asserted-by": "publisher", "key": "ref7/cit7" }, { "DOI": "10.1038/s41573-023-00672-y", "doi-asserted-by": "publisher", "key": "ref8/cit8" }, { "DOI": "10.1126/science.abl4784", "doi-asserted-by": "publisher", "key": "ref9/cit9" }, { "DOI": "10.1038/s41564-024-01618-9", "doi-asserted-by": "publisher", "key": "ref10/cit10" }, { "DOI": "10.1021/acs.jmedchem.3c02469", "doi-asserted-by": "publisher", "key": "ref11/cit11" }, { "DOI": "10.1111/cts.13732", "doi-asserted-by": "publisher", "key": "ref12/cit12" }, { "DOI": "10.12659/MSM.935952", "doi-asserted-by": "publisher", "key": "ref13/cit13" }, { "key": "ref14/cit14", "unstructured": "CHMP. Committee for Medicinal Products for Human Use\n(CHMP) Withdrawal\nassessment report. https://www.ema.europa.eu/en/medicines/human/EPAR/lagevrio (accessed\nSept 02, 2024)." }, { "DOI": "10.1016/j.antiviral.2022.105453", "doi-asserted-by": "publisher", "key": "ref15/cit15" }, { "DOI": "10.1128/AAC.00766-18", "doi-asserted-by": "publisher", "key": "ref16/cit16" }, { "DOI": "10.1128/AAC.02395-1", "doi-asserted-by": "publisher", "key": "ref17/cit17" }, { "DOI": "10.1128/AAC.47.1.244-254.2003", "doi-asserted-by": "publisher", "key": "ref18/cit18" }, { "DOI": "10.1038/s41594-021-00651-0", "doi-asserted-by": "publisher", "key": "ref19/cit19" }, { "DOI": "10.1038/s41594-021-00657-8", "doi-asserted-by": "publisher", "key": "ref20/cit20" }, { "DOI": "10.1128/JVI.01348-19", "doi-asserted-by": "publisher", "key": "ref21/cit21" }, { "DOI": "10.1128/AAC.02428-2e02428-20", "doi-asserted-by": "publisher", "key": "ref22/cit22" }, { "key": "ref23/cit23", "unstructured": "FACT SHEET FOR HEALTHCARE PROVIDERS: EMERGENCY USE\nAUTHORIZATION\nFOR LAGEVRIOTM (molnupiravir) CAPSULES. https://www.fda.gov/media/155054/download (accessed Aug 06, 2024)." }, { "DOI": "10.1007/s11908-022-00779-0", "doi-asserted-by": "publisher", "key": "ref24/cit24" }, { "DOI": "10.1093/JPIDS/PIAD116", "doi-asserted-by": "publisher", "key": "ref25/cit25" }, { "DOI": "10.1001/JAMAPEDIATRICS.2023.3117", "doi-asserted-by": "publisher", "key": "ref26/cit26" }, { "DOI": "10.1038/clpt.2012.19", "doi-asserted-by": "publisher", "key": "ref27/cit27" }, { "DOI": "10.1002/cpt.2176", "doi-asserted-by": "publisher", "key": "ref28/cit28" }, { "DOI": "10.1016/j.xphs.2023.03.025", "doi-asserted-by": "publisher", "key": "ref29/cit29" }, { "DOI": "10.1002/anie.202215535", "doi-asserted-by": "publisher", "key": "ref30/cit30" }, { "DOI": "10.1124/dmd.116.072652", "doi-asserted-by": "publisher", "key": "ref31/cit31" }, { "DOI": "10.1016/j.abb.2012.04.010", "doi-asserted-by": "publisher", "key": "ref32/cit32" }, { "key": "ref33/cit33", "unstructured": "U.S. Food and Drug Administration. FDA advisory committee briefing document\non Molnupiravir. www.fda.gov/media/155054/download (accessed June 02, 2022)." }, { "key": "ref34/cit34", "unstructured": "EMA Assessment report\non Molnupiravir 19.11, 2021. www.ema.europa.eu/en/documents/referral/lagevrio-also-known-molnupiravir-mk-4482-covid-19-article-53-procedure-assessment-report_en.pdf (accessed June 02, 2022)." }, { "DOI": "10.1086/510079", "doi-asserted-by": "publisher", "key": "ref35/cit35" }, { "DOI": "10.1016/j.bioorg.2023.106527", "doi-asserted-by": "publisher", "key": "ref36/cit36" }, { "DOI": "10.1002/cpt.2895", "doi-asserted-by": "publisher", "key": "ref37/cit37" }, { "DOI": "10.4103/0976-0105.177703", "doi-asserted-by": "publisher", "key": "ref38/cit38" }, { "DOI": "10.3390/COVID2080078", "doi-asserted-by": "publisher", "key": "ref39/cit39" }, { "DOI": "10.1001/jamapediatrics.2020.2422", "doi-asserted-by": "publisher", "key": "ref40/cit40" }, { "DOI": "10.1016/j.bcp.2008.10.005", "doi-asserted-by": "publisher", "key": "ref41/cit41" }, { "DOI": "10.1124/dmd.115.068957", "doi-asserted-by": "publisher", "key": "ref42/cit42" }, { "DOI": "10.1021/acs.molpharmaceut.0c00559", "doi-asserted-by": "publisher", "key": "ref43/cit43" }, { "DOI": "10.1001/archpedi.1963.02080040455005", "doi-asserted-by": "publisher", "key": "ref44/cit44" }, { "DOI": "10.1038/s41594-021-00651-0", "doi-asserted-by": "publisher", "key": "ref45/cit45" } ], "reference-count": 45, "references-count": 45, "relation": {}, "resource": { "primary": { "URL": "https://pubs.acs.org/doi/10.1021/acsptsci.4c00535" } }, "score": 1, "short-title": [], "source": "Crossref", "subject": [], "subtitle": [], "title": "Effective, but Safe? Physiologically Based Pharmacokinetic (PBPK)-Modeling-Based Dosing Study of Molnupiravir for Risk Assessment in Pediatric Subpopulations", "type": "journal-article", "volume": "7" }
Loading..
Please send us corrections, updates, or comments. c19early involves the extraction of 100,000+ datapoints from thousands of papers. Community updates help ensure high accuracy. Treatments and other interventions are complementary. All practical, effective, and safe means should be used based on risk/benefit analysis. No treatment or intervention is 100% available and effective for all current and future variants. We do not provide medical advice. Before taking any medication, consult a qualified physician who can provide personalized advice and details of risks and benefits based on your medical history and situation. FLCCC and WCH provide treatment protocols.
  or use drag and drop   
Submit